vmstate_register_with_alias_id: Take an Error **
[qemu.git] / block / qcow2-cluster.c
blob928c1e298d572fe70fd9be19a10c28491934d004
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36 bool exact_size)
38 BDRVQcow2State *s = bs->opaque;
39 int new_l1_size2, ret, i;
40 uint64_t *new_l1_table;
41 int64_t old_l1_table_offset, old_l1_size;
42 int64_t new_l1_table_offset, new_l1_size;
43 uint8_t data[12];
45 if (min_size <= s->l1_size)
46 return 0;
48 /* Do a sanity check on min_size before trying to calculate new_l1_size
49 * (this prevents overflows during the while loop for the calculation of
50 * new_l1_size) */
51 if (min_size > INT_MAX / sizeof(uint64_t)) {
52 return -EFBIG;
55 if (exact_size) {
56 new_l1_size = min_size;
57 } else {
58 /* Bump size up to reduce the number of times we have to grow */
59 new_l1_size = s->l1_size;
60 if (new_l1_size == 0) {
61 new_l1_size = 1;
63 while (min_size > new_l1_size) {
64 new_l1_size = (new_l1_size * 3 + 1) / 2;
68 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
69 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
70 return -EFBIG;
73 #ifdef DEBUG_ALLOC2
74 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
75 s->l1_size, new_l1_size);
76 #endif
78 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
79 new_l1_table = qemu_try_blockalign(bs->file->bs,
80 align_offset(new_l1_size2, 512));
81 if (new_l1_table == NULL) {
82 return -ENOMEM;
84 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
86 if (s->l1_size) {
87 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
90 /* write new table (align to cluster) */
91 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
92 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
93 if (new_l1_table_offset < 0) {
94 qemu_vfree(new_l1_table);
95 return new_l1_table_offset;
98 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
99 if (ret < 0) {
100 goto fail;
103 /* the L1 position has not yet been updated, so these clusters must
104 * indeed be completely free */
105 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
106 new_l1_size2);
107 if (ret < 0) {
108 goto fail;
111 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
112 for(i = 0; i < s->l1_size; i++)
113 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
114 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
115 new_l1_table, new_l1_size2);
116 if (ret < 0)
117 goto fail;
118 for(i = 0; i < s->l1_size; i++)
119 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
121 /* set new table */
122 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
123 stl_be_p(data, new_l1_size);
124 stq_be_p(data + 4, new_l1_table_offset);
125 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
126 data, sizeof(data));
127 if (ret < 0) {
128 goto fail;
130 qemu_vfree(s->l1_table);
131 old_l1_table_offset = s->l1_table_offset;
132 s->l1_table_offset = new_l1_table_offset;
133 s->l1_table = new_l1_table;
134 old_l1_size = s->l1_size;
135 s->l1_size = new_l1_size;
136 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
137 QCOW2_DISCARD_OTHER);
138 return 0;
139 fail:
140 qemu_vfree(new_l1_table);
141 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
142 QCOW2_DISCARD_OTHER);
143 return ret;
147 * l2_load
149 * Loads a L2 table into memory. If the table is in the cache, the cache
150 * is used; otherwise the L2 table is loaded from the image file.
152 * Returns a pointer to the L2 table on success, or NULL if the read from
153 * the image file failed.
156 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
157 uint64_t **l2_table)
159 BDRVQcow2State *s = bs->opaque;
161 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
162 (void **)l2_table);
166 * Writes one sector of the L1 table to the disk (can't update single entries
167 * and we really don't want bdrv_pread to perform a read-modify-write)
169 #define L1_ENTRIES_PER_SECTOR (512 / 8)
170 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
172 BDRVQcow2State *s = bs->opaque;
173 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
174 int l1_start_index;
175 int i, ret;
177 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
178 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
179 i++)
181 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
184 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
185 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
186 if (ret < 0) {
187 return ret;
190 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
191 ret = bdrv_pwrite_sync(bs->file,
192 s->l1_table_offset + 8 * l1_start_index,
193 buf, sizeof(buf));
194 if (ret < 0) {
195 return ret;
198 return 0;
202 * l2_allocate
204 * Allocate a new l2 entry in the file. If l1_index points to an already
205 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
206 * table) copy the contents of the old L2 table into the newly allocated one.
207 * Otherwise the new table is initialized with zeros.
