s390x/css: fix NULL handling for CCW addresses
[qemu.git] / block / qcow2-cluster.c
blob0d4824993cc1fdeb46c1f7b79f189d05c3aeccc3
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36 bool exact_size)
38 BDRVQcow2State *s = bs->opaque;
39 int new_l1_size2, ret, i;
40 uint64_t *new_l1_table;
41 int64_t old_l1_table_offset, old_l1_size;
42 int64_t new_l1_table_offset, new_l1_size;
43 uint8_t data[12];
45 if (min_size <= s->l1_size)
46 return 0;
48 /* Do a sanity check on min_size before trying to calculate new_l1_size
49 * (this prevents overflows during the while loop for the calculation of
50 * new_l1_size) */
51 if (min_size > INT_MAX / sizeof(uint64_t)) {
52 return -EFBIG;
55 if (exact_size) {
56 new_l1_size = min_size;
57 } else {
58 /* Bump size up to reduce the number of times we have to grow */
59 new_l1_size = s->l1_size;
60 if (new_l1_size == 0) {
61 new_l1_size = 1;
63 while (min_size > new_l1_size) {
64 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
68 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
69 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
70 return -EFBIG;
73 #ifdef DEBUG_ALLOC2
74 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
75 s->l1_size, new_l1_size);
76 #endif
78 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
79 new_l1_table = qemu_try_blockalign(bs->file->bs,
80 align_offset(new_l1_size2, 512));
81 if (new_l1_table == NULL) {
82 return -ENOMEM;
84 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
86 if (s->l1_size) {
87 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
90 /* write new table (align to cluster) */
91 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
92 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
93 if (new_l1_table_offset < 0) {
94 qemu_vfree(new_l1_table);
95 return new_l1_table_offset;
98 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
99 if (ret < 0) {
100 goto fail;
103 /* the L1 position has not yet been updated, so these clusters must
104 * indeed be completely free */
105 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
106 new_l1_size2);
107 if (ret < 0) {
108 goto fail;
111 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
112 for(i = 0; i < s->l1_size; i++)
113 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
114 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
115 new_l1_table, new_l1_size2);
116 if (ret < 0)
117 goto fail;
118 for(i = 0; i < s->l1_size; i++)
119 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
121 /* set new table */
122 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
123 stl_be_p(data, new_l1_size);
124 stq_be_p(data + 4, new_l1_table_offset);
125 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
126 data, sizeof(data));
127 if (ret < 0) {
128 goto fail;
130 qemu_vfree(s->l1_table);
131 old_l1_table_offset = s->l1_table_offset;
132 s->l1_table_offset = new_l1_table_offset;
133 s->l1_table = new_l1_table;
134 old_l1_size = s->l1_size;
135 s->l1_size = new_l1_size;
136 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
137 QCOW2_DISCARD_OTHER);
138 return 0;
139 fail:
140 qemu_vfree(new_l1_table);
141 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
142 QCOW2_DISCARD_OTHER);
143 return ret;
147 * l2_load
149 * Loads a L2 table into memory. If the table is in the cache, the cache
150 * is used; otherwise the L2 table is loaded from the image file.
152 * Returns a pointer to the L2 table on success, or NULL if the read from
153 * the image file failed.
156 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
157 uint64_t **l2_table)
159 BDRVQcow2State *s = bs->opaque;
161 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
162 (void **)l2_table);
166 * Writes one sector of the L1 table to the disk (can't update single entries
167 * and we really don't want bdrv_pread to perform a read-modify-write)
169 #define L1_ENTRIES_PER_SECTOR (512 / 8)
170 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
172 BDRVQcow2State *s = bs->opaque;
173 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
174 int l1_start_index;
175 int i, ret;
177 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
178 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
179 i++)
181 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
184 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
185 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
186 if (ret < 0) {
187 return ret;
190 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
191 ret = bdrv_pwrite_sync(bs->file,
192 s->l1_table_offset + 8 * l1_start_index,
193 buf, sizeof(buf));
194 if (ret < 0) {
195 return ret;
198 return 0;
202 * l2_allocate
204 * Allocate a new l2 entry in the file. If l1_index points to an already
205 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
206 * table) copy the contents of the old L2 table into the newly allocated one.
207 * Otherwise the new table is initialized with zeros.
211 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
213 BDRVQcow2State *s = bs->opaque;
214 uint64_t old_l2_offset;
215 uint64_t *l2_table = NULL;
216 int64_t l2_offset;
217 int ret;
219 old_l2_offset = s->l1_table[l1_index];
221 trace_qcow2_l2_allocate(bs, l1_index);
223 /* allocate a new l2 entry */
225 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
226 if (l2_offset < 0) {
227 ret = l2_offset;
228 goto fail;
231 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
232 if (ret < 0) {
233 goto fail;
236 /* allocate a new entry in the l2 cache */
238 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
239 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
240 if (ret < 0) {
241 goto fail;
244 l2_table = *table;
246 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
247 /* if there was no old l2 table, clear the new table */
248 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
249 } else {
250 uint64_t* old_table;
252 /* if there was an old l2 table, read it from the disk */
253 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
254 ret = qcow2_cache_get(bs, s->l2_table_cache,
255 old_l2_offset & L1E_OFFSET_MASK,
256 (void**) &old_table);
257 if (ret < 0) {
258 goto fail;
261 memcpy(l2_table, old_table, s->cluster_size);
263 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
266 /* write the l2 table to the file */
267 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
269 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
270 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
271 ret = qcow2_cache_flush(bs, s->l2_table_cache);
272 if (ret < 0) {
273 goto fail;
276 /* update the L1 entry */
277 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
278 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
279 ret = qcow2_write_l1_entry(bs, l1_index);
280 if (ret < 0) {
281 goto fail;
284 *table = l2_table;
285 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
286 return 0;
288 fail:
289 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
290 if (l2_table != NULL) {
291 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
293 s->l1_table[l1_index] = old_l2_offset;
294 if (l2_offset > 0) {
295 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
296 QCOW2_DISCARD_ALWAYS);
298 return ret;
302 * Checks how many clusters in a given L2 table are contiguous in the image
303 * file. As soon as one of the flags in the bitmask stop_flags changes compared
304 * to the first cluster, the search is stopped and the cluster is not counted
305 * as contiguous. (This allows it, for example, to stop at the first compressed
306 * cluster which may require a different handling)
308 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
309 uint64_t *l2_table, uint64_t stop_flags)
311 int i;
312 QCow2ClusterType first_cluster_type;
313 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
314 uint64_t first_entry = be64_to_cpu(l2_table[0]);
315 uint64_t offset = first_entry & mask;
317 if (!offset) {
318 return 0;
321 /* must be allocated */
322 first_cluster_type = qcow2_get_cluster_type(first_entry);
323 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
324 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
326 for (i = 0; i < nb_clusters; i++) {
327 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
328 if (offset + (uint64_t) i * cluster_size != l2_entry) {
329 break;
333 return i;
337 * Checks how many consecutive unallocated clusters in a given L2
338 * table have the same cluster type.
