qtest: Fix crash if SIGABRT during qtest_init()
[qemu.git] / target-xtensa / op_helper.c
blobb531019488da75b078eaf95b4f6fe1861cae12b2
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "cpu.h"
29 #include "helper.h"
30 #include "qemu/host-utils.h"
31 #include "exec/softmmu_exec.h"
32 #include "exec/address-spaces.h"
34 static void do_unaligned_access(CPUXtensaState *env,
35 target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
37 #define ALIGNED_ONLY
38 #define MMUSUFFIX _mmu
40 #define SHIFT 0
41 #include "exec/softmmu_template.h"
43 #define SHIFT 1
44 #include "exec/softmmu_template.h"
46 #define SHIFT 2
47 #include "exec/softmmu_template.h"
49 #define SHIFT 3
50 #include "exec/softmmu_template.h"
52 static void do_unaligned_access(CPUXtensaState *env,
53 target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
55 XtensaCPU *cpu = xtensa_env_get_cpu(env);
57 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
58 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
59 cpu_restore_state(CPU(cpu), retaddr);
60 HELPER(exception_cause_vaddr)(env,
61 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
65 void tlb_fill(CPUState *cs,
66 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
68 XtensaCPU *cpu = XTENSA_CPU(cs);
69 CPUXtensaState *env = &cpu->env;
70 uint32_t paddr;
71 uint32_t page_size;
72 unsigned access;
73 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
74 &paddr, &page_size, &access);
76 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
77 vaddr, is_write, mmu_idx, paddr, ret);
79 if (ret == 0) {
80 tlb_set_page(cs,
81 vaddr & TARGET_PAGE_MASK,
82 paddr & TARGET_PAGE_MASK,
83 access, mmu_idx, page_size);
84 } else {
85 cpu_restore_state(cs, retaddr);
86 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
90 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
92 uint32_t paddr;
93 uint32_t page_size;
94 unsigned access;
95 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
96 &paddr, &page_size, &access);
97 if (ret == 0) {
98 tb_invalidate_phys_addr(&address_space_memory, paddr);
102 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
104 CPUState *cs = CPU(xtensa_env_get_cpu(env));
106 cs->exception_index = excp;
107 if (excp == EXCP_DEBUG) {
108 env->exception_taken = 0;
110 cpu_loop_exit(cs);
113 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
115 uint32_t vector;
117 env->pc = pc;
118 if (env->sregs[PS] & PS_EXCM) {
119 if (env->config->ndepc) {
120 env->sregs[DEPC] = pc;
121 } else {
122 env->sregs[EPC1] = pc;
124 vector = EXC_DOUBLE;
125 } else {
126 env->sregs[EPC1] = pc;
127 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
130 env->sregs[EXCCAUSE] = cause;
131 env->sregs[PS] |= PS_EXCM;
133 HELPER(exception)(env, vector);
136 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
137 uint32_t pc, uint32_t cause, uint32_t vaddr)
139 env->sregs[EXCVADDR] = vaddr;
140 HELPER(exception_cause)(env, pc, cause);
143 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
145 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
146 HELPER(debug_exception)(env, env->pc, cause);
150 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
152 unsigned level = env->config->debug_level;
154 env->pc = pc;
155 env->sregs[DEBUGCAUSE] = cause;
156 env->sregs[EPC1 + level - 1] = pc;
157 env->sregs[EPS2 + level - 2] = env->sregs[PS];
158 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
159 (level << PS_INTLEVEL_SHIFT);
160 HELPER(exception)(env, EXC_DEBUG);
163 uint32_t HELPER(nsa)(uint32_t v)
165 if (v & 0x80000000) {
166 v = ~v;
168 return v ? clz32(v) - 1 : 31;
171 uint32_t HELPER(nsau)(uint32_t v)
173 return v ? clz32(v) : 32;
176 static void copy_window_from_phys(CPUXtensaState *env,
177 uint32_t window, uint32_t phys, uint32_t n)
179 assert(phys < env->config->nareg);
180 if (phys + n <= env->config->nareg) {
181 memcpy(env->regs + window, env->phys_regs + phys,
182 n * sizeof(uint32_t));
183 } else {
184 uint32_t n1 = env->config->nareg - phys;
185 memcpy(env->regs + window, env->phys_regs + phys,
186 n1 * sizeof(uint32_t));
187 memcpy(env->regs + window + n1, env->phys_regs,
188 (n - n1) * sizeof(uint32_t));
192 static void copy_phys_from_window(CPUXtensaState *env,
193 uint32_t phys, uint32_t window, uint32_t n)
195 assert(phys < env->config->nareg);
196 if (phys + n <= env->config->nareg) {
197 memcpy(env->phys_regs + phys, env->regs + window,
198 n * sizeof(uint32_t));
199 } else {
200 uint32_t n1 = env->config->nareg - phys;
201 memcpy(env->phys_regs + phys, env->regs + window,
202 n1 * sizeof(uint32_t));
203 memcpy(env->phys_regs, env->regs + window + n1,
204 (n - n1) * sizeof(uint32_t));
209 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
211 return a & (env->config->nareg / 4 - 1);
214 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
216 return 1 << windowbase_bound(a, env);
219 void xtensa_sync_window_from_phys(CPUXtensaState *env)
221 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
224 void xtensa_sync_phys_from_window(CPUXtensaState *env)
226 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
229 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
231 xtensa_sync_phys_from_window(env);
232 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