211 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
213 BDRVQcow2State *s = bs->opaque;
214 uint64_t old_l2_offset;
215 uint64_t *l2_table = NULL;
216 int64_t l2_offset;
217 int ret;
219 old_l2_offset = s->l1_table[l1_index];
221 trace_qcow2_l2_allocate(bs, l1_index);
223 /* allocate a new l2 entry */
225 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
226 if (l2_offset < 0) {
227 ret = l2_offset;
228 goto fail;
231 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
232 if (ret < 0) {
233 goto fail;
236 /* allocate a new entry in the l2 cache */
238 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
239 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
240 if (ret < 0) {
241 goto fail;
244 l2_table = *table;
246 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
247 /* if there was no old l2 table, clear the new table */
248 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
249 } else {
250 uint64_t* old_table;
252 /* if there was an old l2 table, read it from the disk */
253 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
254 ret = qcow2_cache_get(bs, s->l2_table_cache,
255 old_l2_offset & L1E_OFFSET_MASK,
256 (void**) &old_table);
257 if (ret < 0) {
258 goto fail;
261 memcpy(l2_table, old_table, s->cluster_size);
263 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
266 /* write the l2 table to the file */
267 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
269 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
270 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
271 ret = qcow2_cache_flush(bs, s->l2_table_cache);
272 if (ret < 0) {
273 goto fail;
276 /* update the L1 entry */
277 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
278 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
279 ret = qcow2_write_l1_entry(bs, l1_index);
280 if (ret < 0) {
281 goto fail;
284 *table = l2_table;
285 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
286 return 0;
288 fail:
289 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
290 if (l2_table != NULL) {
291 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
293 s->l1_table[l1_index] = old_l2_offset;
294 if (l2_offset > 0) {
295 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
296 QCOW2_DISCARD_ALWAYS);
298 return ret;
302 * Checks how many clusters in a given L2 table are contiguous in the image
303 * file. As soon as one of the flags in the bitmask stop_flags changes compared
304 * to the first cluster, the search is stopped and the cluster is not counted
305 * as contiguous. (This allows it, for example, to stop at the first compressed
306 * cluster which may require a different handling)
308 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
309 uint64_t *l2_table, uint64_t stop_flags)
311 int i;
312 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
313 uint64_t first_entry = be64_to_cpu(l2_table[0]);
314 uint64_t offset = first_entry & mask;
316 if (!offset)
317 return 0;
319 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
321 for (i = 0; i < nb_clusters; i++) {
322 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
323 if (offset + (uint64_t) i * cluster_size != l2_entry) {
324 break;
328 return i;
331 static int count_contiguous_clusters_by_type(int nb_clusters,
332 uint64_t *l2_table,
333 int wanted_type)
335 int i;
337 for (i = 0; i < nb_clusters; i++) {
338 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
340 if (type != wanted_type) {
341 break;
345 return i;
348 /* The crypt function is compatible with the linux cryptoloop
349 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
350 supported */
351 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
352 uint8_t *out_buf, const uint8_t *in_buf,
353 int nb_sectors, bool enc,
354 Error **errp)
356 union {
357 uint64_t ll[2];
358 uint8_t b[16];
359 } ivec;
360 int i;
361 int ret;
363 for(i = 0; i < nb_sectors; i++) {
364 ivec.ll[0] = cpu_to_le64(sector_num);
365 ivec.ll[1] = 0;
366 if (qcrypto_cipher_setiv(s->cipher,
367 ivec.b, G_N_ELEMENTS(ivec.b),
368 errp) < 0) {
369 return -1;
371 if (enc) {
372 ret = qcrypto_cipher_encrypt(s->cipher,
373 in_buf,
374 out_buf,
375 512,
376 errp);
377 } else {
378 ret = qcrypto_cipher_decrypt(s->cipher,
379 in_buf,
380 out_buf,
381 512,
382 errp);
384 if (ret < 0) {
385 return -1;
387 sector_num++;
388 in_buf += 512;
389 out_buf += 512;
391 return 0;
394 static int coroutine_fn do_perform_cow(BlockDriverState *bs,
395 uint64_t src_cluster_offset,
396 uint64_t cluster_offset,
397 int offset_in_cluster,
398 int bytes)
400 BDRVQcow2State *s = bs->opaque;
401 QEMUIOVector qiov;
402 struct iovec iov;
403 int ret;
405 iov.iov_len = bytes;
406 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
407 if (iov.iov_base == NULL) {
408 return -ENOMEM;
411 qemu_iovec_init_external(&qiov, &iov, 1);
413 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
415 if (!bs->drv) {
416 ret = -ENOMEDIUM;
417 goto out;
420 /* Call .bdrv_co_readv() directly instead of using the public block-layer
421 * interface. This avoids double I/O throttling and request tracking,
422 * which can lead to deadlock when block layer copy-on-read is enabled.