340 static int count_contiguous_clusters_unallocated(int nb_clusters,
341 uint64_t *l2_table,
342 QCow2ClusterType wanted_type)
344 int i;
346 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
347 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
348 for (i = 0; i < nb_clusters; i++) {
349 uint64_t entry = be64_to_cpu(l2_table[i]);
350 QCow2ClusterType type = qcow2_get_cluster_type(entry);
352 if (type != wanted_type) {
353 break;
357 return i;
360 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
361 uint64_t src_cluster_offset,
362 unsigned offset_in_cluster,
363 QEMUIOVector *qiov)
365 int ret;
367 if (qiov->size == 0) {
368 return 0;
371 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
373 if (!bs->drv) {
374 return -ENOMEDIUM;
377 /* Call .bdrv_co_readv() directly instead of using the public block-layer
378 * interface. This avoids double I/O throttling and request tracking,
379 * which can lead to deadlock when block layer copy-on-read is enabled.
381 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
382 qiov->size, qiov, 0);
383 if (ret < 0) {
384 return ret;
387 return 0;
390 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
391 uint64_t src_cluster_offset,
392 uint64_t cluster_offset,
393 unsigned offset_in_cluster,
394 uint8_t *buffer,
395 unsigned bytes)
397 if (bytes && bs->encrypted) {
398 BDRVQcow2State *s = bs->opaque;
399 int64_t sector = (s->crypt_physical_offset ?
400 (cluster_offset + offset_in_cluster) :
401 (src_cluster_offset + offset_in_cluster))
402 >> BDRV_SECTOR_BITS;
403 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
404 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
405 assert(s->crypto);
406 if (qcrypto_block_encrypt(s->crypto, sector, buffer,
407 bytes, NULL) < 0) {
408 return false;
411 return true;
414 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
415 uint64_t cluster_offset,
416 unsigned offset_in_cluster,
417 QEMUIOVector *qiov)
419 int ret;
421 if (qiov->size == 0) {
422 return 0;
425 ret = qcow2_pre_write_overlap_check(bs, 0,
426 cluster_offset + offset_in_cluster, qiov->size);
427 if (ret < 0) {
428 return ret;
431 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
432 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
433 qiov->size, qiov, 0);
434 if (ret < 0) {
435 return ret;
438 return 0;
443 * get_cluster_offset
445 * For a given offset of the virtual disk, find the cluster type and offset in
446 * the qcow2 file. The offset is stored in *cluster_offset.
448 * On entry, *bytes is the maximum number of contiguous bytes starting at
449 * offset that we are interested in.
451 * On exit, *bytes is the number of bytes starting at offset that have the same
452 * cluster type and (if applicable) are stored contiguously in the image file.
453 * Compressed clusters are always returned one by one.
455 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
456 * cases.
458 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
459 unsigned int *bytes, uint64_t *cluster_offset)
461 BDRVQcow2State *s = bs->opaque;
462 unsigned int l2_index;
463 uint64_t l1_index, l2_offset, *l2_table;
464 int l1_bits, c;
465 unsigned int offset_in_cluster;
466 uint64_t bytes_available, bytes_needed, nb_clusters;
467 QCow2ClusterType type;
468 int ret;
470 offset_in_cluster = offset_into_cluster(s, offset);
471 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
473 l1_bits = s->l2_bits + s->cluster_bits;
475 /* compute how many bytes there are between the start of the cluster
476 * containing offset and the end of the l1 entry */
477 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
478 + offset_in_cluster;
480 if (bytes_needed > bytes_available) {
481 bytes_needed = bytes_available;
484 *cluster_offset = 0;
486 /* seek to the l2 offset in the l1 table */
488 l1_index = offset >> l1_bits;
489 if (l1_index >= s->l1_size) {
490 type = QCOW2_CLUSTER_UNALLOCATED;
491 goto out;
494 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
495 if (!l2_offset) {
496 type = QCOW2_CLUSTER_UNALLOCATED;
497 goto out;
500 if (offset_into_cluster(s, l2_offset)) {
501 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
502 " unaligned (L1 index: %#" PRIx64 ")",
503 l2_offset, l1_index);
504 return -EIO;
507 /* load the l2 table in memory */
509 ret = l2_load(bs, l2_offset, &l2_table);
510 if (ret < 0) {
511 return ret;
514 /* find the cluster offset for the given disk offset */
516 l2_index = offset_to_l2_index(s, offset);
517 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
519 nb_clusters = size_to_clusters(s, bytes_needed);
520 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
521 * integers; the minimum cluster size is 512, so this assertion is always
522 * true */
523 assert(nb_clusters <= INT_MAX);
525 type = qcow2_get_cluster_type(*cluster_offset);
526 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
527 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
528 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
529 " in pre-v3 image (L2 offset: %#" PRIx64
530 ", L2 index: %#x)", l2_offset, l2_index);
531 ret = -EIO;
532 goto fail;
534 switch (type) {
535 case QCOW2_CLUSTER_COMPRESSED:
536 /* Compressed clusters can only be processed one by one */
537 c = 1;
538 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
539 break;
540 case QCOW2_CLUSTER_ZERO_PLAIN:
541 case QCOW2_CLUSTER_UNALLOCATED:
542 /* how many empty clusters ? */
543 c = count_contiguous_clusters_unallocated(nb_clusters,
544 &l2_table[l2_index], type);
545 *cluster_offset = 0;
546 break;
547 case QCOW2_CLUSTER_ZERO_ALLOC:
548 case QCOW2_CLUSTER_NORMAL:
549 /* how many allocated clusters ? */
550 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
551 &l2_table[l2_index], QCOW_OFLAG_ZERO);
552 *cluster_offset &= L2E_OFFSET_MASK;
553 if (offset_into_cluster(s, *cluster_offset)) {
554 qcow2_signal_corruption(bs, true, -1, -1,
555 "Cluster allocation offset %#"
556 PRIx64 " unaligned (L2 offset: %#" PRIx64
557 ", L2 index: %#x)", *cluster_offset,
558 l2_offset, l2_index);
559 ret = -EIO;
560 goto fail;
562 break;
563 default:
564 abort();
567 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
569 bytes_available = (int64_t)c * s->cluster_size;
571 out:
572 if (bytes_available > bytes_needed) {
573 bytes_available = bytes_needed;
576 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
577 * subtracting offset_in_cluster will therefore definitely yield something
578 * not exceeding UINT_MAX */
579 assert(bytes_available - offset_in_cluster <= UINT_MAX);
580 *bytes = bytes_available - offset_in_cluster;
582 return type;
584 fail:
585 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
586 return ret;
590 * get_cluster_table
592 * for a given disk offset, load (and allocate if needed)
593 * the l2 table.