233 xtensa_sync_window_from_phys(env);
236 static void rotate_window(CPUXtensaState *env, uint32_t delta)
238 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
241 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
243 rotate_window_abs(env, v);
246 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
248 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
249 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
250 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
251 pc, env->sregs[PS]);
252 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
253 } else {
254 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
255 rotate_window(env, callinc);
256 env->sregs[WINDOW_START] |=
257 windowstart_bit(env->sregs[WINDOW_BASE], env);
261 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
263 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
264 uint32_t windowstart = env->sregs[WINDOW_START];
265 uint32_t m, n;
267 if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
268 return;
271 for (n = 1; ; ++n) {
272 if (n > w) {
273 return;
275 if (windowstart & windowstart_bit(windowbase + n, env)) {
276 break;
280 m = windowbase_bound(windowbase + n, env);
281 rotate_window(env, n);
282 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
283 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
284 env->sregs[EPC1] = env->pc = pc;
286 if (windowstart & windowstart_bit(m + 1, env)) {
287 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
288 } else if (windowstart & windowstart_bit(m + 2, env)) {
289 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
290 } else {
291 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
295 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
297 int n = (env->regs[0] >> 30) & 0x3;
298 int m = 0;
299 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
300 uint32_t windowstart = env->sregs[WINDOW_START];
301 uint32_t ret_pc = 0;
303 if (windowstart & windowstart_bit(windowbase - 1, env)) {
304 m = 1;
305 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
306 m = 2;
307 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
308 m = 3;
311 if (n == 0 || (m != 0 && m != n) ||
312 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
313 qemu_log("Illegal retw instruction(pc = %08x), "
314 "PS = %08x, m = %d, n = %d\n",
315 pc, env->sregs[PS], m, n);
316 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
317 } else {
318 int owb = windowbase;
320 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
322 rotate_window(env, -n);
323 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
324 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
325 } else {
326 /* window underflow */
327 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
328 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
329 env->sregs[EPC1] = env->pc = pc;
331 if (n == 1) {
332 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
333 } else if (n == 2) {
334 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
335 } else if (n == 3) {
336 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
340 return ret_pc;
343 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
345 rotate_window(env, imm4);
348 void HELPER(restore_owb)(CPUXtensaState *env)
350 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
353 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
355 if ((env->sregs[WINDOW_START] &
356 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
357 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
358 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
359 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
363 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
365 if (env->sregs[LBEG] != v) {
366 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
367 env->sregs[LBEG] = v;
371 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
373 if (env->sregs[LEND] != v) {
374 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
375 env->sregs[LEND] = v;
376 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
380 void HELPER(dump_state)(CPUXtensaState *env)
382 XtensaCPU *cpu = xtensa_env_get_cpu(env);
384 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
387 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
389 CPUState *cpu;
391 env->pc = pc;
392 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
393 (intlevel << PS_INTLEVEL_SHIFT);
394 check_interrupts(env);
395 if (env->pending_irq_level) {
396 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
397 return;
400 cpu = CPU(xtensa_env_get_cpu(env));
401 env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
402 cpu->halted = 1;
403 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
404 xtensa_rearm_ccompare_timer(env);
406 HELPER(exception)(env, EXCP_HLT);
409 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
411 xtensa_timer_irq(env, id, active);
414 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
416 xtensa_advance_ccount(env, d);
419 void HELPER(check_interrupts)(CPUXtensaState *env)
421 check_interrupts(env);
424 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
426 get_page_addr_code(env, vaddr);
430 * Check vaddr accessibility/cache attributes and raise an exception if
431 * specified by the ATOMCTL SR.
433 * Note: local memory exclusion is not implemented
435 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
437 uint32_t paddr, page_size, access;
438 uint32_t atomctl = env->sregs[ATOMCTL];
439 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
440 xtensa_get_cring(env), &paddr, &page_size, &access);
443 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
444 * see opcode description in the ISA
446 if (rc == 0 &&
447 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
448 rc = STORE_PROHIBITED_CAUSE;
451 if (rc) {
452 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
456 * When data cache is not configured use ATOMCTL bypass field.
457 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
458 * under the Conditional Store Option.
460 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
461 access = PAGE_CACHE_BYPASS;
464 switch (access & PAGE_CACHE_MASK) {
465 case PAGE_CACHE_WB:
466 atomctl >>= 2;
467 /* fall through */
468 case PAGE_CACHE_WT:
469 atomctl >>= 2;
470 /* fall through */
471 case PAGE_CACHE_BYPASS:
472 if ((atomctl & 0x3) == 0) {
473 HELPER(exception_cause_vaddr)(env, pc,
474 LOAD_STORE_ERROR_CAUSE, vaddr);
476 break;
478 case PAGE_CACHE_ISOLATE:
479 HELPER(exception_cause_vaddr)(env, pc,
480 LOAD_STORE_ERROR_CAUSE, vaddr);
481 break;
483 default:
484 break;
488 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
490 XtensaCPU *cpu = xtensa_env_get_cpu(env);
492 v = (v & 0xffffff00) | 0x1;
493 if (v != env->sregs[RASID]) {
494 env->sregs[RASID] = v;
495 tlb_flush(CPU(cpu), 1);
499 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
501 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
503 switch (way) {
504 case 4:
505 return (tlbcfg >> 16) & 0x3;
507 case 5:
508 return (tlbcfg >> 20) & 0x1;
510 case 6:
511 return (tlbcfg >> 24) & 0x1;
513 default:
514 return 0;
519 * Get bit mask for the virtual address bits translated by the TLB way
521 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
523 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
524 bool varway56 = dtlb ?
525 env->config->dtlb.varway56 :
526 env->config->itlb.varway56;
528 switch (way) {
529 case 4:
530 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
532 case 5:
533 if (varway56) {
534 return 0xf8000000 << get_page_size(env, dtlb, way);
535 } else {
536 return 0xf8000000;
539 case 6:
540 if (varway56) {
541 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
542 } else {
543 return 0xf0000000;
546 default:
547 return 0xfffff000;
549 } else {
550 return REGION_PAGE_MASK;
555 * Get bit mask for the 'VPN without index' field.
556 * See ISA, 4.6.5.6, data format for RxTLB0
558 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
560 if (way < 4) {
561 bool is32 = (dtlb ?
562 env->config->dtlb.nrefillentries :
563 env->config->itlb.nrefillentries) == 32;
564 return is32 ? 0xffff8000 : 0xffffc000;
565 } else if (way == 4) {
566 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
567 } else if (way <= 6) {
568 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
569 bool varway56 = dtlb ?
570 env->config->dtlb.varway56 :
571 env->config->itlb.varway56;
573 if (varway56) {
574 return mask << (way == 5 ? 2 : 3);
575 } else {
576 return mask << 1;
578 } else {
579 return 0xfffff000;
584 * Split virtual address into VPN (with index) and entry index
585 * for the given TLB way
587 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
588 uint32_t *vpn, uint32_t wi, uint32_t *ei)
590 bool varway56 = dtlb ?
591 env->config->dtlb.varway56 :
592 env->config->itlb.varway56;
594 if (!dtlb) {
595 wi &= 7;
598 if (wi < 4) {
599 bool is32 = (dtlb ?
600 env->config->dtlb.nrefillentries :
601 env->config->itlb.nrefillentries) == 32;
602 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
603 } else {
604 switch (wi) {
605 case 4:
607 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
608 *ei = (v >> eibase) & 0x3;
610 break;
612 case 5:
613 if (varway56) {
614 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
615 *ei = (v >> eibase) & 0x3;
616 } else {
617 *ei = (v >> 27) & 0x1;
619 break;
621 case 6:
622 if (varway56) {
623 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
624 *ei = (v >> eibase) & 0x7;
625 } else {
626 *ei = (v >> 28) & 0x1;
628 break;
630 default:
631 *ei = 0;
632 break;
635 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
639 * Split TLB address into TLB way, entry index and VPN (with index).
640 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
642 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
643 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
645 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
646 *wi = v & (dtlb ? 0xf : 0x7);
647 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
648 } else {
649 *vpn = v & REGION_PAGE_MASK;
650 *wi = 0;
651 *ei = (v >> 29) & 0x7;
655 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
656 uint32_t v, bool dtlb, uint32_t *pwi)
658 uint32_t vpn;
659 uint32_t wi;
660 uint32_t ei;
662 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
663 if (pwi) {
664 *pwi = wi;
666 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
669 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
671 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
672 uint32_t wi;
673 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
674 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
675 } else {
676 return v & REGION_PAGE_MASK;
680 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
682 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
683 return entry->paddr | entry->attr;
686 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
688 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
689 uint32_t wi;
690 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
691 if (entry->variable && entry->asid) {
692 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
693 entry->asid = 0;
698 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
700 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
701 uint32_t wi;
702 uint32_t ei;
703 uint8_t ring;
704 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
706 switch (res) {
707 case 0:
708 if (ring >= xtensa_get_ring(env)) {
709 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
711 break;
713 case INST_TLB_MULTI_HIT_CAUSE:
714 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
715 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
716 break;
718 return 0;
719 } else {
720 return (v & REGION_PAGE_MASK) | 0x1;
724 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
725 xtensa_tlb_entry *entry, bool dtlb,
726 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
728 entry->vaddr = vpn;
729 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
730 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
731 entry->attr = pte & 0xf;
734 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
735 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
737 XtensaCPU *cpu = xtensa_env_get_cpu(env);
738 CPUState *cs = CPU(cpu);
739 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
741 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
742 if (entry->variable) {
743 if (entry->asid) {
744 tlb_flush_page(cs, entry->vaddr);
746 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
747 tlb_flush_page(cs, entry->vaddr);
748 } else {
749 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
750 __func__, dtlb, wi, ei);
752 } else {
753 tlb_flush_page(cs, entry->vaddr);
754 if (xtensa_option_enabled(env->config,
755 XTENSA_OPTION_REGION_TRANSLATION)) {
756 entry->paddr = pte & REGION_PAGE_MASK;
758 entry->attr = pte & 0xf;
762 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
764 uint32_t vpn;
765 uint32_t wi;
766 uint32_t ei;
767 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
768 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
772 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
774 uint32_t change = v ^ env->sregs[IBREAKENABLE];
775 unsigned i;
777 for (i = 0; i < env->config->nibreak; ++i) {
778 if (change & (1 << i)) {
779 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
782 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
785 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
787 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
788 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
789 tb_invalidate_virtual_addr(env, v);
791 env->sregs[IBREAKA + i] = v;
794 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
795 uint32_t dbreakc)
797 CPUState *cs = CPU(xtensa_env_get_cpu(env));
798 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
799 uint32_t mask = dbreakc | ~DBREAKC_MASK;
801 if (env->cpu_watchpoint[i]) {
802 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
804 if (dbreakc & DBREAKC_SB) {
805 flags |= BP_MEM_WRITE;
807 if (dbreakc & DBREAKC_LB) {
808 flags |= BP_MEM_READ;
810 /* contiguous mask after inversion is one less than some power of 2 */
811 if ((~mask + 1) & ~mask) {
812 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
813 /* cut mask after the first zero bit */
814 mask = 0xffffffff << (32 - clo32(mask));
816 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
817 flags, &env->cpu_watchpoint[i])) {
818 env->cpu_watchpoint[i] = NULL;
819 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
820 dbreaka & mask, ~mask + 1);
824 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
826 uint32_t dbreakc = env->sregs[DBREAKC + i];
828 if ((dbreakc & DBREAKC_SB_LB) &&
829 env->sregs[DBREAKA + i] != v) {
830 set_dbreak(env, i, v, dbreakc);
832 env->sregs[DBREAKA + i] = v;
835 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
837 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
838 if (v & DBREAKC_SB_LB) {
839 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
840 } else {
841 if (env->cpu_watchpoint[i]) {
842 CPUState *cs = CPU(xtensa_env_get_cpu(env));
844 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
845 env->cpu_watchpoint[i] = NULL;
849 env->sregs[DBREAKC + i] = v;
852 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
854 static const int rounding_mode[] = {
855 float_round_nearest_even,
856 float_round_to_zero,
857 float_round_up,
858 float_round_down,
861 env->uregs[FCR] = v & 0xfffff07f;
862 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
865 float32 HELPER(abs_s)(float32 v)
867 return float32_abs(v);
870 float32 HELPER(neg_s)(float32 v)
872 return float32_chs(v);
875 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
877 return float32_add(a, b, &env->fp_status);
880 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
882 return float32_sub(a, b, &env->fp_status);
885 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
887 return float32_mul(a, b, &env->fp_status);
890 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
892 return float32_muladd(b, c, a, 0,
893 &env->fp_status);
896 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
898 return float32_muladd(b, c, a, float_muladd_negate_product,
899 &env->fp_status);
902 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
904 float_status fp_status = {0};
906 set_float_rounding_mode(rounding_mode, &fp_status);
907 return float32_to_int32(
908 float32_scalbn(v, scale, &fp_status), &fp_status);
911 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
913 float_status fp_status = {0};
914 float32 res;
916 set_float_rounding_mode(rounding_mode, &fp_status);
918 res = float32_scalbn(v, scale, &fp_status);
920 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
921 return float32_to_int32(res, &fp_status);
922 } else {
923 return float32_to_uint32(res, &fp_status);
927 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
929 return float32_scalbn(int32_to_float32(v, &env->fp_status),
930 (int32_t)scale, &env->fp_status);
933 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
935 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
936 (int32_t)scale, &env->fp_status);
939 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
941 if (v) {
942 env->sregs[BR] |= br;
943 } else {
944 env->sregs[BR] &= ~br;
948 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
950 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
953 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
955 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
958 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
960 int v = float32_compare_quiet(a, b, &env->fp_status);
961 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
964 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
966 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
969 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
971 int v = float32_compare_quiet(a, b, &env->fp_status);
972 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
975 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
977 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
980 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
982 int v = float32_compare_quiet(a, b, &env->fp_status);
983 set_br(env, v != float_relation_greater, br);