424 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
425 bytes, &qiov, 0);
426 if (ret < 0) {
427 goto out;
430 if (bs->encrypted) {
431 Error *err = NULL;
432 int64_t sector = (src_cluster_offset + offset_in_cluster)
433 >> BDRV_SECTOR_BITS;
434 assert(s->cipher);
435 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
436 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
437 if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base,
438 bytes >> BDRV_SECTOR_BITS, true, &err) < 0) {
439 ret = -EIO;
440 error_free(err);
441 goto out;
445 ret = qcow2_pre_write_overlap_check(bs, 0,
446 cluster_offset + offset_in_cluster, bytes);
447 if (ret < 0) {
448 goto out;
451 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
452 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
453 bytes, &qiov, 0);
454 if (ret < 0) {
455 goto out;
458 ret = 0;
459 out:
460 qemu_vfree(iov.iov_base);
461 return ret;
466 * get_cluster_offset
468 * For a given offset of the virtual disk, find the cluster type and offset in
469 * the qcow2 file. The offset is stored in *cluster_offset.
471 * On entry, *bytes is the maximum number of contiguous bytes starting at
472 * offset that we are interested in.
474 * On exit, *bytes is the number of bytes starting at offset that have the same
475 * cluster type and (if applicable) are stored contiguously in the image file.
476 * Compressed clusters are always returned one by one.
478 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
479 * cases.
481 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
482 unsigned int *bytes, uint64_t *cluster_offset)
484 BDRVQcow2State *s = bs->opaque;
485 unsigned int l2_index;
486 uint64_t l1_index, l2_offset, *l2_table;
487 int l1_bits, c;
488 unsigned int offset_in_cluster;
489 uint64_t bytes_available, bytes_needed, nb_clusters;
490 int ret;
492 offset_in_cluster = offset_into_cluster(s, offset);
493 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
495 l1_bits = s->l2_bits + s->cluster_bits;
497 /* compute how many bytes there are between the start of the cluster
498 * containing offset and the end of the l1 entry */
499 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
500 + offset_in_cluster;
502 if (bytes_needed > bytes_available) {
503 bytes_needed = bytes_available;
506 *cluster_offset = 0;
508 /* seek to the l2 offset in the l1 table */
510 l1_index = offset >> l1_bits;
511 if (l1_index >= s->l1_size) {
512 ret = QCOW2_CLUSTER_UNALLOCATED;
513 goto out;
516 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
517 if (!l2_offset) {
518 ret = QCOW2_CLUSTER_UNALLOCATED;
519 goto out;
522 if (offset_into_cluster(s, l2_offset)) {
523 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
524 " unaligned (L1 index: %#" PRIx64 ")",
525 l2_offset, l1_index);
526 return -EIO;
529 /* load the l2 table in memory */
531 ret = l2_load(bs, l2_offset, &l2_table);
532 if (ret < 0) {
533 return ret;
536 /* find the cluster offset for the given disk offset */
538 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
539 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
541 nb_clusters = size_to_clusters(s, bytes_needed);
542 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
543 * integers; the minimum cluster size is 512, so this assertion is always
544 * true */
545 assert(nb_clusters <= INT_MAX);
547 ret = qcow2_get_cluster_type(*cluster_offset);
548 switch (ret) {
549 case QCOW2_CLUSTER_COMPRESSED:
550 /* Compressed clusters can only be processed one by one */
551 c = 1;
552 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
553 break;
554 case QCOW2_CLUSTER_ZERO:
555 if (s->qcow_version < 3) {
556 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
557 " in pre-v3 image (L2 offset: %#" PRIx64
558 ", L2 index: %#x)", l2_offset, l2_index);
559 ret = -EIO;
560 goto fail;
562 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
563 QCOW2_CLUSTER_ZERO);
564 *cluster_offset = 0;
565 break;
566 case QCOW2_CLUSTER_UNALLOCATED:
567 /* how many empty clusters ? */
568 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
569 QCOW2_CLUSTER_UNALLOCATED);
570 *cluster_offset = 0;
571 break;
572 case QCOW2_CLUSTER_NORMAL:
573 /* how many allocated clusters ? */
574 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
575 &l2_table[l2_index], QCOW_OFLAG_ZERO);
576 *cluster_offset &= L2E_OFFSET_MASK;
577 if (offset_into_cluster(s, *cluster_offset)) {
578 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
579 PRIx64 " unaligned (L2 offset: %#" PRIx64
580 ", L2 index: %#x)", *cluster_offset,
581 l2_offset, l2_index);
582 ret = -EIO;
583 goto fail;
585 break;
586 default:
587 abort();
590 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
592 bytes_available = (int64_t)c * s->cluster_size;
594 out:
595 if (bytes_available > bytes_needed) {
596 bytes_available = bytes_needed;
599 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
600 * subtracting offset_in_cluster will therefore definitely yield something
601 * not exceeding UINT_MAX */
602 assert(bytes_available - offset_in_cluster <= UINT_MAX);
603 *bytes = bytes_available - offset_in_cluster;
605 return ret;
607 fail:
608 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
609 return ret;
613 * get_cluster_table
615 * for a given disk offset, load (and allocate if needed)
616 * the l2 table.