595 * the l2 table offset in the qcow2 file and the cluster index
596 * in the l2 table are given to the caller.
598 * Returns 0 on success, -errno in failure case
600 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
601 uint64_t **new_l2_table,
602 int *new_l2_index)
604 BDRVQcow2State *s = bs->opaque;
605 unsigned int l2_index;
606 uint64_t l1_index, l2_offset;
607 uint64_t *l2_table = NULL;
608 int ret;
610 /* seek to the l2 offset in the l1 table */
612 l1_index = offset >> (s->l2_bits + s->cluster_bits);
613 if (l1_index >= s->l1_size) {
614 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
615 if (ret < 0) {
616 return ret;
620 assert(l1_index < s->l1_size);
621 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
622 if (offset_into_cluster(s, l2_offset)) {
623 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
624 " unaligned (L1 index: %#" PRIx64 ")",
625 l2_offset, l1_index);
626 return -EIO;
629 /* seek the l2 table of the given l2 offset */
631 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
632 /* load the l2 table in memory */
633 ret = l2_load(bs, l2_offset, &l2_table);
634 if (ret < 0) {
635 return ret;
637 } else {
638 /* First allocate a new L2 table (and do COW if needed) */
639 ret = l2_allocate(bs, l1_index, &l2_table);
640 if (ret < 0) {
641 return ret;
644 /* Then decrease the refcount of the old table */
645 if (l2_offset) {
646 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
647 QCOW2_DISCARD_OTHER);
651 /* find the cluster offset for the given disk offset */
653 l2_index = offset_to_l2_index(s, offset);
655 *new_l2_table = l2_table;
656 *new_l2_index = l2_index;
658 return 0;
662 * alloc_compressed_cluster_offset
664 * For a given offset of the disk image, return cluster offset in
665 * qcow2 file.
667 * If the offset is not found, allocate a new compressed cluster.
669 * Return the cluster offset if successful,
670 * Return 0, otherwise.
674 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
675 uint64_t offset,
676 int compressed_size)
678 BDRVQcow2State *s = bs->opaque;
679 int l2_index, ret;
680 uint64_t *l2_table;
681 int64_t cluster_offset;
682 int nb_csectors;
684 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
685 if (ret < 0) {
686 return 0;
689 /* Compression can't overwrite anything. Fail if the cluster was already
690 * allocated. */
691 cluster_offset = be64_to_cpu(l2_table[l2_index]);
692 if (cluster_offset & L2E_OFFSET_MASK) {
693 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
694 return 0;
697 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
698 if (cluster_offset < 0) {
699 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
700 return 0;
703 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
704 (cluster_offset >> 9);
706 cluster_offset |= QCOW_OFLAG_COMPRESSED |
707 ((uint64_t)nb_csectors << s->csize_shift);
709 /* update L2 table */
711 /* compressed clusters never have the copied flag */
713 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
714 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
715 l2_table[l2_index] = cpu_to_be64(cluster_offset);
716 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
718 return cluster_offset;
721 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
723 BDRVQcow2State *s = bs->opaque;
724 Qcow2COWRegion *start = &m->cow_start;
725 Qcow2COWRegion *end = &m->cow_end;
726 unsigned buffer_size;
727 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
728 bool merge_reads;
729 uint8_t *start_buffer, *end_buffer;
730 QEMUIOVector qiov;
731 int ret;
733 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
734 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
735 assert(start->offset + start->nb_bytes <= end->offset);
736 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
738 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
739 return 0;
742 /* If we have to read both the start and end COW regions and the
743 * middle region is not too large then perform just one read
744 * operation */
745 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
746 if (merge_reads) {
747 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
748 } else {
749 /* If we have to do two reads, add some padding in the middle
750 * if necessary to make sure that the end region is optimally
751 * aligned. */
752 size_t align = bdrv_opt_mem_align(bs);
753 assert(align > 0 && align <= UINT_MAX);
754 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
755 UINT_MAX - end->nb_bytes);
756 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
759 /* Reserve a buffer large enough to store all the data that we're
760 * going to read */
761 start_buffer = qemu_try_blockalign(bs, buffer_size);
762 if (start_buffer == NULL) {
763 return -ENOMEM;
765 /* The part of the buffer where the end region is located */
766 end_buffer = start_buffer + buffer_size - end->nb_bytes;
768 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
770 qemu_co_mutex_unlock(&s->lock);
771 /* First we read the existing data from both COW regions. We
772 * either read the whole region in one go, or the start and end
773 * regions separately. */
774 if (merge_reads) {
775 qemu_iovec_add(&qiov, start_buffer, buffer_size);
776 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
777 } else {
778 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
779 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
780 if (ret < 0) {
781 goto fail;
784 qemu_iovec_reset(&qiov);
785 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
786 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
788 if (ret < 0) {
789 goto fail;
792 /* Encrypt the data if necessary before writing it */
793 if (bs->encrypted) {
794 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
795 start->offset, start_buffer,
796 start->nb_bytes) ||
797 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
798 end->offset, end_buffer, end->nb_bytes)) {
799 ret = -EIO;
800 goto fail;
804 /* And now we can write everything. If we have the guest data we
805 * can write everything in one single operation */
806 if (m->data_qiov) {
807 qemu_iovec_reset(&qiov);
808 if (start->nb_bytes) {
809 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
811 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
812 if (end->nb_bytes) {
813 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
815 /* NOTE: we have a write_aio blkdebug event here followed by
816 * a cow_write one in do_perform_cow_write(), but there's only
817 * one single I/O operation */
818 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
819 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
820 } else {
821 /* If there's no guest data then write both COW regions separately */
822 qemu_iovec_reset(&qiov);
823 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
824 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
825 if (ret < 0) {
826 goto fail;
829 qemu_iovec_reset(&qiov);
830 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
831 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
834 fail:
835 qemu_co_mutex_lock(&s->lock);
838 * Before we update the L2 table to actually point to the new cluster, we
839 * need to be sure that the refcounts have been increased and COW was
840 * handled.
