2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #include "qemu/host-utils.h"
31 #include "exec/softmmu_exec.h"
32 #include "exec/address-spaces.h"
34 static void do_unaligned_access(CPUXtensaState
*env
,
35 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
);
38 #define MMUSUFFIX _mmu
41 #include "exec/softmmu_template.h"
44 #include "exec/softmmu_template.h"
47 #include "exec/softmmu_template.h"
50 #include "exec/softmmu_template.h"
52 static void do_unaligned_access(CPUXtensaState
*env
,
53 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
)
55 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
57 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
58 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
59 cpu_restore_state(CPU(cpu
), retaddr
);
60 HELPER(exception_cause_vaddr
)(env
,
61 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
65 void tlb_fill(CPUState
*cs
,
66 target_ulong vaddr
, int is_write
, int mmu_idx
, uintptr_t retaddr
)
68 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
69 CPUXtensaState
*env
= &cpu
->env
;
73 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, is_write
, mmu_idx
,
74 &paddr
, &page_size
, &access
);
76 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__
,
77 vaddr
, is_write
, mmu_idx
, paddr
, ret
);
81 vaddr
& TARGET_PAGE_MASK
,
82 paddr
& TARGET_PAGE_MASK
,
83 access
, mmu_idx
, page_size
);
85 cpu_restore_state(cs
, retaddr
);
86 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
90 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
95 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
96 &paddr
, &page_size
, &access
);
98 tb_invalidate_phys_addr(&address_space_memory
, paddr
);
102 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
104 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
106 cs
->exception_index
= excp
;
107 if (excp
== EXCP_DEBUG
) {
108 env
->exception_taken
= 0;
113 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
118 if (env
->sregs
[PS
] & PS_EXCM
) {
119 if (env
->config
->ndepc
) {
120 env
->sregs
[DEPC
] = pc
;
122 env
->sregs
[EPC1
] = pc
;
126 env
->sregs
[EPC1
] = pc
;
127 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
130 env
->sregs
[EXCCAUSE
] = cause
;
131 env
->sregs
[PS
] |= PS_EXCM
;
133 HELPER(exception
)(env
, vector
);
136 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
137 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
139 env
->sregs
[EXCVADDR
] = vaddr
;
140 HELPER(exception_cause
)(env
, pc
, cause
);
143 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
145 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
146 HELPER(debug_exception
)(env
, env
->pc
, cause
);
150 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
152 unsigned level
= env
->config
->debug_level
;
155 env
->sregs
[DEBUGCAUSE
] = cause
;
156 env
->sregs
[EPC1
+ level
- 1] = pc
;
157 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
158 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
159 (level
<< PS_INTLEVEL_SHIFT
);
160 HELPER(exception
)(env
, EXC_DEBUG
);
163 uint32_t HELPER(nsa
)(uint32_t v
)
165 if (v
& 0x80000000) {
168 return v
? clz32(v
) - 1 : 31;
171 uint32_t HELPER(nsau
)(uint32_t v
)
173 return v
? clz32(v
) : 32;
176 static void copy_window_from_phys(CPUXtensaState
*env
,
177 uint32_t window
, uint32_t phys
, uint32_t n
)
179 assert(phys
< env
->config
->nareg
);
180 if (phys
+ n
<= env
->config
->nareg
) {
181 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
182 n
* sizeof(uint32_t));
184 uint32_t n1
= env
->config
->nareg
- phys
;
185 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
186 n1
* sizeof(uint32_t));
187 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
188 (n
- n1
) * sizeof(uint32_t));
192 static void copy_phys_from_window(CPUXtensaState
*env
,
193 uint32_t phys
, uint32_t window
, uint32_t n
)
195 assert(phys
< env
->config
->nareg
);
196 if (phys
+ n
<= env
->config
->nareg
) {
197 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
198 n
* sizeof(uint32_t));
200 uint32_t n1
= env
->config
->nareg
- phys
;
201 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
202 n1
* sizeof(uint32_t));
203 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
204 (n
- n1
) * sizeof(uint32_t));
209 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
211 return a
& (env
->config
->nareg
/ 4 - 1);
214 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
216 return 1 << windowbase_bound(a
, env
);
219 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
221 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
224 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
226 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
229 static void rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
231 xtensa_sync_phys_from_window(env
);
232 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
233 xtensa_sync_window_from_phys(env
);
236 static void rotate_window(CPUXtensaState
*env
, uint32_t delta
)
238 rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
241 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
243 rotate_window_abs(env
, v
);
246 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
248 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
249 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
250 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
252 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
254 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
255 rotate_window(env
, callinc
);
256 env
->sregs
[WINDOW_START
] |=
257 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
261 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
263 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
264 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
267 if ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) {
275 if (windowstart
& windowstart_bit(windowbase
+ n
, env
)) {
280 m
= windowbase_bound(windowbase
+ n
, env
);
281 rotate_window(env
, n
);
282 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
283 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
284 env
->sregs
[EPC1
] = env
->pc
= pc
;
286 if (windowstart
& windowstart_bit(m
+ 1, env
)) {
287 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
288 } else if (windowstart
& windowstart_bit(m
+ 2, env
)) {
289 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
291 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
295 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
297 int n
= (env
->regs
[0] >> 30) & 0x3;
299 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
300 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
303 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
305 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
307 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
311 if (n
== 0 || (m
!= 0 && m
!= n
) ||
312 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
313 qemu_log("Illegal retw instruction(pc = %08x), "
314 "PS = %08x, m = %d, n = %d\n",
315 pc
, env
->sregs
[PS
], m
, n
);
316 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
318 int owb
= windowbase
;
320 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
322 rotate_window(env
, -n
);
323 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
324 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
326 /* window underflow */
327 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
328 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
329 env
->sregs
[EPC1
] = env
->pc
= pc
;
332 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
334 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
336 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
343 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
345 rotate_window(env
, imm4
);
348 void HELPER(restore_owb
)(CPUXtensaState
*env
)
350 rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
353 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
355 if ((env
->sregs
[WINDOW_START
] &
356 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
357 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
358 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
359 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
363 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
365 if (env
->sregs
[LBEG
] != v
) {
366 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
367 env
->sregs
[LBEG
] = v
;
371 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
373 if (env
->sregs
[LEND
] != v
) {
374 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
375 env
->sregs
[LEND
] = v
;
376 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
380 void HELPER(dump_state
)(CPUXtensaState
*env
)
382 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
384 cpu_dump_state(CPU(cpu
), stderr
, fprintf
, 0);
387 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
392 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
393 (intlevel
<< PS_INTLEVEL_SHIFT
);
394 check_interrupts(env
);
395 if (env
->pending_irq_level
) {
396 cpu_loop_exit(CPU(xtensa_env_get_cpu(env
)));
400 cpu
= CPU(xtensa_env_get_cpu(env
));
401 env
->halt_clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
403 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
404 xtensa_rearm_ccompare_timer(env
);
406 HELPER(exception
)(env
, EXCP_HLT
);
409 void HELPER(timer_irq
)(CPUXtensaState
*env
, uint32_t id
, uint32_t active
)
411 xtensa_timer_irq(env
, id
, active
);
414 void HELPER(advance_ccount
)(CPUXtensaState
*env
, uint32_t d
)
416 xtensa_advance_ccount(env
, d
);
419 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
421 check_interrupts(env
);
424 void HELPER(itlb_hit_test
)(CPUXtensaState
*env
, uint32_t vaddr
)
426 get_page_addr_code(env
, vaddr
);
430 * Check vaddr accessibility/cache attributes and raise an exception if
431 * specified by the ATOMCTL SR.
433 * Note: local memory exclusion is not implemented
435 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
437 uint32_t paddr
, page_size
, access
;
438 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
439 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
440 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
443 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
444 * see opcode description in the ISA
447 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
448 rc
= STORE_PROHIBITED_CAUSE
;
452 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
456 * When data cache is not configured use ATOMCTL bypass field.
457 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
458 * under the Conditional Store Option.
460 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
461 access
= PAGE_CACHE_BYPASS
;
464 switch (access
& PAGE_CACHE_MASK
) {
471 case PAGE_CACHE_BYPASS
:
472 if ((atomctl
& 0x3) == 0) {
473 HELPER(exception_cause_vaddr
)(env
, pc
,
474 LOAD_STORE_ERROR_CAUSE
, vaddr
);
478 case PAGE_CACHE_ISOLATE
:
479 HELPER(exception_cause_vaddr
)(env
, pc
,
480 LOAD_STORE_ERROR_CAUSE
, vaddr
);
488 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
490 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
492 v
= (v
& 0xffffff00) | 0x1;
493 if (v
!= env
->sregs
[RASID
]) {
494 env
->sregs
[RASID
] = v
;
495 tlb_flush(CPU(cpu
), 1);
499 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
501 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
505 return (tlbcfg
>> 16) & 0x3;
508 return (tlbcfg
>> 20) & 0x1;
511 return (tlbcfg
>> 24) & 0x1;
519 * Get bit mask for the virtual address bits translated by the TLB way
521 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
523 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
524 bool varway56
= dtlb
?
525 env
->config
->dtlb
.varway56
:
526 env
->config
->itlb
.varway56
;
530 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
534 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
541 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
550 return REGION_PAGE_MASK
;
555 * Get bit mask for the 'VPN without index' field.
556 * See ISA, 4.6.5.6, data format for RxTLB0
558 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
562 env
->config
->dtlb
.nrefillentries
:
563 env
->config
->itlb
.nrefillentries
) == 32;
564 return is32
? 0xffff8000 : 0xffffc000;
565 } else if (way
== 4) {
566 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
567 } else if (way
<= 6) {
568 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
569 bool varway56
= dtlb
?
570 env
->config
->dtlb
.varway56
:
571 env
->config
->itlb
.varway56
;
574 return mask
<< (way
== 5 ? 2 : 3);
584 * Split virtual address into VPN (with index) and entry index
585 * for the given TLB way
587 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
588 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
590 bool varway56
= dtlb
?
591 env
->config
->dtlb
.varway56
:
592 env
->config
->itlb
.varway56
;
600 env
->config
->dtlb
.nrefillentries
:
601 env
->config
->itlb
.nrefillentries
) == 32;
602 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
607 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
608 *ei
= (v
>> eibase
) & 0x3;
614 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
615 *ei
= (v
>> eibase
) & 0x3;
617 *ei
= (v
>> 27) & 0x1;
623 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
624 *ei
= (v
>> eibase
) & 0x7;
626 *ei
= (v
>> 28) & 0x1;
635 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
639 * Split TLB address into TLB way, entry index and VPN (with index).
640 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
642 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
643 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
645 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
646 *wi
= v
& (dtlb
? 0xf : 0x7);
647 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
649 *vpn
= v
& REGION_PAGE_MASK
;
651 *ei
= (v
>> 29) & 0x7;
655 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
656 uint32_t v
, bool dtlb
, uint32_t *pwi
)
662 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
666 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
669 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
671 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
673 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
674 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
676 return v
& REGION_PAGE_MASK
;
680 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
682 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
683 return entry
->paddr
| entry
->attr
;
686 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
688 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
690 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
691 if (entry
->variable
&& entry
->asid
) {
692 tlb_flush_page(CPU(xtensa_env_get_cpu(env
)), entry
->vaddr
);
698 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
700 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
704 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
708 if (ring
>= xtensa_get_ring(env
)) {
709 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
713 case INST_TLB_MULTI_HIT_CAUSE
:
714 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
715 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
720 return (v
& REGION_PAGE_MASK
) | 0x1;
724 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
725 xtensa_tlb_entry
*entry
, bool dtlb
,
726 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
729 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
730 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
731 entry
->attr
= pte
& 0xf;
734 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
735 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
737 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
738 CPUState
*cs
= CPU(cpu
);
739 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
741 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
742 if (entry
->variable
) {
744 tlb_flush_page(cs
, entry
->vaddr
);
746 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
747 tlb_flush_page(cs
, entry
->vaddr
);
749 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
750 __func__
, dtlb
, wi
, ei
);
753 tlb_flush_page(cs
, entry
->vaddr
);
754 if (xtensa_option_enabled(env
->config
,
755 XTENSA_OPTION_REGION_TRANSLATION
)) {
756 entry
->paddr
= pte
& REGION_PAGE_MASK
;
758 entry
->attr
= pte
& 0xf;
762 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
767 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
768 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
772 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
774 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
777 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
778 if (change
& (1 << i
)) {
779 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
782 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
785 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
787 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
788 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
789 tb_invalidate_virtual_addr(env
, v
);
791 env
->sregs
[IBREAKA
+ i
] = v
;
794 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
797 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
798 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
799 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
801 if (env
->cpu_watchpoint
[i
]) {
802 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
804 if (dbreakc
& DBREAKC_SB
) {
805 flags
|= BP_MEM_WRITE
;
807 if (dbreakc
& DBREAKC_LB
) {
808 flags
|= BP_MEM_READ
;
810 /* contiguous mask after inversion is one less than some power of 2 */
811 if ((~mask
+ 1) & ~mask
) {
812 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
813 /* cut mask after the first zero bit */
814 mask
= 0xffffffff << (32 - clo32(mask
));
816 if (cpu_watchpoint_insert(cs
, dbreaka
& mask
, ~mask
+ 1,
817 flags
, &env
->cpu_watchpoint
[i
])) {
818 env
->cpu_watchpoint
[i
] = NULL
;
819 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
820 dbreaka
& mask
, ~mask
+ 1);
824 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
826 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
828 if ((dbreakc
& DBREAKC_SB_LB
) &&
829 env
->sregs
[DBREAKA
+ i
] != v
) {
830 set_dbreak(env
, i
, v
, dbreakc
);
832 env
->sregs
[DBREAKA
+ i
] = v
;
835 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
837 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
838 if (v
& DBREAKC_SB_LB
) {
839 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
841 if (env
->cpu_watchpoint
[i
]) {
842 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
844 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
845 env
->cpu_watchpoint
[i
] = NULL
;
849 env
->sregs
[DBREAKC
+ i
] = v
;
852 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
854 static const int rounding_mode
[] = {
855 float_round_nearest_even
,
861 env
->uregs
[FCR
] = v
& 0xfffff07f;
862 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
865 float32
HELPER(abs_s
)(float32 v
)
867 return float32_abs(v
);
870 float32
HELPER(neg_s
)(float32 v
)
872 return float32_chs(v
);
875 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
877 return float32_add(a
, b
, &env
->fp_status
);
880 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
882 return float32_sub(a
, b
, &env
->fp_status
);
885 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
887 return float32_mul(a
, b
, &env
->fp_status
);
890 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
892 return float32_muladd(b
, c
, a
, 0,
896 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
898 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
902 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
904 float_status fp_status
= {0};
906 set_float_rounding_mode(rounding_mode
, &fp_status
);
907 return float32_to_int32(
908 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
911 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
913 float_status fp_status
= {0};
916 set_float_rounding_mode(rounding_mode
, &fp_status
);
918 res
= float32_scalbn(v
, scale
, &fp_status
);
920 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
921 return float32_to_int32(res
, &fp_status
);
923 return float32_to_uint32(res
, &fp_status
);
927 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
929 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
930 (int32_t)scale
, &env
->fp_status
);
933 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
935 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
936 (int32_t)scale
, &env
->fp_status
);
939 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
942 env
->sregs
[BR
] |= br
;
944 env
->sregs
[BR
] &= ~br
;
948 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
950 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
953 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
955 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
958 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
960 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
961 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
964 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
966 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
969 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
971 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
972 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
975 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
977 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
980 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
982 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
983 set_br(env
, v
!= float_relation_greater
, br
);