2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
32 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
35 BDRVQcowState
*s
= bs
->opaque
;
36 int new_l1_size2
, ret
, i
;
37 uint64_t *new_l1_table
;
38 int64_t old_l1_table_offset
, old_l1_size
;
39 int64_t new_l1_table_offset
, new_l1_size
;
42 if (min_size
<= s
->l1_size
)
46 new_l1_size
= min_size
;
48 /* Bump size up to reduce the number of times we have to grow */
49 new_l1_size
= s
->l1_size
;
50 if (new_l1_size
== 0) {
53 while (min_size
> new_l1_size
) {
54 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
58 if (new_l1_size
> INT_MAX
) {
63 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
64 s
->l1_size
, new_l1_size
);
67 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
68 new_l1_table
= g_malloc0(align_offset(new_l1_size2
, 512));
69 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
71 /* write new table (align to cluster) */
72 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
73 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
74 if (new_l1_table_offset
< 0) {
76 return new_l1_table_offset
;
79 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
84 /* the L1 position has not yet been updated, so these clusters must
85 * indeed be completely free */
86 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_DEFAULT
,
87 new_l1_table_offset
, new_l1_size2
);
92 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
93 for(i
= 0; i
< s
->l1_size
; i
++)
94 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
95 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
98 for(i
= 0; i
< s
->l1_size
; i
++)
99 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
102 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
103 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
104 cpu_to_be64wu((uint64_t*)(data
+ 4), new_l1_table_offset
);
105 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
110 old_l1_table_offset
= s
->l1_table_offset
;
111 s
->l1_table_offset
= new_l1_table_offset
;
112 s
->l1_table
= new_l1_table
;
113 old_l1_size
= s
->l1_size
;
114 s
->l1_size
= new_l1_size
;
115 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
116 QCOW2_DISCARD_OTHER
);
119 g_free(new_l1_table
);
120 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
121 QCOW2_DISCARD_OTHER
);
128 * Loads a L2 table into memory. If the table is in the cache, the cache
129 * is used; otherwise the L2 table is loaded from the image file.
131 * Returns a pointer to the L2 table on success, or NULL if the read from
132 * the image file failed.
135 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
138 BDRVQcowState
*s
= bs
->opaque
;
141 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
147 * Writes one sector of the L1 table to the disk (can't update single entries
148 * and we really don't want bdrv_pread to perform a read-modify-write)
150 #define L1_ENTRIES_PER_SECTOR (512 / 8)
151 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
153 BDRVQcowState
*s
= bs
->opaque
;
154 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
158 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
159 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
160 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
163 ret
= qcow2_pre_write_overlap_check(bs
,
164 QCOW2_OL_DEFAULT
& ~QCOW2_OL_ACTIVE_L1
,
165 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
170 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
171 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
183 * Allocate a new l2 entry in the file. If l1_index points to an already
184 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
185 * table) copy the contents of the old L2 table into the newly allocated one.
186 * Otherwise the new table is initialized with zeros.
190 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
192 BDRVQcowState
*s
= bs
->opaque
;
193 uint64_t old_l2_offset
;
194 uint64_t *l2_table
= NULL
;
198 old_l2_offset
= s
->l1_table
[l1_index
];
200 trace_qcow2_l2_allocate(bs
, l1_index
);
202 /* allocate a new l2 entry */
204 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
210 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
215 /* allocate a new entry in the l2 cache */
217 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
218 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
225 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
226 /* if there was no old l2 table, clear the new table */
227 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
231 /* if there was an old l2 table, read it from the disk */
232 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
233 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
234 old_l2_offset
& L1E_OFFSET_MASK
,
235 (void**) &old_table
);
240 memcpy(l2_table
, old_table
, s
->cluster_size
);
242 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &old_table
);
248 /* write the l2 table to the file */
249 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
251 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
252 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
253 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
258 /* update the L1 entry */
259 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
260 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
261 ret
= qcow2_write_l1_entry(bs
, l1_index
);
267 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
271 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
272 if (l2_table
!= NULL
) {
273 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
275 s
->l1_table
[l1_index
] = old_l2_offset
;
277 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
278 QCOW2_DISCARD_ALWAYS
);
284 * Checks how many clusters in a given L2 table are contiguous in the image
285 * file. As soon as one of the flags in the bitmask stop_flags changes compared
286 * to the first cluster, the search is stopped and the cluster is not counted
287 * as contiguous. (This allows it, for example, to stop at the first compressed
288 * cluster which may require a different handling)
290 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
291 uint64_t *l2_table
, uint64_t stop_flags
)
294 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW2_CLUSTER_COMPRESSED
;
295 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
296 uint64_t offset
= first_entry
& mask
;
301 assert(qcow2_get_cluster_type(first_entry
) != QCOW2_CLUSTER_COMPRESSED
);
303 for (i
= 0; i
< nb_clusters
; i
++) {
304 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
305 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
313 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
317 for (i
= 0; i
< nb_clusters
; i
++) {
318 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
320 if (type
!= QCOW2_CLUSTER_UNALLOCATED
) {
328 /* The crypt function is compatible with the linux cryptoloop
329 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
331 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
332 uint8_t *out_buf
, const uint8_t *in_buf
,
333 int nb_sectors
, int enc
,
342 for(i
= 0; i
< nb_sectors
; i
++) {
343 ivec
.ll
[0] = cpu_to_le64(sector_num
);
345 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
353 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
355 uint64_t cluster_offset
,
356 int n_start
, int n_end
)
358 BDRVQcowState
*s
= bs
->opaque
;
364 * If this is the last cluster and it is only partially used, we must only
365 * copy until the end of the image, or bdrv_check_request will fail for the
366 * bdrv_read/write calls below.
368 if (start_sect
+ n_end
> bs
->total_sectors
) {
369 n_end
= bs
->total_sectors
- start_sect
;
377 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
378 iov
.iov_base
= qemu_blockalign(bs
, iov
.iov_len
);
380 qemu_iovec_init_external(&qiov
, &iov
, 1);
382 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
384 /* Call .bdrv_co_readv() directly instead of using the public block-layer
385 * interface. This avoids double I/O throttling and request tracking,
386 * which can lead to deadlock when block layer copy-on-read is enabled.
388 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
393 if (s
->crypt_method
) {
394 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
395 iov
.iov_base
, iov
.iov_base
, n
, 1,
396 &s
->aes_encrypt_key
);
399 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_DEFAULT
,
400 cluster_offset
+ n_start
* BDRV_SECTOR_SIZE
, n
* BDRV_SECTOR_SIZE
);
405 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
406 ret
= bdrv_co_writev(bs
->file
, (cluster_offset
>> 9) + n_start
, n
, &qiov
);
413 qemu_vfree(iov
.iov_base
);
421 * For a given offset of the disk image, find the cluster offset in
422 * qcow2 file. The offset is stored in *cluster_offset.
424 * on entry, *num is the number of contiguous sectors we'd like to
425 * access following offset.
427 * on exit, *num is the number of contiguous sectors we can read.
429 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
432 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
433 int *num
, uint64_t *cluster_offset
)
435 BDRVQcowState
*s
= bs
->opaque
;
436 unsigned int l2_index
;
437 uint64_t l1_index
, l2_offset
, *l2_table
;
439 unsigned int index_in_cluster
, nb_clusters
;
440 uint64_t nb_available
, nb_needed
;
443 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
444 nb_needed
= *num
+ index_in_cluster
;
446 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
448 /* compute how many bytes there are between the offset and
449 * the end of the l1 entry
452 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
454 /* compute the number of available sectors */
456 nb_available
= (nb_available
>> 9) + index_in_cluster
;
458 if (nb_needed
> nb_available
) {
459 nb_needed
= nb_available
;
464 /* seek the the l2 offset in the l1 table */
466 l1_index
= offset
>> l1_bits
;
467 if (l1_index
>= s
->l1_size
) {
468 ret
= QCOW2_CLUSTER_UNALLOCATED
;
472 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
474 ret
= QCOW2_CLUSTER_UNALLOCATED
;
478 /* load the l2 table in memory */
480 ret
= l2_load(bs
, l2_offset
, &l2_table
);
485 /* find the cluster offset for the given disk offset */
487 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
488 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
489 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
491 ret
= qcow2_get_cluster_type(*cluster_offset
);
493 case QCOW2_CLUSTER_COMPRESSED
:
494 /* Compressed clusters can only be processed one by one */
496 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
498 case QCOW2_CLUSTER_ZERO
:
499 if (s
->qcow_version
< 3) {
502 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
503 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
506 case QCOW2_CLUSTER_UNALLOCATED
:
507 /* how many empty clusters ? */
508 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
511 case QCOW2_CLUSTER_NORMAL
:
512 /* how many allocated clusters ? */
513 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
514 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
515 *cluster_offset
&= L2E_OFFSET_MASK
;
521 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
523 nb_available
= (c
* s
->cluster_sectors
);
526 if (nb_available
> nb_needed
)
527 nb_available
= nb_needed
;
529 *num
= nb_available
- index_in_cluster
;
537 * for a given disk offset, load (and allocate if needed)
540 * the l2 table offset in the qcow2 file and the cluster index
541 * in the l2 table are given to the caller.
543 * Returns 0 on success, -errno in failure case
545 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
546 uint64_t **new_l2_table
,
549 BDRVQcowState
*s
= bs
->opaque
;
550 unsigned int l2_index
;
551 uint64_t l1_index
, l2_offset
;
552 uint64_t *l2_table
= NULL
;
555 /* seek the the l2 offset in the l1 table */
557 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
558 if (l1_index
>= s
->l1_size
) {
559 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
565 assert(l1_index
< s
->l1_size
);
566 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
568 /* seek the l2 table of the given l2 offset */
570 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
571 /* load the l2 table in memory */
572 ret
= l2_load(bs
, l2_offset
, &l2_table
);
577 /* First allocate a new L2 table (and do COW if needed) */
578 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
583 /* Then decrease the refcount of the old table */
585 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
586 QCOW2_DISCARD_OTHER
);
590 /* find the cluster offset for the given disk offset */
592 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
594 *new_l2_table
= l2_table
;
595 *new_l2_index
= l2_index
;
601 * alloc_compressed_cluster_offset
603 * For a given offset of the disk image, return cluster offset in
606 * If the offset is not found, allocate a new compressed cluster.
608 * Return the cluster offset if successful,
609 * Return 0, otherwise.
613 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
617 BDRVQcowState
*s
= bs
->opaque
;
620 int64_t cluster_offset
;
623 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
628 /* Compression can't overwrite anything. Fail if the cluster was already
630 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
631 if (cluster_offset
& L2E_OFFSET_MASK
) {
632 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
636 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
637 if (cluster_offset
< 0) {
638 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
642 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
643 (cluster_offset
>> 9);
645 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
646 ((uint64_t)nb_csectors
<< s
->csize_shift
);
648 /* update L2 table */
650 /* compressed clusters never have the copied flag */
652 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
653 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
654 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
655 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
660 return cluster_offset
;
663 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
665 BDRVQcowState
*s
= bs
->opaque
;
668 if (r
->nb_sectors
== 0) {
672 qemu_co_mutex_unlock(&s
->lock
);
673 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
674 r
->offset
/ BDRV_SECTOR_SIZE
,
675 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
676 qemu_co_mutex_lock(&s
->lock
);
683 * Before we update the L2 table to actually point to the new cluster, we
684 * need to be sure that the refcounts have been increased and COW was
687 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
692 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
694 BDRVQcowState
*s
= bs
->opaque
;
695 int i
, j
= 0, l2_index
, ret
;
696 uint64_t *old_cluster
, *l2_table
;
697 uint64_t cluster_offset
= m
->alloc_offset
;
699 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
700 assert(m
->nb_clusters
> 0);
702 old_cluster
= g_malloc(m
->nb_clusters
* sizeof(uint64_t));
704 /* copy content of unmodified sectors */
705 ret
= perform_cow(bs
, m
, &m
->cow_start
);
710 ret
= perform_cow(bs
, m
, &m
->cow_end
);
715 /* Update L2 table. */
716 if (s
->use_lazy_refcounts
) {
717 qcow2_mark_dirty(bs
);
719 if (qcow2_need_accurate_refcounts(s
)) {
720 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
721 s
->refcount_block_cache
);
724 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
728 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
730 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
731 for (i
= 0; i
< m
->nb_clusters
; i
++) {
732 /* if two concurrent writes happen to the same unallocated cluster
733 * each write allocates separate cluster and writes data concurrently.
734 * The first one to complete updates l2 table with pointer to its
735 * cluster the second one has to do RMW (which is done above by
736 * copy_sectors()), update l2 table with its cluster pointer and free
737 * old cluster. This is what this loop does */
738 if(l2_table
[l2_index
+ i
] != 0)
739 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
741 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
742 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
746 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
752 * If this was a COW, we need to decrease the refcount of the old cluster.
753 * Also flush bs->file to get the right order for L2 and refcount update.
755 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
756 * clusters), the next write will reuse them anyway.
759 for (i
= 0; i
< j
; i
++) {
760 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
761 QCOW2_DISCARD_NEVER
);
772 * Returns the number of contiguous clusters that can be used for an allocating
773 * write, but require COW to be performed (this includes yet unallocated space,
774 * which must copy from the backing file)
776 static int count_cow_clusters(BDRVQcowState
*s
, int nb_clusters
,
777 uint64_t *l2_table
, int l2_index
)
781 for (i
= 0; i
< nb_clusters
; i
++) {
782 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
783 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
785 switch(cluster_type
) {
786 case QCOW2_CLUSTER_NORMAL
:
787 if (l2_entry
& QCOW_OFLAG_COPIED
) {
791 case QCOW2_CLUSTER_UNALLOCATED
:
792 case QCOW2_CLUSTER_COMPRESSED
:
793 case QCOW2_CLUSTER_ZERO
:
801 assert(i
<= nb_clusters
);
806 * Check if there already is an AIO write request in flight which allocates
807 * the same cluster. In this case we need to wait until the previous
808 * request has completed and updated the L2 table accordingly.
811 * 0 if there was no dependency. *cur_bytes indicates the number of
812 * bytes from guest_offset that can be read before the next
813 * dependency must be processed (or the request is complete)
815 * -EAGAIN if we had to wait for another request, previously gathered
816 * information on cluster allocation may be invalid now. The caller
817 * must start over anyway, so consider *cur_bytes undefined.
819 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
820 uint64_t *cur_bytes
, QCowL2Meta
**m
)
822 BDRVQcowState
*s
= bs
->opaque
;
823 QCowL2Meta
*old_alloc
;
824 uint64_t bytes
= *cur_bytes
;
826 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
828 uint64_t start
= guest_offset
;
829 uint64_t end
= start
+ bytes
;
830 uint64_t old_start
= l2meta_cow_start(old_alloc
);
831 uint64_t old_end
= l2meta_cow_end(old_alloc
);
833 if (end
<= old_start
|| start
>= old_end
) {
834 /* No intersection */
836 if (start
< old_start
) {
837 /* Stop at the start of a running allocation */
838 bytes
= old_start
- start
;
843 /* Stop if already an l2meta exists. After yielding, it wouldn't
844 * be valid any more, so we'd have to clean up the old L2Metas
845 * and deal with requests depending on them before starting to
846 * gather new ones. Not worth the trouble. */
847 if (bytes
== 0 && *m
) {
853 /* Wait for the dependency to complete. We need to recheck
854 * the free/allocated clusters when we continue. */
855 qemu_co_mutex_unlock(&s
->lock
);
856 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
857 qemu_co_mutex_lock(&s
->lock
);
863 /* Make sure that existing clusters and new allocations are only used up to
864 * the next dependency if we shortened the request above */
871 * Checks how many already allocated clusters that don't require a copy on
872 * write there are at the given guest_offset (up to *bytes). If
873 * *host_offset is not zero, only physically contiguous clusters beginning at
874 * this host offset are counted.
876 * Note that guest_offset may not be cluster aligned. In this case, the
877 * returned *host_offset points to exact byte referenced by guest_offset and
878 * therefore isn't cluster aligned as well.
881 * 0: if no allocated clusters are available at the given offset.
882 * *bytes is normally unchanged. It is set to 0 if the cluster
883 * is allocated and doesn't need COW, but doesn't have the right
886 * 1: if allocated clusters that don't require a COW are available at
887 * the requested offset. *bytes may have decreased and describes
888 * the length of the area that can be written to.
890 * -errno: in error cases
892 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
893 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
895 BDRVQcowState
*s
= bs
->opaque
;
897 uint64_t cluster_offset
;
899 unsigned int nb_clusters
;
900 unsigned int keep_clusters
;
903 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
906 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
907 == offset_into_cluster(s
, *host_offset
));
910 * Calculate the number of clusters to look for. We stop at L2 table
911 * boundaries to keep things simple.
914 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
916 l2_index
= offset_to_l2_index(s
, guest_offset
);
917 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
919 /* Find L2 entry for the first involved cluster */
920 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
925 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
927 /* Check how many clusters are already allocated and don't need COW */
928 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
929 && (cluster_offset
& QCOW_OFLAG_COPIED
))
931 /* If a specific host_offset is required, check it */
932 bool offset_matches
=
933 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
935 if (*host_offset
!= 0 && !offset_matches
) {
941 /* We keep all QCOW_OFLAG_COPIED clusters */
943 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
945 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
946 assert(keep_clusters
<= nb_clusters
);
949 keep_clusters
* s
->cluster_size
950 - offset_into_cluster(s
, guest_offset
));
959 pret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
964 /* Only return a host offset if we actually made progress. Otherwise we
965 * would make requirements for handle_alloc() that it can't fulfill */
967 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
968 + offset_into_cluster(s
, guest_offset
);
975 * Allocates new clusters for the given guest_offset.
977 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
978 * contain the number of clusters that have been allocated and are contiguous
981 * If *host_offset is non-zero, it specifies the offset in the image file at
982 * which the new clusters must start. *nb_clusters can be 0 on return in this
983 * case if the cluster at host_offset is already in use. If *host_offset is
984 * zero, the clusters can be allocated anywhere in the image file.
986 * *host_offset is updated to contain the offset into the image file at which
987 * the first allocated cluster starts.
989 * Return 0 on success and -errno in error cases. -EAGAIN means that the
990 * function has been waiting for another request and the allocation must be
991 * restarted, but the whole request should not be failed.
993 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
994 uint64_t *host_offset
, unsigned int *nb_clusters
)
996 BDRVQcowState
*s
= bs
->opaque
;
998 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
999 *host_offset
, *nb_clusters
);
1001 /* Allocate new clusters */
1002 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1003 if (*host_offset
== 0) {
1004 int64_t cluster_offset
=
1005 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1006 if (cluster_offset
< 0) {
1007 return cluster_offset
;
1009 *host_offset
= cluster_offset
;
1012 int ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1022 * Allocates new clusters for an area that either is yet unallocated or needs a
1023 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1024 * the new allocation can match the specified host offset.
1026 * Note that guest_offset may not be cluster aligned. In this case, the
1027 * returned *host_offset points to exact byte referenced by guest_offset and
1028 * therefore isn't cluster aligned as well.
1031 * 0: if no clusters could be allocated. *bytes is set to 0,
1032 * *host_offset is left unchanged.
1034 * 1: if new clusters were allocated. *bytes may be decreased if the
1035 * new allocation doesn't cover all of the requested area.
1036 * *host_offset is updated to contain the host offset of the first
1037 * newly allocated cluster.
1039 * -errno: in error cases
1041 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1042 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1044 BDRVQcowState
*s
= bs
->opaque
;
1048 unsigned int nb_clusters
;
1051 uint64_t alloc_cluster_offset
;
1053 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1058 * Calculate the number of clusters to look for. We stop at L2 table
1059 * boundaries to keep things simple.
1062 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1064 l2_index
= offset_to_l2_index(s
, guest_offset
);
1065 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1067 /* Find L2 entry for the first involved cluster */
1068 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1073 entry
= be64_to_cpu(l2_table
[l2_index
]);
1075 /* For the moment, overwrite compressed clusters one by one */
1076 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1079 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1082 /* This function is only called when there were no non-COW clusters, so if
1083 * we can't find any unallocated or COW clusters either, something is
1084 * wrong with our code. */
1085 assert(nb_clusters
> 0);
1087 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1092 /* Allocate, if necessary at a given offset in the image file */
1093 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1094 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1100 /* Can't extend contiguous allocation */
1101 if (nb_clusters
== 0) {
1107 * Save info needed for meta data update.
1109 * requested_sectors: Number of sectors from the start of the first
1110 * newly allocated cluster to the end of the (possibly shortened
1111 * before) write request.
1113 * avail_sectors: Number of sectors from the start of the first
1114 * newly allocated to the end of the last newly allocated cluster.
1116 * nb_sectors: The number of sectors from the start of the first
1117 * newly allocated cluster to the end of the area that the write
1118 * request actually writes to (excluding COW at the end)
1120 int requested_sectors
=
1121 (*bytes
+ offset_into_cluster(s
, guest_offset
))
1122 >> BDRV_SECTOR_BITS
;
1123 int avail_sectors
= nb_clusters
1124 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
1125 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
1126 >> BDRV_SECTOR_BITS
;
1127 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
1128 QCowL2Meta
*old_m
= *m
;
1130 *m
= g_malloc0(sizeof(**m
));
1132 **m
= (QCowL2Meta
) {
1135 .alloc_offset
= alloc_cluster_offset
,
1136 .offset
= start_of_cluster(s
, guest_offset
),
1137 .nb_clusters
= nb_clusters
,
1138 .nb_available
= nb_sectors
,
1142 .nb_sectors
= alloc_n_start
,
1145 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
1146 .nb_sectors
= avail_sectors
- nb_sectors
,
1149 qemu_co_queue_init(&(*m
)->dependent_requests
);
1150 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1152 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1153 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
1154 - offset_into_cluster(s
, guest_offset
));
1155 assert(*bytes
!= 0);
1160 if (*m
&& (*m
)->nb_clusters
> 0) {
1161 QLIST_REMOVE(*m
, next_in_flight
);
1167 * alloc_cluster_offset
1169 * For a given offset on the virtual disk, find the cluster offset in qcow2
1170 * file. If the offset is not found, allocate a new cluster.
1172 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1173 * other fields in m are meaningless.
1175 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1176 * contiguous clusters that have been allocated. In this case, the other
1177 * fields of m are valid and contain information about the first allocated
1180 * If the request conflicts with another write request in flight, the coroutine
1181 * is queued and will be reentered when the dependency has completed.
1183 * Return 0 on success and -errno in error cases
1185 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1186 int n_start
, int n_end
, int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1188 BDRVQcowState
*s
= bs
->opaque
;
1189 uint64_t start
, remaining
;
1190 uint64_t cluster_offset
;
1194 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
,
1197 assert(n_start
* BDRV_SECTOR_SIZE
== offset_into_cluster(s
, offset
));
1198 offset
= start_of_cluster(s
, offset
);
1201 start
= offset
+ (n_start
<< BDRV_SECTOR_BITS
);
1202 remaining
= (n_end
- n_start
) << BDRV_SECTOR_BITS
;
1210 if (!*host_offset
) {
1211 *host_offset
= start_of_cluster(s
, cluster_offset
);
1214 assert(remaining
>= cur_bytes
);
1217 remaining
-= cur_bytes
;
1218 cluster_offset
+= cur_bytes
;
1220 if (remaining
== 0) {
1224 cur_bytes
= remaining
;
1227 * Now start gathering as many contiguous clusters as possible:
1229 * 1. Check for overlaps with in-flight allocations
1231 * a) Overlap not in the first cluster -> shorten this request and
1232 * let the caller handle the rest in its next loop iteration.
1234 * b) Real overlaps of two requests. Yield and restart the search
1235 * for contiguous clusters (the situation could have changed
1236 * while we were sleeping)
1238 * c) TODO: Request starts in the same cluster as the in-flight
1239 * allocation ends. Shorten the COW of the in-fight allocation,
1240 * set cluster_offset to write to the same cluster and set up
1241 * the right synchronisation between the in-flight request and
1244 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1245 if (ret
== -EAGAIN
) {
1246 /* Currently handle_dependencies() doesn't yield if we already had
1247 * an allocation. If it did, we would have to clean up the L2Meta
1248 * structs before starting over. */
1251 } else if (ret
< 0) {
1253 } else if (cur_bytes
== 0) {
1256 /* handle_dependencies() may have decreased cur_bytes (shortened
1257 * the allocations below) so that the next dependency is processed
1258 * correctly during the next loop iteration. */
1262 * 2. Count contiguous COPIED clusters.
1264 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1269 } else if (cur_bytes
== 0) {
1274 * 3. If the request still hasn't completed, allocate new clusters,
1275 * considering any cluster_offset of steps 1c or 2.
1277 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1283 assert(cur_bytes
== 0);
1288 *num
= (n_end
- n_start
) - (remaining
>> BDRV_SECTOR_BITS
);
1290 assert(*host_offset
!= 0);
1295 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1296 const uint8_t *buf
, int buf_size
)
1298 z_stream strm1
, *strm
= &strm1
;
1301 memset(strm
, 0, sizeof(*strm
));
1303 strm
->next_in
= (uint8_t *)buf
;
1304 strm
->avail_in
= buf_size
;
1305 strm
->next_out
= out_buf
;
1306 strm
->avail_out
= out_buf_size
;
1308 ret
= inflateInit2(strm
, -12);
1311 ret
= inflate(strm
, Z_FINISH
);
1312 out_len
= strm
->next_out
- out_buf
;
1313 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1314 out_len
!= out_buf_size
) {
1322 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1324 BDRVQcowState
*s
= bs
->opaque
;
1325 int ret
, csize
, nb_csectors
, sector_offset
;
1328 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1329 if (s
->cluster_cache_offset
!= coffset
) {
1330 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1331 sector_offset
= coffset
& 511;
1332 csize
= nb_csectors
* 512 - sector_offset
;
1333 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1334 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
1338 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1339 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1342 s
->cluster_cache_offset
= coffset
;
1348 * This discards as many clusters of nb_clusters as possible at once (i.e.
1349 * all clusters in the same L2 table) and returns the number of discarded
1352 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1353 unsigned int nb_clusters
, enum qcow2_discard_type type
)
1355 BDRVQcowState
*s
= bs
->opaque
;
1361 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1366 /* Limit nb_clusters to one L2 table */
1367 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1369 for (i
= 0; i
< nb_clusters
; i
++) {
1370 uint64_t old_offset
;
1372 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1373 if ((old_offset
& L2E_OFFSET_MASK
) == 0) {
1377 /* First remove L2 entries */
1378 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1379 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1381 /* Then decrease the refcount */
1382 qcow2_free_any_clusters(bs
, old_offset
, 1, type
);
1385 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1393 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1394 int nb_sectors
, enum qcow2_discard_type type
)
1396 BDRVQcowState
*s
= bs
->opaque
;
1397 uint64_t end_offset
;
1398 unsigned int nb_clusters
;
1401 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1403 /* Round start up and end down */
1404 offset
= align_offset(offset
, s
->cluster_size
);
1405 end_offset
&= ~(s
->cluster_size
- 1);
1407 if (offset
> end_offset
) {
1411 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1413 s
->cache_discards
= true;
1415 /* Each L2 table is handled by its own loop iteration */
1416 while (nb_clusters
> 0) {
1417 ret
= discard_single_l2(bs
, offset
, nb_clusters
, type
);
1423 offset
+= (ret
* s
->cluster_size
);
1428 s
->cache_discards
= false;
1429 qcow2_process_discards(bs
, ret
);
1435 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1436 * all clusters in the same L2 table) and returns the number of zeroed
1439 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1440 unsigned int nb_clusters
)
1442 BDRVQcowState
*s
= bs
->opaque
;
1448 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1453 /* Limit nb_clusters to one L2 table */
1454 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1456 for (i
= 0; i
< nb_clusters
; i
++) {
1457 uint64_t old_offset
;
1459 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1461 /* Update L2 entries */
1462 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1463 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1464 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1465 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1467 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1471 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1479 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1481 BDRVQcowState
*s
= bs
->opaque
;
1482 unsigned int nb_clusters
;
1485 /* The zero flag is only supported by version 3 and newer */
1486 if (s
->qcow_version
< 3) {
1490 /* Each L2 table is handled by its own loop iteration */
1491 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1493 s
->cache_discards
= true;
1495 while (nb_clusters
> 0) {
1496 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1502 offset
+= (ret
* s
->cluster_size
);
1507 s
->cache_discards
= false;
1508 qcow2_process_discards(bs
, ret
);
1514 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1515 * non-backed non-pre-allocated zero clusters).
1517 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1518 * the image file; a bit gets set if the corresponding cluster has been used for
1519 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1520 * L2 table). nb_clusters contains the total cluster count of the image file,
1521 * i.e., the number of bits in expanded_clusters.
1523 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1524 int l1_size
, uint8_t **expanded_clusters
,
1525 uint64_t *nb_clusters
)
1527 BDRVQcowState
*s
= bs
->opaque
;
1528 bool is_active_l1
= (l1_table
== s
->l1_table
);
1529 uint64_t *l2_table
= NULL
;
1533 if (!is_active_l1
) {
1534 /* inactive L2 tables require a buffer to be stored in when loading
1536 l2_table
= qemu_blockalign(bs
, s
->cluster_size
);
1539 for (i
= 0; i
< l1_size
; i
++) {
1540 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1541 bool l2_dirty
= false;
1549 /* get active L2 tables from cache */
1550 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1551 (void **)&l2_table
);
1553 /* load inactive L2 tables from disk */
1554 ret
= bdrv_read(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1555 (void *)l2_table
, s
->cluster_sectors
);
1561 for (j
= 0; j
< s
->l2_size
; j
++) {
1562 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1563 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
, cluster_index
;
1564 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1565 bool preallocated
= offset
!= 0;
1567 if (cluster_type
== QCOW2_CLUSTER_NORMAL
) {
1568 cluster_index
= offset
>> s
->cluster_bits
;
1569 assert((cluster_index
>= 0) && (cluster_index
< *nb_clusters
));
1570 if ((*expanded_clusters
)[cluster_index
/ 8] &
1571 (1 << (cluster_index
% 8))) {
1572 /* Probably a shared L2 table; this cluster was a zero
1573 * cluster which has been expanded, its refcount
1574 * therefore most likely requires an update. */
1575 ret
= qcow2_update_cluster_refcount(bs
, cluster_index
, 1,
1576 QCOW2_DISCARD_NEVER
);
1580 /* Since we just increased the refcount, the COPIED flag may
1581 * no longer be set. */
1582 l2_table
[j
] = cpu_to_be64(l2_entry
& ~QCOW_OFLAG_COPIED
);
1587 else if (qcow2_get_cluster_type(l2_entry
) != QCOW2_CLUSTER_ZERO
) {
1591 if (!preallocated
) {
1592 if (!bs
->backing_hd
) {
1593 /* not backed; therefore we can simply deallocate the
1600 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1607 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_DEFAULT
,
1608 offset
, s
->cluster_size
);
1610 if (!preallocated
) {
1611 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1612 QCOW2_DISCARD_ALWAYS
);
1617 ret
= bdrv_write_zeroes(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1618 s
->cluster_sectors
);
1620 if (!preallocated
) {
1621 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1622 QCOW2_DISCARD_ALWAYS
);
1627 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1630 cluster_index
= offset
>> s
->cluster_bits
;
1632 if (cluster_index
>= *nb_clusters
) {
1633 uint64_t old_bitmap_size
= (*nb_clusters
+ 7) / 8;
1634 uint64_t new_bitmap_size
;
1635 /* The offset may lie beyond the old end of the underlying image
1636 * file for growable files only */
1637 assert(bs
->file
->growable
);
1638 *nb_clusters
= size_to_clusters(s
, bs
->file
->total_sectors
*
1640 new_bitmap_size
= (*nb_clusters
+ 7) / 8;
1641 *expanded_clusters
= g_realloc(*expanded_clusters
,
1643 /* clear the newly allocated space */
1644 memset(&(*expanded_clusters
)[old_bitmap_size
], 0,
1645 new_bitmap_size
- old_bitmap_size
);
1648 assert((cluster_index
>= 0) && (cluster_index
< *nb_clusters
));
1649 (*expanded_clusters
)[cluster_index
/ 8] |= 1 << (cluster_index
% 8);
1654 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1655 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1657 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
1664 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_DEFAULT
&
1665 ~(QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
), l2_offset
,
1671 ret
= bdrv_write(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1672 (void *)l2_table
, s
->cluster_sectors
);
1684 if (!is_active_l1
) {
1685 qemu_vfree(l2_table
);
1688 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
1690 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
,
1691 (void **)&l2_table
);
1699 * For backed images, expands all zero clusters on the image. For non-backed
1700 * images, deallocates all non-pre-allocated zero clusters (and claims the
1701 * allocation for pre-allocated ones). This is important for downgrading to a
1702 * qcow2 version which doesn't yet support metadata zero clusters.
1704 int qcow2_expand_zero_clusters(BlockDriverState
*bs
)
1706 BDRVQcowState
*s
= bs
->opaque
;
1707 uint64_t *l1_table
= NULL
;
1708 uint64_t nb_clusters
;
1709 uint8_t *expanded_clusters
;
1713 nb_clusters
= size_to_clusters(s
, bs
->file
->total_sectors
*
1715 expanded_clusters
= g_malloc0((nb_clusters
+ 7) / 8);
1717 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
1718 &expanded_clusters
, &nb_clusters
);
1723 /* Inactive L1 tables may point to active L2 tables - therefore it is
1724 * necessary to flush the L2 table cache before trying to access the L2
1725 * tables pointed to by inactive L1 entries (else we might try to expand
1726 * zero clusters that have already been expanded); furthermore, it is also
1727 * necessary to empty the L2 table cache, since it may contain tables which
1728 * are now going to be modified directly on disk, bypassing the cache.
1729 * qcow2_cache_empty() does both for us. */
1730 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
1735 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1736 int l1_sectors
= (s
->snapshots
[i
].l1_size
* sizeof(uint64_t) +
1737 BDRV_SECTOR_SIZE
- 1) / BDRV_SECTOR_SIZE
;
1739 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
1741 ret
= bdrv_read(bs
->file
, s
->snapshots
[i
].l1_table_offset
/
1742 BDRV_SECTOR_SIZE
, (void *)l1_table
, l1_sectors
);
1747 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
1748 be64_to_cpus(&l1_table
[j
]);
1751 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
1752 &expanded_clusters
, &nb_clusters
);
1761 g_free(expanded_clusters
);