842 if (ret == 0) {
843 qcow2_cache_depends_on_flush(s->l2_table_cache);
846 qemu_vfree(start_buffer);
847 qemu_iovec_destroy(&qiov);
848 return ret;
851 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
853 BDRVQcow2State *s = bs->opaque;
854 int i, j = 0, l2_index, ret;
855 uint64_t *old_cluster, *l2_table;
856 uint64_t cluster_offset = m->alloc_offset;
858 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
859 assert(m->nb_clusters > 0);
861 old_cluster = g_try_new(uint64_t, m->nb_clusters);
862 if (old_cluster == NULL) {
863 ret = -ENOMEM;
864 goto err;
867 /* copy content of unmodified sectors */
868 ret = perform_cow(bs, m);
869 if (ret < 0) {
870 goto err;
873 /* Update L2 table. */
874 if (s->use_lazy_refcounts) {
875 qcow2_mark_dirty(bs);
877 if (qcow2_need_accurate_refcounts(s)) {
878 qcow2_cache_set_dependency(bs, s->l2_table_cache,
879 s->refcount_block_cache);
882 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
883 if (ret < 0) {
884 goto err;
886 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
888 assert(l2_index + m->nb_clusters <= s->l2_size);
889 for (i = 0; i < m->nb_clusters; i++) {
890 /* if two concurrent writes happen to the same unallocated cluster
891 * each write allocates separate cluster and writes data concurrently.
892 * The first one to complete updates l2 table with pointer to its
893 * cluster the second one has to do RMW (which is done above by
894 * perform_cow()), update l2 table with its cluster pointer and free
895 * old cluster. This is what this loop does */
896 if (l2_table[l2_index + i] != 0) {
897 old_cluster[j++] = l2_table[l2_index + i];
900 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
901 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
905 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
908 * If this was a COW, we need to decrease the refcount of the old cluster.
910 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
911 * clusters), the next write will reuse them anyway.
913 if (!m->keep_old_clusters && j != 0) {
914 for (i = 0; i < j; i++) {
915 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
916 QCOW2_DISCARD_NEVER);
920 ret = 0;
921 err:
922 g_free(old_cluster);
923 return ret;
927 * Returns the number of contiguous clusters that can be used for an allocating
928 * write, but require COW to be performed (this includes yet unallocated space,
929 * which must copy from the backing file)
931 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
932 uint64_t *l2_table, int l2_index)
934 int i;
936 for (i = 0; i < nb_clusters; i++) {
937 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
938 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
940 switch(cluster_type) {
941 case QCOW2_CLUSTER_NORMAL:
942 if (l2_entry & QCOW_OFLAG_COPIED) {
943 goto out;
945 break;
946 case QCOW2_CLUSTER_UNALLOCATED:
947 case QCOW2_CLUSTER_COMPRESSED:
948 case QCOW2_CLUSTER_ZERO_PLAIN:
949 case QCOW2_CLUSTER_ZERO_ALLOC:
950 break;
951 default:
952 abort();
956 out:
957 assert(i <= nb_clusters);
958 return i;
962 * Check if there already is an AIO write request in flight which allocates
963 * the same cluster. In this case we need to wait until the previous
964 * request has completed and updated the L2 table accordingly.
966 * Returns:
967 * 0 if there was no dependency. *cur_bytes indicates the number of
968 * bytes from guest_offset that can be read before the next
969 * dependency must be processed (or the request is complete)
971 * -EAGAIN if we had to wait for another request, previously gathered
972 * information on cluster allocation may be invalid now. The caller
973 * must start over anyway, so consider *cur_bytes undefined.
975 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
976 uint64_t *cur_bytes, QCowL2Meta **m)
978 BDRVQcow2State *s = bs->opaque;
979 QCowL2Meta *old_alloc;
980 uint64_t bytes = *cur_bytes;
982 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
984 uint64_t start = guest_offset;
985 uint64_t end = start + bytes;
986 uint64_t old_start = l2meta_cow_start(old_alloc);
987 uint64_t old_end = l2meta_cow_end(old_alloc);
989 if (end <= old_start || start >= old_end) {
990 /* No intersection */
991 } else {
992 if (start < old_start) {
993 /* Stop at the start of a running allocation */
994 bytes = old_start - start;
995 } else {
996 bytes = 0;
999 /* Stop if already an l2meta exists. After yielding, it wouldn't
1000 * be valid any more, so we'd have to clean up the old L2Metas
1001 * and deal with requests depending on them before starting to
1002 * gather new ones. Not worth the trouble. */
1003 if (bytes == 0 && *m) {
1004 *cur_bytes = 0;
1005 return 0;
1008 if (bytes == 0) {
1009 /* Wait for the dependency to complete. We need to recheck
1010 * the free/allocated clusters when we continue. */
1011 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1012 return -EAGAIN;
1017 /* Make sure that existing clusters and new allocations are only used up to
1018 * the next dependency if we shortened the request above */
1019 *cur_bytes = bytes;
1021 return 0;
1025 * Checks how many already allocated clusters that don't require a copy on
1026 * write there are at the given guest_offset (up to *bytes). If
1027 * *host_offset is not zero, only physically contiguous clusters beginning at
1028 * this host offset are counted.
1030 * Note that guest_offset may not be cluster aligned. In this case, the
1031 * returned *host_offset points to exact byte referenced by guest_offset and
1032 * therefore isn't cluster aligned as well.
1034 * Returns:
1035 * 0: if no allocated clusters are available at the given offset.
1036 * *bytes is normally unchanged. It is set to 0 if the cluster
1037 * is allocated and doesn't need COW, but doesn't have the right
1038 * physical offset.
1040 * 1: if allocated clusters that don't require a COW are available at
1041 * the requested offset. *bytes may have decreased and describes
1042 * the length of the area that can be written to.
1044 * -errno: in error cases
1046 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1047 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1049 BDRVQcow2State *s = bs->opaque;
1050 int l2_index;
1051 uint64_t cluster_offset;
1052 uint64_t *l2_table;
1053 uint64_t nb_clusters;
1054 unsigned int keep_clusters;
1055 int ret;
1057 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1058 *bytes);
1060 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
1061 == offset_into_cluster(s, *host_offset));
1064 * Calculate the number of clusters to look for. We stop at L2 table
1065 * boundaries to keep things simple.
1067 nb_clusters =
1068 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1070 l2_index = offset_to_l2_index(s, guest_offset);
1071 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1072 assert(nb_clusters <= INT_MAX);
1074 /* Find L2 entry for the first involved cluster */
1075 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1076 if (ret < 0) {
1077 return ret;
1080 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1082 /* Check how many clusters are already allocated and don't need COW */
1083 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1084 && (cluster_offset & QCOW_OFLAG_COPIED))
1086 /* If a specific host_offset is required, check it */
1087 bool offset_matches =
1088 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1090 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1091 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1092 "%#llx unaligned (guest offset: %#" PRIx64
1093 ")", cluster_offset & L2E_OFFSET_MASK,
1094 guest_offset);
1095 ret = -EIO;
1096 goto out;
1099 if (*host_offset != 0 && !offset_matches) {
1100 *bytes = 0;
1101 ret = 0;
1102 goto out;
1105 /* We keep all QCOW_OFLAG_COPIED clusters */
1106 keep_clusters =
1107 count_contiguous_clusters(nb_clusters, s->cluster_size,
1108 &l2_table[l2_index],
1109 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1110 assert(keep_clusters <= nb_clusters);
1112 *bytes = MIN(*bytes,
1113 keep_clusters * s->cluster_size
1114 - offset_into_cluster(s, guest_offset));
1116 ret = 1;
1117 } else {
1118 ret = 0;
1121 /* Cleanup */
1122 out:
1123 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1125 /* Only return a host offset if we actually made progress. Otherwise we
1126 * would make requirements for handle_alloc() that it can't fulfill */
1127 if (ret > 0) {
1128 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1129 + offset_into_cluster(s, guest_offset);
1132 return ret;
1136 * Allocates new clusters for the given guest_offset.
1138 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1139 * contain the number of clusters that have been allocated and are contiguous
1140 * in the image file.
1142 * If *host_offset is non-zero, it specifies the offset in the image file at
1143 * which the new clusters must start. *nb_clusters can be 0 on return in this
1144 * case if the cluster at host_offset is already in use. If *host_offset is
1145 * zero, the clusters can be allocated anywhere in the image file.
1147 * *host_offset is updated to contain the offset into the image file at which
1148 * the first allocated cluster starts.
1150 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1151 * function has been waiting for another request and the allocation must be
1152 * restarted, but the whole request should not be failed.
1154 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1155 uint64_t *host_offset, uint64_t *nb_clusters)
1157 BDRVQcow2State *s = bs->opaque;
1159 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1160 *host_offset, *nb_clusters);
1162 /* Allocate new clusters */
1163 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1164 if (*host_offset == 0) {
1165 int64_t cluster_offset =
1166 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1167 if (cluster_offset < 0) {
1168 return cluster_offset;
1170 *host_offset = cluster_offset;
1171 return 0;
1172 } else {
1173 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1174 if (ret < 0) {
1175 return ret;
1177 *nb_clusters = ret;
1178 return 0;
1183 * Allocates new clusters for an area that either is yet unallocated or needs a
1184 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1185 * the new allocation can match the specified host offset.
1187 * Note that guest_offset may not be cluster aligned. In this case, the
1188 * returned *host_offset points to exact byte referenced by guest_offset and
1189 * therefore isn't cluster aligned as well.
1191 * Returns:
1192 * 0: if no clusters could be allocated. *bytes is set to 0,
1193 * *host_offset is left unchanged.
1195 * 1: if new clusters were allocated. *bytes may be decreased if the
1196 * new allocation doesn't cover all of the requested area.
1197 * *host_offset is updated to contain the host offset of the first
1198 * newly allocated cluster.
1200 * -errno: in error cases
1202 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1203 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1205 BDRVQcow2State *s = bs->opaque;
1206 int l2_index;
1207 uint64_t *l2_table;
1208 uint64_t entry;
1209 uint64_t nb_clusters;
1210 int ret;
1211 bool keep_old_clusters = false;
1213 uint64_t alloc_cluster_offset = 0;
1215 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1216 *bytes);
1217 assert(*bytes > 0);
1220 * Calculate the number of clusters to look for. We stop at L2 table
1221 * boundaries to keep things simple.
1223 nb_clusters =
1224 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1226 l2_index = offset_to_l2_index(s, guest_offset);
1227 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1228 assert(nb_clusters <= INT_MAX);
1230 /* Find L2 entry for the first involved cluster */
1231 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1232 if (ret < 0) {
1233 return ret;
1236 entry = be64_to_cpu(l2_table[l2_index]);
1238 /* For the moment, overwrite compressed clusters one by one */
1239 if (entry & QCOW_OFLAG_COMPRESSED) {
1240 nb_clusters = 1;
1241 } else {
1242 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1245 /* This function is only called when there were no non-COW clusters, so if
1246 * we can't find any unallocated or COW clusters either, something is
1247 * wrong with our code. */
1248 assert(nb_clusters > 0);
1250 if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1251 (entry & QCOW_OFLAG_COPIED) &&
1252 (!*host_offset ||
1253 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1255 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1256 * would be fine, too, but count_cow_clusters() above has limited
1257 * nb_clusters already to a range of COW clusters */
1258 int preallocated_nb_clusters =
1259 count_contiguous_clusters(nb_clusters, s->cluster_size,
1260 &l2_table[l2_index], QCOW_OFLAG_COPIED);
1261 assert(preallocated_nb_clusters > 0);
1263 nb_clusters = preallocated_nb_clusters;
1264 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1266 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1267 * should not free them. */
1268 keep_old_clusters = true;
1271 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1273 if (!alloc_cluster_offset) {
1274 /* Allocate, if necessary at a given offset in the image file */
1275 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1276 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1277 &nb_clusters);
1278 if (ret < 0) {
1279 goto fail;
1282 /* Can't extend contiguous allocation */
1283 if (nb_clusters == 0) {
1284 *bytes = 0;
1285 return 0;
1288 /* !*host_offset would overwrite the image header and is reserved for
1289 * "no host offset preferred". If 0 was a valid host offset, it'd
1290 * trigger the following overlap check; do that now to avoid having an
1291 * invalid value in *host_offset. */
1292 if (!alloc_cluster_offset) {
1293 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1294 nb_clusters * s->cluster_size);
1295 assert(ret < 0);
1296 goto fail;
1301 * Save info needed for meta data update.
1303 * requested_bytes: Number of bytes from the start of the first
1304 * newly allocated cluster to the end of the (possibly shortened
1305 * before) write request.
1307 * avail_bytes: Number of bytes from the start of the first
1308 * newly allocated to the end of the last newly allocated cluster.
1310 * nb_bytes: The number of bytes from the start of the first
1311 * newly allocated cluster to the end of the area that the write
1312 * request actually writes to (excluding COW at the end)
1314 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1315 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1316 int nb_bytes = MIN(requested_bytes, avail_bytes);
1317 QCowL2Meta *old_m = *m;
1319 *m = g_malloc0(sizeof(**m));
1321 **m = (QCowL2Meta) {
1322 .next = old_m,
1324 .alloc_offset = alloc_cluster_offset,
1325 .offset = start_of_cluster(s, guest_offset),
1326 .nb_clusters = nb_clusters,
1328 .keep_old_clusters = keep_old_clusters,
1330 .cow_start = {
1331 .offset = 0,
1332 .nb_bytes = offset_into_cluster(s, guest_offset),
1334 .cow_end = {
1335 .offset = nb_bytes,
1336 .nb_bytes = avail_bytes - nb_bytes,
1339 qemu_co_queue_init(&(*m)->dependent_requests);
1340 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1342 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1343 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1344 assert(*bytes != 0);
1346 return 1;
1348 fail:
1349 if (*m && (*m)->nb_clusters > 0) {
1350 QLIST_REMOVE(*m, next_in_flight);
1352 return ret;
1356 * alloc_cluster_offset
1358 * For a given offset on the virtual disk, find the cluster offset in qcow2
1359 * file. If the offset is not found, allocate a new cluster.
1361 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1362 * other fields in m are meaningless.
1364 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1365 * contiguous clusters that have been allocated. In this case, the other
1366 * fields of m are valid and contain information about the first allocated
1367 * cluster.
1369 * If the request conflicts with another write request in flight, the coroutine
1370 * is queued and will be reentered when the dependency has completed.
1372 * Return 0 on success and -errno in error cases
1374 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1375 unsigned int *bytes, uint64_t *host_offset,
1376 QCowL2Meta **m)
1378 BDRVQcow2State *s = bs->opaque;
1379 uint64_t start, remaining;
1380 uint64_t cluster_offset;
1381 uint64_t cur_bytes;
1382 int ret;
1384 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1386 again:
1387 start = offset;
1388 remaining = *bytes;
1389 cluster_offset = 0;
1390 *host_offset = 0;
1391 cur_bytes = 0;
1392 *m = NULL;
1394 while (true) {
1396 if (!*host_offset) {
1397 *host_offset = start_of_cluster(s, cluster_offset);
1400 assert(remaining >= cur_bytes);
1402 start += cur_bytes;
1403 remaining -= cur_bytes;
1404 cluster_offset += cur_bytes;
1406 if (remaining == 0) {
1407 break;
1410 cur_bytes = remaining;
1413 * Now start gathering as many contiguous clusters as possible:
1415 * 1. Check for overlaps with in-flight allocations
1417 * a) Overlap not in the first cluster -> shorten this request and
1418 * let the caller handle the rest in its next loop iteration.
1420 * b) Real overlaps of two requests. Yield and restart the search
1421 * for contiguous clusters (the situation could have changed
1422 * while we were sleeping)
1424 * c) TODO: Request starts in the same cluster as the in-flight
1425 * allocation ends. Shorten the COW of the in-fight allocation,
1426 * set cluster_offset to write to the same cluster and set up
1427 * the right synchronisation between the in-flight request and
1428 * the new one.
1430 ret = handle_dependencies(bs, start, &cur_bytes, m);
1431 if (ret == -EAGAIN) {
1432 /* Currently handle_dependencies() doesn't yield if we already had
1433 * an allocation. If it did, we would have to clean up the L2Meta
1434 * structs before starting over. */
1435 assert(*m == NULL);
1436 goto again;
1437 } else if (ret < 0) {
1438 return ret;
1439 } else if (cur_bytes == 0) {
1440 break;
1441 } else {
1442 /* handle_dependencies() may have decreased cur_bytes (shortened
1443 * the allocations below) so that the next dependency is processed
1444 * correctly during the next loop iteration. */
1448 * 2. Count contiguous COPIED clusters.
1450 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1451 if (ret < 0) {
1452 return ret;
1453 } else if (ret) {
1454 continue;
1455 } else if (cur_bytes == 0) {
1456 break;
1460 * 3. If the request still hasn't completed, allocate new clusters,
1461 * considering any cluster_offset of steps 1c or 2.
1463 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1464 if (ret < 0) {
1465 return ret;
1466 } else if (ret) {
1467 continue;
1468 } else {
1469 assert(cur_bytes == 0);
1470 break;
1474 *bytes -= remaining;
1475 assert(*bytes > 0);
1476 assert(*host_offset != 0);
1478 return 0;
1481 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1482 const uint8_t *buf, int buf_size)
1484 z_stream strm1, *strm = &strm1;
1485 int ret, out_len;
1487 memset(strm, 0, sizeof(*strm));
1489 strm->next_in = (uint8_t *)buf;
1490 strm->avail_in = buf_size;
1491 strm->next_out = out_buf;
1492 strm->avail_out = out_buf_size;
1494 ret = inflateInit2(strm, -12);
1495 if (ret != Z_OK)
1496 return -1;
1497 ret = inflate(strm, Z_FINISH);
1498 out_len = strm->next_out - out_buf;
1499 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1500 out_len != out_buf_size) {
1501 inflateEnd(strm);
1502 return -1;
1504 inflateEnd(strm);
1505 return 0;
1508 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1510 BDRVQcow2State *s = bs->opaque;
1511 int ret, csize, nb_csectors, sector_offset;
1512 uint64_t coffset;
1514 coffset = cluster_offset & s->cluster_offset_mask;
1515 if (s->cluster_cache_offset != coffset) {
1516 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1517 sector_offset = coffset & 511;
1518 csize = nb_csectors * 512 - sector_offset;
1520 /* Allocate buffers on first decompress operation, most images are
1521 * uncompressed and the memory overhead can be avoided. The buffers
1522 * are freed in .bdrv_close().
1524 if (!s->cluster_data) {
1525 /* one more sector for decompressed data alignment */
1526 s->cluster_data = qemu_try_blockalign(bs->file->bs,
1527 QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1528 if (!s->cluster_data) {
1529 return -ENOMEM;
1532 if (!s->cluster_cache) {
1533 s->cluster_cache = g_malloc(s->cluster_size);
1536 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1537 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1538 nb_csectors);
1539 if (ret < 0) {
1540 return ret;
1542 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1543 s->cluster_data + sector_offset, csize) < 0) {
1544 return -EIO;
1546 s->cluster_cache_offset = coffset;
1548 return 0;
1552 * This discards as many clusters of nb_clusters as possible at once (i.e.
1553 * all clusters in the same L2 table) and returns the number of discarded
1554 * clusters.
1556 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1557 uint64_t nb_clusters, enum qcow2_discard_type type,
1558 bool full_discard)
1560 BDRVQcow2State *s = bs->opaque;
1561 uint64_t *l2_table;
1562 int l2_index;
1563 int ret;
1564 int i;
1566 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1567 if (ret < 0) {
1568 return ret;
1571 /* Limit nb_clusters to one L2 table */
1572 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1573 assert(nb_clusters <= INT_MAX);
1575 for (i = 0; i < nb_clusters; i++) {
1576 uint64_t old_l2_entry;
1578 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1581 * If full_discard is false, make sure that a discarded area reads back
1582 * as zeroes for v3 images (we cannot do it for v2 without actually
1583 * writing a zero-filled buffer). We can skip the operation if the
1584 * cluster is already marked as zero, or if it's unallocated and we
1585 * don't have a backing file.
1587 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1588 * holding s->lock, so that doesn't work today.
1590 * If full_discard is true, the sector should not read back as zeroes,
1591 * but rather fall through to the backing file.
1593 switch (qcow2_get_cluster_type(old_l2_entry)) {
1594 case QCOW2_CLUSTER_UNALLOCATED:
1595 if (full_discard || !bs->backing) {
1596 continue;
1598 break;
1600 case QCOW2_CLUSTER_ZERO_PLAIN:
1601 if (!full_discard) {
1602 continue;
1604 break;
1606 case QCOW2_CLUSTER_ZERO_ALLOC:
1607 case QCOW2_CLUSTER_NORMAL:
1608 case QCOW2_CLUSTER_COMPRESSED:
1609 break;
1611 default:
1612 abort();
1615 /* First remove L2 entries */
1616 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1617 if (!full_discard && s->qcow_version >= 3) {
1618 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1619 } else {
1620 l2_table[l2_index + i] = cpu_to_be64(0);
1623 /* Then decrease the refcount */
1624 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1627 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1629 return nb_clusters;
1632 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1633 uint64_t bytes, enum qcow2_discard_type type,
1634 bool full_discard)
1636 BDRVQcow2State *s = bs->opaque;
1637 uint64_t end_offset = offset + bytes;
1638 uint64_t nb_clusters;
1639 int64_t cleared;
1640 int ret;
1642 /* Caller must pass aligned values, except at image end */
1643 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1644 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1645 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1647 nb_clusters = size_to_clusters(s, bytes);
1649 s->cache_discards = true;
1651 /* Each L2 table is handled by its own loop iteration */
1652 while (nb_clusters > 0) {
1653 cleared = discard_single_l2(bs, offset, nb_clusters, type,
1654 full_discard);
1655 if (cleared < 0) {
1656 ret = cleared;
1657 goto fail;
1660 nb_clusters -= cleared;
1661 offset += (cleared * s->cluster_size);
1664 ret = 0;
1665 fail:
1666 s->cache_discards = false;
1667 qcow2_process_discards(bs, ret);
1669 return ret;
1673 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1674 * all clusters in the same L2 table) and returns the number of zeroed
1675 * clusters.
1677 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1678 uint64_t nb_clusters, int flags)
1680 BDRVQcow2State *s = bs->opaque;
1681 uint64_t *l2_table;
1682 int l2_index;
1683 int ret;
1684 int i;
1685 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1687 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1688 if (ret < 0) {
1689 return ret;
1692 /* Limit nb_clusters to one L2 table */
1693 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1694 assert(nb_clusters <= INT_MAX);
1696 for (i = 0; i < nb_clusters; i++) {
1697 uint64_t old_offset;
1698 QCow2ClusterType cluster_type;
1700 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1703 * Minimize L2 changes if the cluster already reads back as
1704 * zeroes with correct allocation.
1706 cluster_type = qcow2_get_cluster_type(old_offset);
1707 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1708 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1709 continue;
1712 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1713 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1714 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1715 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1716 } else {
1717 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1721 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1723 return nb_clusters;
1726 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1727 uint64_t bytes, int flags)
1729 BDRVQcow2State *s = bs->opaque;
1730 uint64_t end_offset = offset + bytes;
1731 uint64_t nb_clusters;
1732 int64_t cleared;
1733 int ret;
1735 /* Caller must pass aligned values, except at image end */
1736 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1737 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1738 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1740 /* The zero flag is only supported by version 3 and newer */
1741 if (s->qcow_version < 3) {
1742 return -ENOTSUP;
1745 /* Each L2 table is handled by its own loop iteration */
1746 nb_clusters = size_to_clusters(s, bytes);
1748 s->cache_discards = true;
1750 while (nb_clusters > 0) {
1751 cleared = zero_single_l2(bs, offset, nb_clusters, flags);
1752 if (cleared < 0) {
1753 ret = cleared;
1754 goto fail;
1757 nb_clusters -= cleared;
1758 offset += (cleared * s->cluster_size);
1761 ret = 0;
1762 fail:
1763 s->cache_discards = false;
1764 qcow2_process_discards(bs, ret);
1766 return ret;
1770 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1771 * non-backed non-pre-allocated zero clusters).
1773 * l1_entries and *visited_l1_entries are used to keep track of progress for
1774 * status_cb(). l1_entries contains the total number of L1 entries and
1775 * *visited_l1_entries counts all visited L1 entries.
1777 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1778 int l1_size, int64_t *visited_l1_entries,
1779 int64_t l1_entries,
1780 BlockDriverAmendStatusCB *status_cb,
1781 void *cb_opaque)
1783 BDRVQcow2State *s = bs->opaque;
1784 bool is_active_l1 = (l1_table == s->l1_table);
1785 uint64_t *l2_table = NULL;
1786 int ret;
1787 int i, j;
1789 if (!is_active_l1) {
1790 /* inactive L2 tables require a buffer to be stored in when loading
1791 * them from disk */
1792 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1793 if (l2_table == NULL) {
1794 return -ENOMEM;
1798 for (i = 0; i < l1_size; i++) {
1799 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1800 bool l2_dirty = false;
1801 uint64_t l2_refcount;
1803 if (!l2_offset) {
1804 /* unallocated */
1805 (*visited_l1_entries)++;
1806 if (status_cb) {
1807 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1809 continue;
1812 if (offset_into_cluster(s, l2_offset)) {
1813 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1814 PRIx64 " unaligned (L1 index: %#x)",
1815 l2_offset, i);
1816 ret = -EIO;
1817 goto fail;
1820 if (is_active_l1) {
1821 /* get active L2 tables from cache */
1822 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1823 (void **)&l2_table);
1824 } else {
1825 /* load inactive L2 tables from disk */
1826 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1827 (void *)l2_table, s->cluster_sectors);
1829 if (ret < 0) {
1830 goto fail;
1833 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1834 &l2_refcount);
1835 if (ret < 0) {
1836 goto fail;
1839 for (j = 0; j < s->l2_size; j++) {
1840 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1841 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1842 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1844 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1845 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1846 continue;
1849 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1850 if (!bs->backing) {
1851 /* not backed; therefore we can simply deallocate the
1852 * cluster */
1853 l2_table[j] = 0;
1854 l2_dirty = true;
1855 continue;
1858 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1859 if (offset < 0) {
1860 ret = offset;
1861 goto fail;
1864 if (l2_refcount > 1) {
1865 /* For shared L2 tables, set the refcount accordingly (it is
1866 * already 1 and needs to be l2_refcount) */
1867 ret = qcow2_update_cluster_refcount(bs,
1868 offset >> s->cluster_bits,
1869 refcount_diff(1, l2_refcount), false,
1870 QCOW2_DISCARD_OTHER);
1871 if (ret < 0) {
1872 qcow2_free_clusters(bs, offset, s->cluster_size,
1873 QCOW2_DISCARD_OTHER);
1874 goto fail;
1879 if (offset_into_cluster(s, offset)) {
1880 qcow2_signal_corruption(bs, true, -1, -1,
1881 "Cluster allocation offset "
1882 "%#" PRIx64 " unaligned (L2 offset: %#"
1883 PRIx64 ", L2 index: %#x)", offset,
1884 l2_offset, j);
1885 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1886 qcow2_free_clusters(bs, offset, s->cluster_size,
1887 QCOW2_DISCARD_ALWAYS);
1889 ret = -EIO;
1890 goto fail;
1893 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1894 if (ret < 0) {
1895 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1896 qcow2_free_clusters(bs, offset, s->cluster_size,
1897 QCOW2_DISCARD_ALWAYS);
1899 goto fail;
1902 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1903 if (ret < 0) {
1904 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1905 qcow2_free_clusters(bs, offset, s->cluster_size,
1906 QCOW2_DISCARD_ALWAYS);
1908 goto fail;
1911 if (l2_refcount == 1) {
1912 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1913 } else {
1914 l2_table[j] = cpu_to_be64(offset);
1916 l2_dirty = true;
1919 if (is_active_l1) {
1920 if (l2_dirty) {
1921 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1922 qcow2_cache_depends_on_flush(s->l2_table_cache);
1924 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1925 } else {
1926 if (l2_dirty) {
1927 ret = qcow2_pre_write_overlap_check(bs,
1928 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1929 s->cluster_size);
1930 if (ret < 0) {
1931 goto fail;
1934 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1935 (void *)l2_table, s->cluster_sectors);
1936 if (ret < 0) {
1937 goto fail;
1942 (*visited_l1_entries)++;
1943 if (status_cb) {
1944 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1948 ret = 0;
1950 fail:
1951 if (l2_table) {
1952 if (!is_active_l1) {
1953 qemu_vfree(l2_table);
1954 } else {
1955 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1958 return ret;
1962 * For backed images, expands all zero clusters on the image. For non-backed
1963 * images, deallocates all non-pre-allocated zero clusters (and claims the
1964 * allocation for pre-allocated ones). This is important for downgrading to a
1965 * qcow2 version which doesn't yet support metadata zero clusters.
1967 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1968 BlockDriverAmendStatusCB *status_cb,
1969 void *cb_opaque)
1971 BDRVQcow2State *s = bs->opaque;
1972 uint64_t *l1_table = NULL;
1973 int64_t l1_entries = 0, visited_l1_entries = 0;
1974 int ret;
1975 int i, j;
1977 if (status_cb) {
1978 l1_entries = s->l1_size;
1979 for (i = 0; i < s->nb_snapshots; i++) {
1980 l1_entries += s->snapshots[i].l1_size;
1984 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1985 &visited_l1_entries, l1_entries,
1986 status_cb, cb_opaque);
1987 if (ret < 0) {
1988 goto fail;
1991 /* Inactive L1 tables may point to active L2 tables - therefore it is
1992 * necessary to flush the L2 table cache before trying to access the L2
1993 * tables pointed to by inactive L1 entries (else we might try to expand
1994 * zero clusters that have already been expanded); furthermore, it is also
1995 * necessary to empty the L2 table cache, since it may contain tables which
1996 * are now going to be modified directly on disk, bypassing the cache.
1997 * qcow2_cache_empty() does both for us. */
1998 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1999 if (ret < 0) {
2000 goto fail;
2003 for (i = 0; i < s->nb_snapshots; i++) {
2004 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
2005 sizeof(uint64_t), BDRV_SECTOR_SIZE);
2007 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
2009 ret = bdrv_read(bs->file,
2010 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
2011 (void *)l1_table, l1_sectors);
2012 if (ret < 0) {
2013 goto fail;
2016 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2017 be64_to_cpus(&l1_table[j]);
2020 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2021 &visited_l1_entries, l1_entries,
2022 status_cb, cb_opaque);
2023 if (ret < 0) {
2024 goto fail;
2028 ret = 0;
2030 fail:
2031 g_free(l1_table);
2032 return ret;