618 * the l2 table offset in the qcow2 file and the cluster index
619 * in the l2 table are given to the caller.
621 * Returns 0 on success, -errno in failure case
623 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
624 uint64_t **new_l2_table,
625 int *new_l2_index)
627 BDRVQcow2State *s = bs->opaque;
628 unsigned int l2_index;
629 uint64_t l1_index, l2_offset;
630 uint64_t *l2_table = NULL;
631 int ret;
633 /* seek to the l2 offset in the l1 table */
635 l1_index = offset >> (s->l2_bits + s->cluster_bits);
636 if (l1_index >= s->l1_size) {
637 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
638 if (ret < 0) {
639 return ret;
643 assert(l1_index < s->l1_size);
644 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
645 if (offset_into_cluster(s, l2_offset)) {
646 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
647 " unaligned (L1 index: %#" PRIx64 ")",
648 l2_offset, l1_index);
649 return -EIO;
652 /* seek the l2 table of the given l2 offset */
654 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
655 /* load the l2 table in memory */
656 ret = l2_load(bs, l2_offset, &l2_table);
657 if (ret < 0) {
658 return ret;
660 } else {
661 /* First allocate a new L2 table (and do COW if needed) */
662 ret = l2_allocate(bs, l1_index, &l2_table);
663 if (ret < 0) {
664 return ret;
667 /* Then decrease the refcount of the old table */
668 if (l2_offset) {
669 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
670 QCOW2_DISCARD_OTHER);
674 /* find the cluster offset for the given disk offset */
676 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
678 *new_l2_table = l2_table;
679 *new_l2_index = l2_index;
681 return 0;
685 * alloc_compressed_cluster_offset
687 * For a given offset of the disk image, return cluster offset in
688 * qcow2 file.
690 * If the offset is not found, allocate a new compressed cluster.
692 * Return the cluster offset if successful,
693 * Return 0, otherwise.
697 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
698 uint64_t offset,
699 int compressed_size)
701 BDRVQcow2State *s = bs->opaque;
702 int l2_index, ret;
703 uint64_t *l2_table;
704 int64_t cluster_offset;
705 int nb_csectors;
707 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
708 if (ret < 0) {
709 return 0;
712 /* Compression can't overwrite anything. Fail if the cluster was already
713 * allocated. */
714 cluster_offset = be64_to_cpu(l2_table[l2_index]);
715 if (cluster_offset & L2E_OFFSET_MASK) {
716 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
717 return 0;
720 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
721 if (cluster_offset < 0) {
722 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
723 return 0;
726 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
727 (cluster_offset >> 9);
729 cluster_offset |= QCOW_OFLAG_COMPRESSED |
730 ((uint64_t)nb_csectors << s->csize_shift);
732 /* update L2 table */
734 /* compressed clusters never have the copied flag */
736 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
737 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
738 l2_table[l2_index] = cpu_to_be64(cluster_offset);
739 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
741 return cluster_offset;
744 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
746 BDRVQcow2State *s = bs->opaque;
747 int ret;
749 if (r->nb_bytes == 0) {
750 return 0;
753 qemu_co_mutex_unlock(&s->lock);
754 ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes);
755 qemu_co_mutex_lock(&s->lock);
757 if (ret < 0) {
758 return ret;
762 * Before we update the L2 table to actually point to the new cluster, we
763 * need to be sure that the refcounts have been increased and COW was
764 * handled.
766 qcow2_cache_depends_on_flush(s->l2_table_cache);
768 return 0;
771 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
773 BDRVQcow2State *s = bs->opaque;
774 int i, j = 0, l2_index, ret;
775 uint64_t *old_cluster, *l2_table;
776 uint64_t cluster_offset = m->alloc_offset;
778 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
779 assert(m->nb_clusters > 0);
781 old_cluster = g_try_new(uint64_t, m->nb_clusters);
782 if (old_cluster == NULL) {
783 ret = -ENOMEM;
784 goto err;
787 /* copy content of unmodified sectors */
788 ret = perform_cow(bs, m, &m->cow_start);
789 if (ret < 0) {
790 goto err;
793 ret = perform_cow(bs, m, &m->cow_end);
794 if (ret < 0) {
795 goto err;
798 /* Update L2 table. */
799 if (s->use_lazy_refcounts) {
800 qcow2_mark_dirty(bs);
802 if (qcow2_need_accurate_refcounts(s)) {
803 qcow2_cache_set_dependency(bs, s->l2_table_cache,
804 s->refcount_block_cache);
807 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
808 if (ret < 0) {
809 goto err;
811 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
813 assert(l2_index + m->nb_clusters <= s->l2_size);
814 for (i = 0; i < m->nb_clusters; i++) {
815 /* if two concurrent writes happen to the same unallocated cluster
816 * each write allocates separate cluster and writes data concurrently.
817 * The first one to complete updates l2 table with pointer to its
818 * cluster the second one has to do RMW (which is done above by
819 * perform_cow()), update l2 table with its cluster pointer and free
820 * old cluster. This is what this loop does */
821 if (l2_table[l2_index + i] != 0) {
822 old_cluster[j++] = l2_table[l2_index + i];
825 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
826 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
830 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
833 * If this was a COW, we need to decrease the refcount of the old cluster.
835 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
836 * clusters), the next write will reuse them anyway.
838 if (j != 0) {
839 for (i = 0; i < j; i++) {
840 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
841 QCOW2_DISCARD_NEVER);
845 ret = 0;
846 err:
847 g_free(old_cluster);
848 return ret;
852 * Returns the number of contiguous clusters that can be used for an allocating
853 * write, but require COW to be performed (this includes yet unallocated space,
854 * which must copy from the backing file)
856 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
857 uint64_t *l2_table, int l2_index)
859 int i;
861 for (i = 0; i < nb_clusters; i++) {
862 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
863 int cluster_type = qcow2_get_cluster_type(l2_entry);
865 switch(cluster_type) {
866 case QCOW2_CLUSTER_NORMAL:
867 if (l2_entry & QCOW_OFLAG_COPIED) {
868 goto out;
870 break;
871 case QCOW2_CLUSTER_UNALLOCATED:
872 case QCOW2_CLUSTER_COMPRESSED:
873 case QCOW2_CLUSTER_ZERO:
874 break;
875 default:
876 abort();
880 out:
881 assert(i <= nb_clusters);
882 return i;
886 * Check if there already is an AIO write request in flight which allocates
887 * the same cluster. In this case we need to wait until the previous
888 * request has completed and updated the L2 table accordingly.
890 * Returns:
891 * 0 if there was no dependency. *cur_bytes indicates the number of
892 * bytes from guest_offset that can be read before the next
893 * dependency must be processed (or the request is complete)
895 * -EAGAIN if we had to wait for another request, previously gathered
896 * information on cluster allocation may be invalid now. The caller
897 * must start over anyway, so consider *cur_bytes undefined.
899 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
900 uint64_t *cur_bytes, QCowL2Meta **m)
902 BDRVQcow2State *s = bs->opaque;
903 QCowL2Meta *old_alloc;
904 uint64_t bytes = *cur_bytes;
906 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
908 uint64_t start = guest_offset;
909 uint64_t end = start + bytes;
910 uint64_t old_start = l2meta_cow_start(old_alloc);
911 uint64_t old_end = l2meta_cow_end(old_alloc);
913 if (end <= old_start || start >= old_end) {
914 /* No intersection */
915 } else {
916 if (start < old_start) {
917 /* Stop at the start of a running allocation */
918 bytes = old_start - start;
919 } else {
920 bytes = 0;
923 /* Stop if already an l2meta exists. After yielding, it wouldn't
924 * be valid any more, so we'd have to clean up the old L2Metas
925 * and deal with requests depending on them before starting to
926 * gather new ones. Not worth the trouble. */
927 if (bytes == 0 && *m) {
928 *cur_bytes = 0;
929 return 0;
932 if (bytes == 0) {
933 /* Wait for the dependency to complete. We need to recheck
934 * the free/allocated clusters when we continue. */
935 qemu_co_mutex_unlock(&s->lock);
936 qemu_co_queue_wait(&old_alloc->dependent_requests);
937 qemu_co_mutex_lock(&s->lock);
938 return -EAGAIN;
943 /* Make sure that existing clusters and new allocations are only used up to
944 * the next dependency if we shortened the request above */
945 *cur_bytes = bytes;
947 return 0;
951 * Checks how many already allocated clusters that don't require a copy on
952 * write there are at the given guest_offset (up to *bytes). If
953 * *host_offset is not zero, only physically contiguous clusters beginning at
954 * this host offset are counted.
956 * Note that guest_offset may not be cluster aligned. In this case, the
957 * returned *host_offset points to exact byte referenced by guest_offset and
958 * therefore isn't cluster aligned as well.
960 * Returns:
961 * 0: if no allocated clusters are available at the given offset.
962 * *bytes is normally unchanged. It is set to 0 if the cluster
963 * is allocated and doesn't need COW, but doesn't have the right
964 * physical offset.
966 * 1: if allocated clusters that don't require a COW are available at
967 * the requested offset. *bytes may have decreased and describes
968 * the length of the area that can be written to.
970 * -errno: in error cases
972 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
973 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
975 BDRVQcow2State *s = bs->opaque;
976 int l2_index;
977 uint64_t cluster_offset;
978 uint64_t *l2_table;
979 uint64_t nb_clusters;
980 unsigned int keep_clusters;
981 int ret;
983 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
984 *bytes);
986 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
987 == offset_into_cluster(s, *host_offset));
990 * Calculate the number of clusters to look for. We stop at L2 table
991 * boundaries to keep things simple.
993 nb_clusters =
994 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
996 l2_index = offset_to_l2_index(s, guest_offset);
997 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
998 assert(nb_clusters <= INT_MAX);
1000 /* Find L2 entry for the first involved cluster */
1001 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1002 if (ret < 0) {
1003 return ret;
1006 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1008 /* Check how many clusters are already allocated and don't need COW */
1009 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1010 && (cluster_offset & QCOW_OFLAG_COPIED))
1012 /* If a specific host_offset is required, check it */
1013 bool offset_matches =
1014 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1016 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1017 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1018 "%#llx unaligned (guest offset: %#" PRIx64
1019 ")", cluster_offset & L2E_OFFSET_MASK,
1020 guest_offset);
1021 ret = -EIO;
1022 goto out;
1025 if (*host_offset != 0 && !offset_matches) {
1026 *bytes = 0;
1027 ret = 0;
1028 goto out;
1031 /* We keep all QCOW_OFLAG_COPIED clusters */
1032 keep_clusters =
1033 count_contiguous_clusters(nb_clusters, s->cluster_size,
1034 &l2_table[l2_index],
1035 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1036 assert(keep_clusters <= nb_clusters);
1038 *bytes = MIN(*bytes,
1039 keep_clusters * s->cluster_size
1040 - offset_into_cluster(s, guest_offset));
1042 ret = 1;
1043 } else {
1044 ret = 0;
1047 /* Cleanup */
1048 out:
1049 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1051 /* Only return a host offset if we actually made progress. Otherwise we
1052 * would make requirements for handle_alloc() that it can't fulfill */
1053 if (ret > 0) {
1054 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1055 + offset_into_cluster(s, guest_offset);
1058 return ret;
1062 * Allocates new clusters for the given guest_offset.
1064 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1065 * contain the number of clusters that have been allocated and are contiguous
1066 * in the image file.
1068 * If *host_offset is non-zero, it specifies the offset in the image file at
1069 * which the new clusters must start. *nb_clusters can be 0 on return in this
1070 * case if the cluster at host_offset is already in use. If *host_offset is
1071 * zero, the clusters can be allocated anywhere in the image file.
1073 * *host_offset is updated to contain the offset into the image file at which
1074 * the first allocated cluster starts.
1076 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1077 * function has been waiting for another request and the allocation must be
1078 * restarted, but the whole request should not be failed.
1080 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1081 uint64_t *host_offset, uint64_t *nb_clusters)
1083 BDRVQcow2State *s = bs->opaque;
1085 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1086 *host_offset, *nb_clusters);
1088 /* