ppc/pnv: Add a XIVE2 controller to the POWER10 chip
[qemu.git] / hw / intc / pnv_xive2.c
blob35a7f7ae4dd8512bb110b36d374c2a661f13243e
1 /*
2 * QEMU PowerPC XIVE2 interrupt controller model (POWER10)
4 * Copyright (c) 2019-2022, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/fdt.h"
18 #include "hw/ppc/pnv.h"
19 #include "hw/ppc/pnv_core.h"
20 #include "hw/ppc/pnv_xscom.h"
21 #include "hw/ppc/xive2.h"
22 #include "hw/ppc/pnv_xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "hw/ppc/xive2_regs.h"
25 #include "hw/ppc/ppc.h"
26 #include "hw/qdev-properties.h"
27 #include "sysemu/reset.h"
29 #include <libfdt.h>
31 #include "pnv_xive2_regs.h"
33 #undef XIVE2_DEBUG
36 * Virtual structures table (VST)
38 #define SBE_PER_BYTE 4
40 typedef struct XiveVstInfo {
41 const char *name;
42 uint32_t size;
43 uint32_t max_blocks;
44 } XiveVstInfo;
46 static const XiveVstInfo vst_infos[] = {
48 [VST_EAS] = { "EAT", sizeof(Xive2Eas), 16 },
49 [VST_ESB] = { "ESB", 1, 16 },
50 [VST_END] = { "ENDT", sizeof(Xive2End), 16 },
52 [VST_NVP] = { "NVPT", sizeof(Xive2Nvp), 16 },
53 [VST_NVG] = { "NVGT", sizeof(Xive2Nvgc), 16 },
54 [VST_NVC] = { "NVCT", sizeof(Xive2Nvgc), 16 },
56 [VST_IC] = { "IC", 1 /* ? */ , 16 }, /* Topology # */
57 [VST_SYNC] = { "SYNC", 1 /* ? */ , 16 }, /* Topology # */
60 * This table contains the backing store pages for the interrupt
61 * fifos of the VC sub-engine in case of overflow.
63 * 0 - IPI,
64 * 1 - HWD,
65 * 2 - NxC,
66 * 3 - INT,
67 * 4 - OS-Queue,
68 * 5 - Pool-Queue,
69 * 6 - Hard-Queue
71 [VST_ERQ] = { "ERQ", 1, VC_QUEUE_COUNT },
74 #define xive2_error(xive, fmt, ...) \
75 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
76 (xive)->chip->chip_id, ## __VA_ARGS__);
79 * QEMU version of the GETFIELD/SETFIELD macros
81 * TODO: It might be better to use the existing extract64() and
82 * deposit64() but this means that all the register definitions will
83 * change and become incompatible with the ones found in skiboot.
85 * Keep it as it is for now until we find a common ground.
87 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
89 return (word & mask) >> ctz64(mask);
92 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
93 uint64_t value)
95 return (word & ~mask) | ((value << ctz64(mask)) & mask);
99 * TODO: Document block id override
101 static uint32_t pnv_xive2_block_id(PnvXive2 *xive)
103 uint8_t blk = xive->chip->chip_id;
104 uint64_t cfg_val = xive->cq_regs[CQ_XIVE_CFG >> 3];
106 if (cfg_val & CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE) {
107 blk = GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val);
110 return blk;
114 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
115 * of the chips is good enough.
117 * TODO: Block scope support
119 static PnvXive2 *pnv_xive2_get_remote(uint8_t blk)
121 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
122 int i;
124 for (i = 0; i < pnv->num_chips; i++) {
125 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
126 PnvXive2 *xive = &chip10->xive;
128 if (pnv_xive2_block_id(xive) == blk) {
129 return xive;
132 return NULL;
136 * VST accessors for ESB, EAT, ENDT, NVP
138 * Indirect VST tables are arrays of VSDs pointing to a page (of same
139 * size). Each page is a direct VST table.
142 #define XIVE_VSD_SIZE 8
144 /* Indirect page size can be 4K, 64K, 2M, 16M. */
145 static uint64_t pnv_xive2_vst_page_size_allowed(uint32_t page_shift)
147 return page_shift == 12 || page_shift == 16 ||
148 page_shift == 21 || page_shift == 24;
151 static uint64_t pnv_xive2_vst_addr_direct(PnvXive2 *xive, uint32_t type,
152 uint64_t vsd, uint32_t idx)
154 const XiveVstInfo *info = &vst_infos[type];
155 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
156 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
157 uint32_t idx_max;
159 idx_max = vst_tsize / info->size - 1;
160 if (idx > idx_max) {
161 #ifdef XIVE2_DEBUG
162 xive2_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
163 info->name, idx, idx_max);
164 #endif
165 return 0;
168 return vst_addr + idx * info->size;
171 static uint64_t pnv_xive2_vst_addr_indirect(PnvXive2 *xive, uint32_t type,
172 uint64_t vsd, uint32_t idx)
174 const XiveVstInfo *info = &vst_infos[type];
175 uint64_t vsd_addr;
176 uint32_t vsd_idx;
177 uint32_t page_shift;
178 uint32_t vst_per_page;
180 /* Get the page size of the indirect table. */
181 vsd_addr = vsd & VSD_ADDRESS_MASK;
182 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
184 if (!(vsd & VSD_ADDRESS_MASK)) {
185 xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
186 return 0;
189 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
191 if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
192 xive2_error(xive, "VST: invalid %s page shift %d", info->name,
193 page_shift);
194 return 0;
197 vst_per_page = (1ull << page_shift) / info->size;
198 vsd_idx = idx / vst_per_page;
200 /* Load the VSD we are looking for, if not already done */
201 if (vsd_idx) {
202 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
203 ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
204 MEMTXATTRS_UNSPECIFIED);
206 if (!(vsd & VSD_ADDRESS_MASK)) {
207 xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
208 return 0;
212 * Check that the pages have a consistent size across the
213 * indirect table
215 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
216 xive2_error(xive, "VST: %s entry %x indirect page size differ !?",
217 info->name, idx);
218 return 0;
222 return pnv_xive2_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
225 static uint64_t pnv_xive2_vst_addr(PnvXive2 *xive, uint32_t type, uint8_t blk,
226 uint32_t idx)
228 const XiveVstInfo *info = &vst_infos[type];
229 uint64_t vsd;
231 if (blk >= info->max_blocks) {
232 xive2_error(xive, "VST: invalid block id %d for VST %s %d !?",
233 blk, info->name, idx);
234 return 0;
237 vsd = xive->vsds[type][blk];
239 /* Remote VST access */
240 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
241 xive = pnv_xive2_get_remote(blk);
243 return xive ? pnv_xive2_vst_addr(xive, type, blk, idx) : 0;
246 if (VSD_INDIRECT & vsd) {
247 return pnv_xive2_vst_addr_indirect(xive, type, vsd, idx);
250 return pnv_xive2_vst_addr_direct(xive, type, vsd, idx);
253 static int pnv_xive2_vst_read(PnvXive2 *xive, uint32_t type, uint8_t blk,
254 uint32_t idx, void *data)
256 const XiveVstInfo *info = &vst_infos[type];
257 uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx);
259 if (!addr) {
260 return -1;
263 cpu_physical_memory_read(addr, data, info->size);
264 return 0;
267 #define XIVE_VST_WORD_ALL -1
269 static int pnv_xive2_vst_write(PnvXive2 *xive, uint32_t type, uint8_t blk,
270 uint32_t idx, void *data, uint32_t word_number)
272 const XiveVstInfo *info = &vst_infos[type];
273 uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx);
275 if (!addr) {
276 return -1;
279 if (word_number == XIVE_VST_WORD_ALL) {
280 cpu_physical_memory_write(addr, data, info->size);
281 } else {
282 cpu_physical_memory_write(addr + word_number * 4,
283 data + word_number * 4, 4);
285 return 0;
288 static int pnv_xive2_get_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
289 Xive2End *end)
291 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_END, blk, idx, end);
294 static int pnv_xive2_write_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
295 Xive2End *end, uint8_t word_number)
297 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_END, blk, idx, end,
298 word_number);
301 static int pnv_xive2_end_update(PnvXive2 *xive)
303 uint8_t blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID,
304 xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]);
305 uint32_t idx = GETFIELD(VC_ENDC_WATCH_INDEX,
306 xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]);
307 int i;
308 uint64_t endc_watch[4];
310 for (i = 0; i < ARRAY_SIZE(endc_watch); i++) {
311 endc_watch[i] =
312 cpu_to_be64(xive->vc_regs[(VC_ENDC_WATCH0_DATA0 >> 3) + i]);
315 return pnv_xive2_vst_write(xive, VST_END, blk, idx, endc_watch,
316 XIVE_VST_WORD_ALL);
319 static void pnv_xive2_end_cache_load(PnvXive2 *xive)
321 uint8_t blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID,
322 xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]);
323 uint32_t idx = GETFIELD(VC_ENDC_WATCH_INDEX,
324 xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]);
325 uint64_t endc_watch[4] = { 0 };
326 int i;
328 if (pnv_xive2_vst_read(xive, VST_END, blk, idx, endc_watch)) {
329 xive2_error(xive, "VST: no END entry %x/%x !?", blk, idx);
332 for (i = 0; i < ARRAY_SIZE(endc_watch); i++) {
333 xive->vc_regs[(VC_ENDC_WATCH0_DATA0 >> 3) + i] =
334 be64_to_cpu(endc_watch[i]);
338 static int pnv_xive2_get_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
339 Xive2Nvp *nvp)
341 return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp);
344 static int pnv_xive2_write_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
345 Xive2Nvp *nvp, uint8_t word_number)
347 return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp,
348 word_number);
351 static int pnv_xive2_nvp_update(PnvXive2 *xive)
353 uint8_t blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID,
354 xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]);
355 uint32_t idx = GETFIELD(PC_NXC_WATCH_INDEX,
356 xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]);
357 int i;
358 uint64_t nxc_watch[4];
360 for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) {
361 nxc_watch[i] =
362 cpu_to_be64(xive->pc_regs[(PC_NXC_WATCH0_DATA0 >> 3) + i]);
365 return pnv_xive2_vst_write(xive, VST_NVP, blk, idx, nxc_watch,
366 XIVE_VST_WORD_ALL);
369 static void pnv_xive2_nvp_cache_load(PnvXive2 *xive)
371 uint8_t blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID,
372 xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]);
373 uint32_t idx = GETFIELD(PC_NXC_WATCH_INDEX,
374 xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]);
375 uint64_t nxc_watch[4] = { 0 };
376 int i;
378 if (pnv_xive2_vst_read(xive, VST_NVP, blk, idx, nxc_watch)) {
379 xive2_error(xive, "VST: no NVP entry %x/%x !?", blk, idx);
382 for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) {
383 xive->pc_regs[(PC_NXC_WATCH0_DATA0 >> 3) + i] =
384 be64_to_cpu(nxc_watch[i]);
388 static int pnv_xive2_get_eas(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
389 Xive2Eas *eas)
391 PnvXive2 *xive = PNV_XIVE2(xrtr);
393 if (pnv_xive2_block_id(xive) != blk) {
394 xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
395 return -1;
398 return pnv_xive2_vst_read(xive, VST_EAS, blk, idx, eas);
401 static bool pnv_xive2_is_cpu_enabled(PnvXive2 *xive, PowerPCCPU *cpu)
403 int pir = ppc_cpu_pir(cpu);
404 uint32_t fc = PNV10_PIR2FUSEDCORE(pir);
405 uint64_t reg = fc < 8 ? TCTXT_EN0 : TCTXT_EN1;
406 uint32_t bit = pir & 0x3f;
408 return xive->tctxt_regs[reg >> 3] & PPC_BIT(bit);
411 static int pnv_xive2_match_nvt(XivePresenter *xptr, uint8_t format,
412 uint8_t nvt_blk, uint32_t nvt_idx,
413 bool cam_ignore, uint8_t priority,
414 uint32_t logic_serv, XiveTCTXMatch *match)
416 PnvXive2 *xive = PNV_XIVE2(xptr);
417 PnvChip *chip = xive->chip;
418 int count = 0;
419 int i, j;
421 for (i = 0; i < chip->nr_cores; i++) {
422 PnvCore *pc = chip->cores[i];
423 CPUCore *cc = CPU_CORE(pc);
425 for (j = 0; j < cc->nr_threads; j++) {
426 PowerPCCPU *cpu = pc->threads[j];
427 XiveTCTX *tctx;
428 int ring;
430 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
431 continue;
434 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
436 ring = xive2_presenter_tctx_match(xptr, tctx, format, nvt_blk,
437 nvt_idx, cam_ignore,
438 logic_serv);
441 * Save the context and follow on to catch duplicates,
442 * that we don't support yet.
444 if (ring != -1) {
445 if (match->tctx) {
446 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
447 "thread context NVT %x/%x\n",
448 nvt_blk, nvt_idx);
449 return false;
452 match->ring = ring;
453 match->tctx = tctx;
454 count++;
459 return count;
462 static uint8_t pnv_xive2_get_block_id(Xive2Router *xrtr)
464 return pnv_xive2_block_id(PNV_XIVE2(xrtr));
468 * The TIMA MMIO space is shared among the chips and to identify the
469 * chip from which the access is being done, we extract the chip id
470 * from the PIR.
472 static PnvXive2 *pnv_xive2_tm_get_xive(PowerPCCPU *cpu)
474 int pir = ppc_cpu_pir(cpu);
475 XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
476 PnvXive2 *xive = PNV_XIVE2(xptr);
478 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
479 xive2_error(xive, "IC: CPU %x is not enabled", pir);
481 return xive;
485 * The internal sources of the interrupt controller have no knowledge
486 * of the XIVE2 chip on which they reside. Encode the block id in the
487 * source interrupt number before forwarding the source event
488 * notification to the Router. This is required on a multichip system.
490 static void pnv_xive2_notify(XiveNotifier *xn, uint32_t srcno)
492 PnvXive2 *xive = PNV_XIVE2(xn);
493 uint8_t blk = pnv_xive2_block_id(xive);
495 xive2_router_notify(xn, XIVE_EAS(blk, srcno));
499 * Set Translation Tables
501 * TODO add support for multiple sets
503 static int pnv_xive2_stt_set_data(PnvXive2 *xive, uint64_t val)
505 uint8_t tsel = GETFIELD(CQ_TAR_SELECT, xive->cq_regs[CQ_TAR >> 3]);
506 uint8_t entry = GETFIELD(CQ_TAR_ENTRY_SELECT,
507 xive->cq_regs[CQ_TAR >> 3]);
509 switch (tsel) {
510 case CQ_TAR_NVPG:
511 case CQ_TAR_ESB:
512 case CQ_TAR_END:
513 xive->tables[tsel][entry] = val;
514 break;
515 default:
516 xive2_error(xive, "IC: unsupported table %d", tsel);
517 return -1;
520 if (xive->cq_regs[CQ_TAR >> 3] & CQ_TAR_AUTOINC) {
521 xive->cq_regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_ENTRY_SELECT,
522 xive->cq_regs[CQ_TAR >> 3], ++entry);
525 return 0;
528 * Virtual Structure Tables (VST) configuration
530 static void pnv_xive2_vst_set_exclusive(PnvXive2 *xive, uint8_t type,
531 uint8_t blk, uint64_t vsd)
533 Xive2EndSource *end_xsrc = &xive->end_source;
534 XiveSource *xsrc = &xive->ipi_source;
535 const XiveVstInfo *info = &vst_infos[type];
536 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
537 uint64_t vst_tsize = 1ull << page_shift;
538 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
540 /* Basic checks */
542 if (VSD_INDIRECT & vsd) {
543 if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
544 xive2_error(xive, "VST: invalid %s page shift %d", info->name,
545 page_shift);
546 return;
550 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
551 xive2_error(xive, "VST: %s table address 0x%"PRIx64
552 " is not aligned with page shift %d",
553 info->name, vst_addr, page_shift);
554 return;
557 /* Record the table configuration (in SRAM on HW) */
558 xive->vsds[type][blk] = vsd;
560 /* Now tune the models with the configuration provided by the FW */
562 switch (type) {
563 case VST_ESB:
565 * Backing store pages for the source PQ bits. The model does
566 * not use these PQ bits backed in RAM because the XiveSource
567 * model has its own.
569 * If the table is direct, we can compute the number of PQ
570 * entries provisioned by FW (such as skiboot) and resize the
571 * ESB window accordingly.
573 if (!(VSD_INDIRECT & vsd)) {
574 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
575 * (1ull << xsrc->esb_shift));
578 memory_region_add_subregion(&xive->esb_mmio, 0, &xsrc->esb_mmio);
579 break;
581 case VST_EAS: /* Nothing to be done */
582 break;
584 case VST_END:
586 * Backing store pages for the END.
588 if (!(VSD_INDIRECT & vsd)) {
589 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
590 * (1ull << end_xsrc->esb_shift));
592 memory_region_add_subregion(&xive->end_mmio, 0, &end_xsrc->esb_mmio);
593 break;
595 case VST_NVP: /* Not modeled */
596 case VST_NVG: /* Not modeled */
597 case VST_NVC: /* Not modeled */
598 case VST_IC: /* Not modeled */
599 case VST_SYNC: /* Not modeled */
600 case VST_ERQ: /* Not modeled */
601 break;
603 default:
604 g_assert_not_reached();
609 * Both PC and VC sub-engines are configured as each use the Virtual
610 * Structure Tables
612 static void pnv_xive2_vst_set_data(PnvXive2 *xive, uint64_t vsd)
614 uint8_t mode = GETFIELD(VSD_MODE, vsd);
615 uint8_t type = GETFIELD(VC_VSD_TABLE_SELECT,
616 xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]);
617 uint8_t blk = GETFIELD(VC_VSD_TABLE_ADDRESS,
618 xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]);
619 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
621 if (type > VST_ERQ) {
622 xive2_error(xive, "VST: invalid table type %d", type);
623 return;
626 if (blk >= vst_infos[type].max_blocks) {
627 xive2_error(xive, "VST: invalid block id %d for"
628 " %s table", blk, vst_infos[type].name);
629 return;
632 if (!vst_addr) {
633 xive2_error(xive, "VST: invalid %s table address",
634 vst_infos[type].name);
635 return;
638 switch (mode) {
639 case VSD_MODE_FORWARD:
640 xive->vsds[type][blk] = vsd;
641 break;
643 case VSD_MODE_EXCLUSIVE:
644 pnv_xive2_vst_set_exclusive(xive, type, blk, vsd);
645 break;
647 default:
648 xive2_error(xive, "VST: unsupported table mode %d", mode);
649 return;
654 * MMIO handlers
659 * IC BAR layout
661 * Page 0: Internal CQ register accesses (reads & writes)
662 * Page 1: Internal PC register accesses (reads & writes)
663 * Page 2: Internal VC register accesses (reads & writes)
664 * Page 3: Internal TCTXT (TIMA) reg accesses (read & writes)
665 * Page 4: Notify Port page (writes only, w/data),
666 * Page 5: Reserved
667 * Page 6: Sync Poll page (writes only, dataless)
668 * Page 7: Sync Inject page (writes only, dataless)
669 * Page 8: LSI Trigger page (writes only, dataless)
670 * Page 9: LSI SB Management page (reads & writes dataless)
671 * Pages 10-255: Reserved
672 * Pages 256-383: Direct mapped Thread Context Area (reads & writes)
673 * covering the 128 threads in P10.
674 * Pages 384-511: Reserved
676 typedef struct PnvXive2Region {
677 const char *name;
678 uint32_t pgoff;
679 uint32_t pgsize;
680 const MemoryRegionOps *ops;
681 } PnvXive2Region;
683 static const MemoryRegionOps pnv_xive2_ic_cq_ops;
684 static const MemoryRegionOps pnv_xive2_ic_pc_ops;
685 static const MemoryRegionOps pnv_xive2_ic_vc_ops;
686 static const MemoryRegionOps pnv_xive2_ic_tctxt_ops;
687 static const MemoryRegionOps pnv_xive2_ic_notify_ops;
688 static const MemoryRegionOps pnv_xive2_ic_sync_ops;
689 static const MemoryRegionOps pnv_xive2_ic_lsi_ops;
690 static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops;
692 /* 512 pages. 4K: 2M range, 64K: 32M range */
693 static const PnvXive2Region pnv_xive2_ic_regions[] = {
694 { "xive-ic-cq", 0, 1, &pnv_xive2_ic_cq_ops },
695 { "xive-ic-vc", 1, 1, &pnv_xive2_ic_vc_ops },
696 { "xive-ic-pc", 2, 1, &pnv_xive2_ic_pc_ops },
697 { "xive-ic-tctxt", 3, 1, &pnv_xive2_ic_tctxt_ops },
698 { "xive-ic-notify", 4, 1, &pnv_xive2_ic_notify_ops },
699 /* page 5 reserved */
700 { "xive-ic-sync", 6, 2, &pnv_xive2_ic_sync_ops },
701 { "xive-ic-lsi", 8, 2, &pnv_xive2_ic_lsi_ops },
702 /* pages 10-255 reserved */
703 { "xive-ic-tm-indirect", 256, 128, &pnv_xive2_ic_tm_indirect_ops },
704 /* pages 384-511 reserved */
708 * CQ operations
711 static uint64_t pnv_xive2_ic_cq_read(void *opaque, hwaddr offset,
712 unsigned size)
714 PnvXive2 *xive = PNV_XIVE2(opaque);
715 uint32_t reg = offset >> 3;
716 uint64_t val = 0;
718 switch (offset) {
719 case CQ_XIVE_CAP: /* Set at reset */
720 case CQ_XIVE_CFG:
721 val = xive->cq_regs[reg];
722 break;
723 case CQ_MSGSND: /* TODO check the #cores of the machine */
724 val = 0xffffffff00000000;
725 break;
726 case CQ_CFG_PB_GEN:
727 val = CQ_CFG_PB_GEN_PB_INIT; /* TODO: fix CQ_CFG_PB_GEN default value */
728 break;
729 default:
730 xive2_error(xive, "CQ: invalid read @%"HWADDR_PRIx, offset);
733 return val;
736 static uint64_t pnv_xive2_bar_size(uint64_t val)
738 return 1ull << (GETFIELD(CQ_BAR_RANGE, val) + 24);
741 static void pnv_xive2_ic_cq_write(void *opaque, hwaddr offset,
742 uint64_t val, unsigned size)
744 PnvXive2 *xive = PNV_XIVE2(opaque);
745 MemoryRegion *sysmem = get_system_memory();
746 uint32_t reg = offset >> 3;
747 int i;
749 switch (offset) {
750 case CQ_XIVE_CFG:
751 case CQ_RST_CTL: /* TODO: reset all BARs */
752 break;
754 case CQ_IC_BAR:
755 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
756 if (!(val & CQ_IC_BAR_VALID)) {
757 xive->ic_base = 0;
758 if (xive->cq_regs[reg] & CQ_IC_BAR_VALID) {
759 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
760 memory_region_del_subregion(&xive->ic_mmio,
761 &xive->ic_mmios[i]);
763 memory_region_del_subregion(sysmem, &xive->ic_mmio);
765 } else {
766 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
767 if (!(xive->cq_regs[reg] & CQ_IC_BAR_VALID)) {
768 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
769 memory_region_add_subregion(&xive->ic_mmio,
770 pnv_xive2_ic_regions[i].pgoff << xive->ic_shift,
771 &xive->ic_mmios[i]);
773 memory_region_add_subregion(sysmem, xive->ic_base,
774 &xive->ic_mmio);
777 break;
779 case CQ_TM_BAR:
780 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
781 if (!(val & CQ_TM_BAR_VALID)) {
782 xive->tm_base = 0;
783 if (xive->cq_regs[reg] & CQ_TM_BAR_VALID) {
784 memory_region_del_subregion(sysmem, &xive->tm_mmio);
786 } else {
787 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
788 if (!(xive->cq_regs[reg] & CQ_TM_BAR_VALID)) {
789 memory_region_add_subregion(sysmem, xive->tm_base,
790 &xive->tm_mmio);
793 break;
795 case CQ_ESB_BAR:
796 xive->esb_shift = val & CQ_BAR_64K ? 16 : 12;
797 if (!(val & CQ_BAR_VALID)) {
798 xive->esb_base = 0;
799 if (xive->cq_regs[reg] & CQ_BAR_VALID) {
800 memory_region_del_subregion(sysmem, &xive->esb_mmio);
802 } else {
803 xive->esb_base = val & CQ_BAR_ADDR;
804 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
805 memory_region_set_size(&xive->esb_mmio,
806 pnv_xive2_bar_size(val));
807 memory_region_add_subregion(sysmem, xive->esb_base,
808 &xive->esb_mmio);
811 break;
813 case CQ_END_BAR:
814 xive->end_shift = val & CQ_BAR_64K ? 16 : 12;
815 if (!(val & CQ_BAR_VALID)) {
816 xive->end_base = 0;
817 if (xive->cq_regs[reg] & CQ_BAR_VALID) {
818 memory_region_del_subregion(sysmem, &xive->end_mmio);
820 } else {
821 xive->end_base = val & CQ_BAR_ADDR;
822 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
823 memory_region_set_size(&xive->end_mmio,
824 pnv_xive2_bar_size(val));
825 memory_region_add_subregion(sysmem, xive->end_base,
826 &xive->end_mmio);
829 break;
831 case CQ_NVC_BAR:
832 xive->nvc_shift = val & CQ_BAR_64K ? 16 : 12;
833 if (!(val & CQ_BAR_VALID)) {
834 xive->nvc_base = 0;
835 if (xive->cq_regs[reg] & CQ_BAR_VALID) {
836 memory_region_del_subregion(sysmem, &xive->nvc_mmio);
838 } else {
839 xive->nvc_base = val & CQ_BAR_ADDR;
840 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
841 memory_region_set_size(&xive->nvc_mmio,
842 pnv_xive2_bar_size(val));
843 memory_region_add_subregion(sysmem, xive->nvc_base,
844 &xive->nvc_mmio);
847 break;
849 case CQ_NVPG_BAR:
850 xive->nvpg_shift = val & CQ_BAR_64K ? 16 : 12;
851 if (!(val & CQ_BAR_VALID)) {
852 xive->nvpg_base = 0;
853 if (xive->cq_regs[reg] & CQ_BAR_VALID) {
854 memory_region_del_subregion(sysmem, &xive->nvpg_mmio);
856 } else {
857 xive->nvpg_base = val & CQ_BAR_ADDR;
858 if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
859 memory_region_set_size(&xive->nvpg_mmio,
860 pnv_xive2_bar_size(val));
861 memory_region_add_subregion(sysmem, xive->nvpg_base,
862 &xive->nvpg_mmio);
865 break;
867 case CQ_TAR: /* Set Translation Table Address */
868 break;
869 case CQ_TDR: /* Set Translation Table Data */
870 pnv_xive2_stt_set_data(xive, val);
871 break;
872 case CQ_FIRMASK_OR: /* FIR error reporting */
873 break;
874 default:
875 xive2_error(xive, "CQ: invalid write 0x%"HWADDR_PRIx, offset);
876 return;
879 xive->cq_regs[reg] = val;
882 static const MemoryRegionOps pnv_xive2_ic_cq_ops = {
883 .read = pnv_xive2_ic_cq_read,
884 .write = pnv_xive2_ic_cq_write,
885 .endianness = DEVICE_BIG_ENDIAN,
886 .valid = {
887 .min_access_size = 8,
888 .max_access_size = 8,
890 .impl = {
891 .min_access_size = 8,
892 .max_access_size = 8,
896 static uint64_t pnv_xive2_ic_vc_read(void *opaque, hwaddr offset,
897 unsigned size)
899 PnvXive2 *xive = PNV_XIVE2(opaque);
900 uint64_t val = 0;
901 uint32_t reg = offset >> 3;
903 switch (offset) {
905 * VSD table settings.
907 case VC_VSD_TABLE_ADDR:
908 case VC_VSD_TABLE_DATA:
909 val = xive->vc_regs[reg];
910 break;
913 * ESB cache updates (not modeled)
915 case VC_ESBC_FLUSH_CTRL:
916 xive->vc_regs[reg] &= ~VC_ESBC_FLUSH_CTRL_POLL_VALID;
917 val = xive->vc_regs[reg];
918 break;
921 * EAS cache updates (not modeled)
923 case VC_EASC_FLUSH_CTRL:
924 xive->vc_regs[reg] &= ~VC_EASC_FLUSH_CTRL_POLL_VALID;
925 val = xive->vc_regs[reg];
926 break;
929 * END cache updates
931 case VC_ENDC_WATCH0_SPEC:
932 xive->vc_regs[reg] &= ~(VC_ENDC_WATCH_FULL | VC_ENDC_WATCH_CONFLICT);
933 val = xive->vc_regs[reg];
934 break;
936 case VC_ENDC_WATCH0_DATA0:
938 * Load DATA registers from cache with data requested by the
939 * SPEC register
941 pnv_xive2_end_cache_load(xive);
942 val = xive->vc_regs[reg];
943 break;
945 case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3:
946 val = xive->vc_regs[reg];
947 break;
949 case VC_ENDC_FLUSH_CTRL:
950 xive->vc_regs[reg] &= ~VC_ENDC_FLUSH_CTRL_POLL_VALID;
951 val = xive->vc_regs[reg];
952 break;
955 * Indirect invalidation
957 case VC_AT_MACRO_KILL_MASK:
958 val = xive->vc_regs[reg];
959 break;
961 case VC_AT_MACRO_KILL:
962 xive->vc_regs[reg] &= ~VC_AT_MACRO_KILL_VALID;
963 val = xive->vc_regs[reg];
964 break;
967 * Interrupt fifo overflow in memory backing store (Not modeled)
969 case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6:
970 val = xive->vc_regs[reg];
971 break;
974 * Synchronisation
976 case VC_ENDC_SYNC_DONE:
977 val = VC_ENDC_SYNC_POLL_DONE;
978 break;
979 default:
980 xive2_error(xive, "VC: invalid read @%"HWADDR_PRIx, offset);
983 return val;
986 static void pnv_xive2_ic_vc_write(void *opaque, hwaddr offset,
987 uint64_t val, unsigned size)
989 PnvXive2 *xive = PNV_XIVE2(opaque);
990 uint32_t reg = offset >> 3;
992 switch (offset) {
994 * VSD table settings.
996 case VC_VSD_TABLE_ADDR:
997 break;
998 case VC_VSD_TABLE_DATA:
999 pnv_xive2_vst_set_data(xive, val);
1000 break;
1003 * ESB cache updates (not modeled)
1005 /* case VC_ESBC_FLUSH_CTRL: */
1006 case VC_ESBC_FLUSH_POLL:
1007 xive->vc_regs[VC_ESBC_FLUSH_CTRL >> 3] |= VC_ESBC_FLUSH_CTRL_POLL_VALID;
1008 /* ESB update */
1009 break;
1012 * EAS cache updates (not modeled)
1014 /* case VC_EASC_FLUSH_CTRL: */
1015 case VC_EASC_FLUSH_POLL:
1016 xive->vc_regs[VC_EASC_FLUSH_CTRL >> 3] |= VC_EASC_FLUSH_CTRL_POLL_VALID;
1017 /* EAS update */
1018 break;
1021 * END cache updates
1023 case VC_ENDC_WATCH0_SPEC:
1024 val &= ~VC_ENDC_WATCH_CONFLICT; /* HW will set this bit */
1025 break;
1027 case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3:
1028 break;
1029 case VC_ENDC_WATCH0_DATA0:
1030 /* writing to DATA0 triggers the cache write */
1031 xive->vc_regs[reg] = val;
1032 pnv_xive2_end_update(xive);
1033 break;
1036 /* case VC_ENDC_FLUSH_CTRL: */
1037 case VC_ENDC_FLUSH_POLL:
1038 xive->vc_regs[VC_ENDC_FLUSH_CTRL >> 3] |= VC_ENDC_FLUSH_CTRL_POLL_VALID;
1039 break;
1042 * Indirect invalidation
1044 case VC_AT_MACRO_KILL:
1045 case VC_AT_MACRO_KILL_MASK:
1046 break;
1049 * Interrupt fifo overflow in memory backing store (Not modeled)
1051 case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6:
1052 break;
1055 * Synchronisation
1057 case VC_ENDC_SYNC_DONE:
1058 break;
1060 default:
1061 xive2_error(xive, "VC: invalid write @%"HWADDR_PRIx, offset);
1062 return;
1065 xive->vc_regs[reg] = val;
1068 static const MemoryRegionOps pnv_xive2_ic_vc_ops = {
1069 .read = pnv_xive2_ic_vc_read,
1070 .write = pnv_xive2_ic_vc_write,
1071 .endianness = DEVICE_BIG_ENDIAN,
1072 .valid = {
1073 .min_access_size = 8,
1074 .max_access_size = 8,
1076 .impl = {
1077 .min_access_size = 8,
1078 .max_access_size = 8,
1082 static uint64_t pnv_xive2_ic_pc_read(void *opaque, hwaddr offset,
1083 unsigned size)
1085 PnvXive2 *xive = PNV_XIVE2(opaque);
1086 uint64_t val = -1;
1087 uint32_t reg = offset >> 3;
1089 switch (offset) {
1091 * VSD table settings.
1093 case PC_VSD_TABLE_ADDR:
1094 case PC_VSD_TABLE_DATA:
1095 val = xive->pc_regs[reg];
1096 break;
1099 * cache updates
1101 case PC_NXC_WATCH0_SPEC:
1102 xive->pc_regs[reg] &= ~(PC_NXC_WATCH_FULL | PC_NXC_WATCH_CONFLICT);
1103 val = xive->pc_regs[reg];
1104 break;
1106 case PC_NXC_WATCH0_DATA0:
1108 * Load DATA registers from cache with data requested by the
1109 * SPEC register
1111 pnv_xive2_nvp_cache_load(xive);
1112 val = xive->pc_regs[reg];
1113 break;
1115 case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3:
1116 val = xive->pc_regs[reg];
1117 break;
1119 case PC_NXC_FLUSH_CTRL:
1120 xive->pc_regs[reg] &= ~PC_NXC_FLUSH_CTRL_POLL_VALID;
1121 val = xive->pc_regs[reg];
1122 break;
1125 * Indirect invalidation
1127 case PC_AT_KILL:
1128 xive->pc_regs[reg] &= ~PC_AT_KILL_VALID;
1129 val = xive->pc_regs[reg];
1130 break;
1132 default:
1133 xive2_error(xive, "PC: invalid read @%"HWADDR_PRIx, offset);
1136 return val;
1139 static void pnv_xive2_ic_pc_write(void *opaque, hwaddr offset,
1140 uint64_t val, unsigned size)
1142 PnvXive2 *xive = PNV_XIVE2(opaque);
1143 uint32_t reg = offset >> 3;
1145 switch (offset) {
1148 * VSD table settings. Only taken into account in the VC
1149 * sub-engine because the Xive2Router model combines both VC and PC
1150 * sub-engines
1152 case PC_VSD_TABLE_ADDR:
1153 case PC_VSD_TABLE_DATA:
1154 break;
1157 * cache updates
1159 case PC_NXC_WATCH0_SPEC:
1160 val &= ~PC_NXC_WATCH_CONFLICT; /* HW will set this bit */
1161 break;
1163 case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3:
1164 break;
1165 case PC_NXC_WATCH0_DATA0:
1166 /* writing to DATA0 triggers the cache write */
1167 xive->pc_regs[reg] = val;
1168 pnv_xive2_nvp_update(xive);
1169 break;
1171 /* case PC_NXC_FLUSH_CTRL: */
1172 case PC_NXC_FLUSH_POLL:
1173 xive->pc_regs[PC_NXC_FLUSH_CTRL >> 3] |= PC_NXC_FLUSH_CTRL_POLL_VALID;
1174 break;
1177 * Indirect invalidation
1179 case PC_AT_KILL:
1180 case PC_AT_KILL_MASK:
1181 break;
1183 default:
1184 xive2_error(xive, "PC: invalid write @%"HWADDR_PRIx, offset);
1185 return;
1188 xive->pc_regs[reg] = val;
1191 static const MemoryRegionOps pnv_xive2_ic_pc_ops = {
1192 .read = pnv_xive2_ic_pc_read,
1193 .write = pnv_xive2_ic_pc_write,
1194 .endianness = DEVICE_BIG_ENDIAN,
1195 .valid = {
1196 .min_access_size = 8,
1197 .max_access_size = 8,
1199 .impl = {
1200 .min_access_size = 8,
1201 .max_access_size = 8,
1206 static uint64_t pnv_xive2_ic_tctxt_read(void *opaque, hwaddr offset,
1207 unsigned size)
1209 PnvXive2 *xive = PNV_XIVE2(opaque);
1210 uint64_t val = -1;
1211 uint32_t reg = offset >> 3;
1213 switch (offset) {
1215 * XIVE2 hardware thread enablement
1217 case TCTXT_EN0:
1218 case TCTXT_EN1:
1219 val = xive->tctxt_regs[reg];
1220 break;
1222 case TCTXT_EN0_SET:
1223 case TCTXT_EN0_RESET:
1224 val = xive->tctxt_regs[TCTXT_EN0 >> 3];
1225 break;
1226 case TCTXT_EN1_SET:
1227 case TCTXT_EN1_RESET:
1228 val = xive->tctxt_regs[TCTXT_EN1 >> 3];
1229 break;
1230 default:
1231 xive2_error(xive, "TCTXT: invalid read @%"HWADDR_PRIx, offset);
1234 return val;
1237 static void pnv_xive2_ic_tctxt_write(void *opaque, hwaddr offset,
1238 uint64_t val, unsigned size)
1240 PnvXive2 *xive = PNV_XIVE2(opaque);
1241 uint32_t reg = offset >> 3;
1243 switch (offset) {
1245 * XIVE2 hardware thread enablement
1247 case TCTXT_EN0: /* Physical Thread Enable */
1248 case TCTXT_EN1: /* Physical Thread Enable (fused core) */
1249 break;
1251 case TCTXT_EN0_SET:
1252 xive->tctxt_regs[TCTXT_EN0 >> 3] |= val;
1253 break;
1254 case TCTXT_EN1_SET:
1255 xive->tctxt_regs[TCTXT_EN1 >> 3] |= val;
1256 break;
1257 case TCTXT_EN0_RESET:
1258 xive->tctxt_regs[TCTXT_EN0 >> 3] &= ~val;
1259 break;
1260 case TCTXT_EN1_RESET:
1261 xive->tctxt_regs[TCTXT_EN1 >> 3] &= ~val;
1262 break;
1264 default:
1265 xive2_error(xive, "TCTXT: invalid write @%"HWADDR_PRIx, offset);
1266 return;
1269 xive->pc_regs[reg] = val;
1272 static const MemoryRegionOps pnv_xive2_ic_tctxt_ops = {
1273 .read = pnv_xive2_ic_tctxt_read,
1274 .write = pnv_xive2_ic_tctxt_write,
1275 .endianness = DEVICE_BIG_ENDIAN,
1276 .valid = {
1277 .min_access_size = 8,
1278 .max_access_size = 8,
1280 .impl = {
1281 .min_access_size = 8,
1282 .max_access_size = 8,
1287 * Redirect XSCOM to MMIO handlers
1289 static uint64_t pnv_xive2_xscom_read(void *opaque, hwaddr offset,
1290 unsigned size)
1292 PnvXive2 *xive = PNV_XIVE2(opaque);
1293 uint64_t val = -1;
1294 uint32_t xscom_reg = offset >> 3;
1295 uint32_t mmio_offset = (xscom_reg & 0xFF) << 3;
1297 switch (xscom_reg) {
1298 case 0x000 ... 0x0FF:
1299 val = pnv_xive2_ic_cq_read(opaque, mmio_offset, size);
1300 break;
1301 case 0x100 ... 0x1FF:
1302 val = pnv_xive2_ic_vc_read(opaque, mmio_offset, size);
1303 break;
1304 case 0x200 ... 0x2FF:
1305 val = pnv_xive2_ic_pc_read(opaque, mmio_offset, size);
1306 break;
1307 case 0x300 ... 0x3FF:
1308 val = pnv_xive2_ic_tctxt_read(opaque, mmio_offset, size);
1309 break;
1310 default:
1311 xive2_error(xive, "XSCOM: invalid read @%"HWADDR_PRIx, offset);
1314 return val;
1317 static void pnv_xive2_xscom_write(void *opaque, hwaddr offset,
1318 uint64_t val, unsigned size)
1320 PnvXive2 *xive = PNV_XIVE2(opaque);
1321 uint32_t xscom_reg = offset >> 3;
1322 uint32_t mmio_offset = (xscom_reg & 0xFF) << 3;
1324 switch (xscom_reg) {
1325 case 0x000 ... 0x0FF:
1326 pnv_xive2_ic_cq_write(opaque, mmio_offset, val, size);
1327 break;
1328 case 0x100 ... 0x1FF:
1329 pnv_xive2_ic_vc_write(opaque, mmio_offset, val, size);
1330 break;
1331 case 0x200 ... 0x2FF:
1332 pnv_xive2_ic_pc_write(opaque, mmio_offset, val, size);
1333 break;
1334 case 0x300 ... 0x3FF:
1335 pnv_xive2_ic_tctxt_write(opaque, mmio_offset, val, size);
1336 break;
1337 default:
1338 xive2_error(xive, "XSCOM: invalid write @%"HWADDR_PRIx, offset);
1342 static const MemoryRegionOps pnv_xive2_xscom_ops = {
1343 .read = pnv_xive2_xscom_read,
1344 .write = pnv_xive2_xscom_write,
1345 .endianness = DEVICE_BIG_ENDIAN,
1346 .valid = {
1347 .min_access_size = 8,
1348 .max_access_size = 8,
1350 .impl = {
1351 .min_access_size = 8,
1352 .max_access_size = 8,
1357 * Notify port page. The layout is compatible between 4K and 64K pages :
1359 * Page 1 Notify page (writes only)
1360 * 0x000 - 0x7FF IPI interrupt (NPU)
1361 * 0x800 - 0xFFF HW interrupt triggers (PSI, PHB)
1364 static void pnv_xive2_ic_hw_trigger(PnvXive2 *xive, hwaddr addr,
1365 uint64_t val)
1367 uint8_t blk;
1368 uint32_t idx;
1370 if (val & XIVE_TRIGGER_END) {
1371 xive2_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1372 addr, val);
1373 return;
1377 * Forward the source event notification directly to the Router.
1378 * The source interrupt number should already be correctly encoded
1379 * with the chip block id by the sending device (PHB, PSI).
1381 blk = XIVE_EAS_BLOCK(val);
1382 idx = XIVE_EAS_INDEX(val);
1384 xive2_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1387 static void pnv_xive2_ic_notify_write(void *opaque, hwaddr offset,
1388 uint64_t val, unsigned size)
1390 PnvXive2 *xive = PNV_XIVE2(opaque);
1392 /* VC: IPI triggers */
1393 switch (offset) {
1394 case 0x000 ... 0x7FF:
1395 /* TODO: check IPI notify sub-page routing */
1396 pnv_xive2_ic_hw_trigger(opaque, offset, val);
1397 break;
1399 /* VC: HW triggers */
1400 case 0x800 ... 0xFFF:
1401 pnv_xive2_ic_hw_trigger(opaque, offset, val);
1402 break;
1404 default:
1405 xive2_error(xive, "NOTIFY: invalid write @%"HWADDR_PRIx, offset);
1409 static uint64_t pnv_xive2_ic_notify_read(void *opaque, hwaddr offset,
1410 unsigned size)
1412 PnvXive2 *xive = PNV_XIVE2(opaque);
1414 /* loads are invalid */
1415 xive2_error(xive, "NOTIFY: invalid read @%"HWADDR_PRIx, offset);
1416 return -1;
1419 static const MemoryRegionOps pnv_xive2_ic_notify_ops = {
1420 .read = pnv_xive2_ic_notify_read,
1421 .write = pnv_xive2_ic_notify_write,
1422 .endianness = DEVICE_BIG_ENDIAN,
1423 .valid = {
1424 .min_access_size = 8,
1425 .max_access_size = 8,
1427 .impl = {
1428 .min_access_size = 8,
1429 .max_access_size = 8,
1433 static uint64_t pnv_xive2_ic_lsi_read(void *opaque, hwaddr offset,
1434 unsigned size)
1436 PnvXive2 *xive = PNV_XIVE2(opaque);
1438 xive2_error(xive, "LSI: invalid read @%"HWADDR_PRIx, offset);
1439 return -1;
1442 static void pnv_xive2_ic_lsi_write(void *opaque, hwaddr offset,
1443 uint64_t val, unsigned size)
1445 PnvXive2 *xive = PNV_XIVE2(opaque);
1447 xive2_error(xive, "LSI: invalid write @%"HWADDR_PRIx, offset);
1450 static const MemoryRegionOps pnv_xive2_ic_lsi_ops = {
1451 .read = pnv_xive2_ic_lsi_read,
1452 .write = pnv_xive2_ic_lsi_write,
1453 .endianness = DEVICE_BIG_ENDIAN,
1454 .valid = {
1455 .min_access_size = 8,
1456 .max_access_size = 8,
1458 .impl = {
1459 .min_access_size = 8,
1460 .max_access_size = 8,
1465 * Sync MMIO page (write only)
1467 #define PNV_XIVE2_SYNC_IPI 0x000
1468 #define PNV_XIVE2_SYNC_HW 0x080
1469 #define PNV_XIVE2_SYNC_NxC 0x100
1470 #define PNV_XIVE2_SYNC_INT 0x180
1471 #define PNV_XIVE2_SYNC_OS_ESC 0x200
1472 #define PNV_XIVE2_SYNC_POOL_ESC 0x280
1473 #define PNV_XIVE2_SYNC_HARD_ESC 0x300
1475 static uint64_t pnv_xive2_ic_sync_read(void *opaque, hwaddr offset,
1476 unsigned size)
1478 PnvXive2 *xive = PNV_XIVE2(opaque);
1480 /* loads are invalid */
1481 xive2_error(xive, "SYNC: invalid read @%"HWADDR_PRIx, offset);
1482 return -1;
1485 static void pnv_xive2_ic_sync_write(void *opaque, hwaddr offset,
1486 uint64_t val, unsigned size)
1488 PnvXive2 *xive = PNV_XIVE2(opaque);
1490 switch (offset) {
1491 case PNV_XIVE2_SYNC_IPI:
1492 case PNV_XIVE2_SYNC_HW:
1493 case PNV_XIVE2_SYNC_NxC:
1494 case PNV_XIVE2_SYNC_INT:
1495 case PNV_XIVE2_SYNC_OS_ESC:
1496 case PNV_XIVE2_SYNC_POOL_ESC:
1497 case PNV_XIVE2_SYNC_HARD_ESC:
1498 break;
1499 default:
1500 xive2_error(xive, "SYNC: invalid write @%"HWADDR_PRIx, offset);
1504 static const MemoryRegionOps pnv_xive2_ic_sync_ops = {
1505 .read = pnv_xive2_ic_sync_read,
1506 .write = pnv_xive2_ic_sync_write,
1507 .endianness = DEVICE_BIG_ENDIAN,
1508 .valid = {
1509 .min_access_size = 8,
1510 .max_access_size = 8,
1512 .impl = {
1513 .min_access_size = 8,
1514 .max_access_size = 8,
1519 * When the TM direct pages of the IC controller are accessed, the
1520 * target HW thread is deduced from the page offset.
1522 static XiveTCTX *pnv_xive2_get_indirect_tctx(PnvXive2 *xive, uint32_t pir)
1524 PnvChip *chip = xive->chip;
1525 PowerPCCPU *cpu = NULL;
1527 cpu = pnv_chip_find_cpu(chip, pir);
1528 if (!cpu) {
1529 xive2_error(xive, "IC: invalid PIR %x for indirect access", pir);
1530 return NULL;
1533 if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
1534 xive2_error(xive, "IC: CPU %x is not enabled", pir);
1537 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1540 static uint64_t pnv_xive2_ic_tm_indirect_read(void *opaque, hwaddr offset,
1541 unsigned size)
1543 PnvXive2 *xive = PNV_XIVE2(opaque);
1544 uint32_t pir = offset >> xive->ic_shift;
1545 XiveTCTX *tctx = pnv_xive2_get_indirect_tctx(xive, pir);
1546 uint64_t val = -1;
1548 if (tctx) {
1549 val = xive_tctx_tm_read(NULL, tctx, offset, size);
1552 return val;
1555 static void pnv_xive2_ic_tm_indirect_write(void *opaque, hwaddr offset,
1556 uint64_t val, unsigned size)
1558 PnvXive2 *xive = PNV_XIVE2(opaque);
1559 uint32_t pir = offset >> xive->ic_shift;
1560 XiveTCTX *tctx = pnv_xive2_get_indirect_tctx(xive, pir);
1562 if (tctx) {
1563 xive_tctx_tm_write(NULL, tctx, offset, val, size);
1567 static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops = {
1568 .read = pnv_xive2_ic_tm_indirect_read,
1569 .write = pnv_xive2_ic_tm_indirect_write,
1570 .endianness = DEVICE_BIG_ENDIAN,
1571 .valid = {
1572 .min_access_size = 8,
1573 .max_access_size = 8,
1575 .impl = {
1576 .min_access_size = 8,
1577 .max_access_size = 8,
1582 * TIMA ops
1585 static void pnv_xive2_tm_write(void *opaque, hwaddr offset,
1586 uint64_t value, unsigned size)
1588 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1589 PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu);
1590 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1592 /* Other TM ops are the same as XIVE1 */
1593 xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1596 static uint64_t pnv_xive2_tm_read(void *opaque, hwaddr offset, unsigned size)
1598 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1599 PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu);
1600 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1602 /* Other TM ops are the same as XIVE1 */
1603 return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1606 static const MemoryRegionOps pnv_xive2_tm_ops = {
1607 .read = pnv_xive2_tm_read,
1608 .write = pnv_xive2_tm_write,
1609 .endianness = DEVICE_BIG_ENDIAN,
1610 .valid = {
1611 .min_access_size = 1,
1612 .max_access_size = 8,
1614 .impl = {
1615 .min_access_size = 1,
1616 .max_access_size = 8,
1620 static uint64_t pnv_xive2_nvc_read(void *opaque, hwaddr offset,
1621 unsigned size)
1623 PnvXive2 *xive = PNV_XIVE2(opaque);
1625 xive2_error(xive, "NVC: invalid read @%"HWADDR_PRIx, offset);
1626 return -1;
1629 static void pnv_xive2_nvc_write(void *opaque, hwaddr offset,
1630 uint64_t val, unsigned size)
1632 PnvXive2 *xive = PNV_XIVE2(opaque);
1634 xive2_error(xive, "NVC: invalid write @%"HWADDR_PRIx, offset);
1637 static const MemoryRegionOps pnv_xive2_nvc_ops = {
1638 .read = pnv_xive2_nvc_read,
1639 .write = pnv_xive2_nvc_write,
1640 .endianness = DEVICE_BIG_ENDIAN,
1641 .valid = {
1642 .min_access_size = 8,
1643 .max_access_size = 8,
1645 .impl = {
1646 .min_access_size = 8,
1647 .max_access_size = 8,
1651 static uint64_t pnv_xive2_nvpg_read(void *opaque, hwaddr offset,
1652 unsigned size)
1654 PnvXive2 *xive = PNV_XIVE2(opaque);
1656 xive2_error(xive, "NVPG: invalid read @%"HWADDR_PRIx, offset);
1657 return -1;
1660 static void pnv_xive2_nvpg_write(void *opaque, hwaddr offset,
1661 uint64_t val, unsigned size)
1663 PnvXive2 *xive = PNV_XIVE2(opaque);
1665 xive2_error(xive, "NVPG: invalid write @%"HWADDR_PRIx, offset);
1668 static const MemoryRegionOps pnv_xive2_nvpg_ops = {
1669 .read = pnv_xive2_nvpg_read,
1670 .write = pnv_xive2_nvpg_write,
1671 .endianness = DEVICE_BIG_ENDIAN,
1672 .valid = {
1673 .min_access_size = 8,
1674 .max_access_size = 8,
1676 .impl = {
1677 .min_access_size = 8,
1678 .max_access_size = 8,
1683 * POWER10 default capabilities: 0x2000120076f00000
1685 #define PNV_XIVE2_CAPABILITIES 0x2000120076f00000
1688 * POWER10 default configuration: 0x0030000033000000
1690 * 8bits thread id was dropped for P10
1692 #define PNV_XIVE2_CONFIGURATION 0x0030000033000000
1694 static void pnv_xive2_reset(void *dev)
1696 PnvXive2 *xive = PNV_XIVE2(dev);
1697 XiveSource *xsrc = &xive->ipi_source;
1698 Xive2EndSource *end_xsrc = &xive->end_source;
1700 xive->cq_regs[CQ_XIVE_CAP >> 3] = xive->capabilities;
1701 xive->cq_regs[CQ_XIVE_CFG >> 3] = xive->config;
1703 /* HW hardwires the #Topology of the chip in the block field */
1704 xive->cq_regs[CQ_XIVE_CFG >> 3] |=
1705 SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, xive->chip->chip_id);
1707 /* Set default page size to 64k */
1708 xive->ic_shift = xive->esb_shift = xive->end_shift = 16;
1709 xive->nvc_shift = xive->nvpg_shift = xive->tm_shift = 16;
1711 /* Clear source MMIOs */
1712 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1713 memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio);
1716 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1717 memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio);
1722 * Maximum number of IRQs and ENDs supported by HW. Will be tuned by
1723 * software.
1725 #define PNV_XIVE2_NR_IRQS (PNV10_XIVE2_ESB_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1726 #define PNV_XIVE2_NR_ENDS (PNV10_XIVE2_END_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1728 static void pnv_xive2_realize(DeviceState *dev, Error **errp)
1730 PnvXive2 *xive = PNV_XIVE2(dev);
1731 PnvXive2Class *pxc = PNV_XIVE2_GET_CLASS(dev);
1732 XiveSource *xsrc = &xive->ipi_source;
1733 Xive2EndSource *end_xsrc = &xive->end_source;
1734 Error *local_err = NULL;
1735 int i;
1737 pxc->parent_realize(dev, &local_err);
1738 if (local_err) {
1739 error_propagate(errp, local_err);
1740 return;
1743 assert(xive->chip);
1746 * The XiveSource and Xive2EndSource objects are realized with the
1747 * maximum allowed HW configuration. The ESB MMIO regions will be
1748 * resized dynamically when the controller is configured by the FW
1749 * to limit accesses to resources not provisioned.
1751 object_property_set_int(OBJECT(xsrc), "flags", XIVE_SRC_STORE_EOI,
1752 &error_fatal);
1753 object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE2_NR_IRQS,
1754 &error_fatal);
1755 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive),
1756 &error_fatal);
1757 qdev_realize(DEVICE(xsrc), NULL, &local_err);
1758 if (local_err) {
1759 error_propagate(errp, local_err);
1760 return;
1763 object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE2_NR_ENDS,
1764 &error_fatal);
1765 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1766 &error_abort);
1767 qdev_realize(DEVICE(end_xsrc), NULL, &local_err);
1768 if (local_err) {
1769 error_propagate(errp, local_err);
1770 return;
1773 /* XSCOM region, used for initial configuration of the BARs */
1774 memory_region_init_io(&xive->xscom_regs, OBJECT(dev),
1775 &pnv_xive2_xscom_ops, xive, "xscom-xive",
1776 PNV10_XSCOM_XIVE2_SIZE << 3);
1778 /* Interrupt controller MMIO regions */
1779 xive->ic_shift = 16;
1780 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1781 PNV10_XIVE2_IC_SIZE);
1783 for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
1784 memory_region_init_io(&xive->ic_mmios[i], OBJECT(dev),
1785 pnv_xive2_ic_regions[i].ops, xive,
1786 pnv_xive2_ic_regions[i].name,
1787 pnv_xive2_ic_regions[i].pgsize << xive->ic_shift);
1791 * VC MMIO regions.
1793 xive->esb_shift = 16;
1794 xive->end_shift = 16;
1795 memory_region_init(&xive->esb_mmio, OBJECT(xive), "xive-esb",
1796 PNV10_XIVE2_ESB_SIZE);
1797 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-end",
1798 PNV10_XIVE2_END_SIZE);
1800 /* Presenter Controller MMIO region (not modeled) */
1801 xive->nvc_shift = 16;
1802 xive->nvpg_shift = 16;
1803 memory_region_init_io(&xive->nvc_mmio, OBJECT(dev),
1804 &pnv_xive2_nvc_ops, xive,
1805 "xive-nvc", PNV10_XIVE2_NVC_SIZE);
1807 memory_region_init_io(&xive->nvpg_mmio, OBJECT(dev),
1808 &pnv_xive2_nvpg_ops, xive,
1809 "xive-nvpg", PNV10_XIVE2_NVPG_SIZE);
1811 /* Thread Interrupt Management Area (Direct) */
1812 xive->tm_shift = 16;
1813 memory_region_init_io(&xive->tm_mmio, OBJECT(dev), &pnv_xive2_tm_ops,
1814 xive, "xive-tima", PNV10_XIVE2_TM_SIZE);
1816 qemu_register_reset(pnv_xive2_reset, dev);
1819 static Property pnv_xive2_properties[] = {
1820 DEFINE_PROP_UINT64("ic-bar", PnvXive2, ic_base, 0),
1821 DEFINE_PROP_UINT64("esb-bar", PnvXive2, esb_base, 0),
1822 DEFINE_PROP_UINT64("end-bar", PnvXive2, end_base, 0),
1823 DEFINE_PROP_UINT64("nvc-bar", PnvXive2, nvc_base, 0),
1824 DEFINE_PROP_UINT64("nvpg-bar", PnvXive2, nvpg_base, 0),
1825 DEFINE_PROP_UINT64("tm-bar", PnvXive2, tm_base, 0),
1826 DEFINE_PROP_UINT64("capabilities", PnvXive2, capabilities,
1827 PNV_XIVE2_CAPABILITIES),
1828 DEFINE_PROP_UINT64("config", PnvXive2, config,
1829 PNV_XIVE2_CONFIGURATION),
1830 DEFINE_PROP_LINK("chip", PnvXive2, chip, TYPE_PNV_CHIP, PnvChip *),
1831 DEFINE_PROP_END_OF_LIST(),
1834 static void pnv_xive2_instance_init(Object *obj)
1836 PnvXive2 *xive = PNV_XIVE2(obj);
1838 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1839 TYPE_XIVE_SOURCE);
1840 object_initialize_child(obj, "end_source", &xive->end_source,
1841 TYPE_XIVE2_END_SOURCE);
1844 static int pnv_xive2_dt_xscom(PnvXScomInterface *dev, void *fdt,
1845 int xscom_offset)
1847 const char compat_p10[] = "ibm,power10-xive-x";
1848 char *name;
1849 int offset;
1850 uint32_t reg[] = {
1851 cpu_to_be32(PNV10_XSCOM_XIVE2_BASE),
1852 cpu_to_be32(PNV10_XSCOM_XIVE2_SIZE)
1855 name = g_strdup_printf("xive@%x", PNV10_XSCOM_XIVE2_BASE);
1856 offset = fdt_add_subnode(fdt, xscom_offset, name);
1857 _FDT(offset);
1858 g_free(name);
1860 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1861 _FDT(fdt_setprop(fdt, offset, "compatible", compat_p10,
1862 sizeof(compat_p10)));
1863 return 0;
1866 static void pnv_xive2_class_init(ObjectClass *klass, void *data)
1868 DeviceClass *dc = DEVICE_CLASS(klass);
1869 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1870 Xive2RouterClass *xrc = XIVE2_ROUTER_CLASS(klass);
1871 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1872 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1873 PnvXive2Class *pxc = PNV_XIVE2_CLASS(klass);
1875 xdc->dt_xscom = pnv_xive2_dt_xscom;
1877 dc->desc = "PowerNV XIVE2 Interrupt Controller (POWER10)";
1878 device_class_set_parent_realize(dc, pnv_xive2_realize,
1879 &pxc->parent_realize);
1880 device_class_set_props(dc, pnv_xive2_properties);
1882 xrc->get_eas = pnv_xive2_get_eas;
1883 xrc->get_end = pnv_xive2_get_end;
1884 xrc->write_end = pnv_xive2_write_end;
1885 xrc->get_nvp = pnv_xive2_get_nvp;
1886 xrc->write_nvp = pnv_xive2_write_nvp;
1887 xrc->get_block_id = pnv_xive2_get_block_id;
1889 xnc->notify = pnv_xive2_notify;
1891 xpc->match_nvt = pnv_xive2_match_nvt;
1894 static const TypeInfo pnv_xive2_info = {
1895 .name = TYPE_PNV_XIVE2,
1896 .parent = TYPE_XIVE2_ROUTER,
1897 .instance_init = pnv_xive2_instance_init,
1898 .instance_size = sizeof(PnvXive2),
1899 .class_init = pnv_xive2_class_init,
1900 .class_size = sizeof(PnvXive2Class),
1901 .interfaces = (InterfaceInfo[]) {
1902 { TYPE_PNV_XSCOM_INTERFACE },
1907 static void pnv_xive2_register_types(void)
1909 type_register_static(&pnv_xive2_info);
1912 type_init(pnv_xive2_register_types)
1914 static void xive2_nvp_pic_print_info(Xive2Nvp *nvp, uint32_t nvp_idx,
1915 Monitor *mon)
1917 uint8_t eq_blk = xive_get_field32(NVP2_W5_VP_END_BLOCK, nvp->w5);
1918 uint32_t eq_idx = xive_get_field32(NVP2_W5_VP_END_INDEX, nvp->w5);
1920 if (!xive2_nvp_is_valid(nvp)) {
1921 return;
1924 monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x\n",
1925 nvp_idx, eq_blk, eq_idx,
1926 xive_get_field32(NVP2_W2_IPB, nvp->w2));
1930 * If the table is direct, we can compute the number of PQ entries
1931 * provisioned by FW.
1933 static uint32_t pnv_xive2_nr_esbs(PnvXive2 *xive)
1935 uint8_t blk = pnv_xive2_block_id(xive);
1936 uint64_t vsd = xive->vsds[VST_ESB][blk];
1937 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
1939 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
1943 * Compute the number of entries per indirect subpage.
1945 static uint64_t pnv_xive2_vst_per_subpage(PnvXive2 *xive, uint32_t type)
1947 uint8_t blk = pnv_xive2_block_id(xive);
1948 uint64_t vsd = xive->vsds[type][blk];
1949 const XiveVstInfo *info = &vst_infos[type];
1950 uint64_t vsd_addr;
1951 uint32_t page_shift;
1953 /* For direct tables, fake a valid value */
1954 if (!(VSD_INDIRECT & vsd)) {
1955 return 1;
1958 /* Get the page size of the indirect table. */
1959 vsd_addr = vsd & VSD_ADDRESS_MASK;
1960 ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
1962 if (!(vsd & VSD_ADDRESS_MASK)) {
1963 #ifdef XIVE2_DEBUG
1964 xive2_error(xive, "VST: invalid %s entry!?", info->name);
1965 #endif
1966 return 0;
1969 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
1971 if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
1972 xive2_error(xive, "VST: invalid %s page shift %d", info->name,
1973 page_shift);
1974 return 0;
1977 return (1ull << page_shift) / info->size;
1980 void pnv_xive2_pic_print_info(PnvXive2 *xive, Monitor *mon)
1982 Xive2Router *xrtr = XIVE2_ROUTER(xive);
1983 uint8_t blk = pnv_xive2_block_id(xive);
1984 uint8_t chip_id = xive->chip->chip_id;
1985 uint32_t srcno0 = XIVE_EAS(blk, 0);
1986 uint32_t nr_esbs = pnv_xive2_nr_esbs(xive);
1987 Xive2Eas eas;
1988 Xive2End end;
1989 Xive2Nvp nvp;
1990 int i;
1991 uint64_t xive_nvp_per_subpage;
1993 monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1994 srcno0 + nr_esbs - 1);
1995 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1997 monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1998 srcno0 + nr_esbs - 1);
1999 for (i = 0; i < nr_esbs; i++) {
2000 if (xive2_router_get_eas(xrtr, blk, i, &eas)) {
2001 break;
2003 if (!xive2_eas_is_masked(&eas)) {
2004 xive2_eas_pic_print_info(&eas, i, mon);
2008 monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
2009 i = 0;
2010 while (!xive2_router_get_end(xrtr, blk, i, &end)) {
2011 xive2_end_eas_pic_print_info(&end, i++, mon);
2014 monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
2015 i = 0;
2016 while (!xive2_router_get_end(xrtr, blk, i, &end)) {
2017 xive2_end_pic_print_info(&end, i++, mon);
2020 monitor_printf(mon, "XIVE[%x] #%d NVPT %08x .. %08x\n", chip_id, blk,
2021 0, XIVE2_NVP_COUNT - 1);
2022 xive_nvp_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVP);
2023 for (i = 0; i < XIVE2_NVP_COUNT; i += xive_nvp_per_subpage) {
2024 while (!xive2_router_get_nvp(xrtr, blk, i, &nvp)) {
2025 xive2_nvp_pic_print_info(&nvp, i++, mon);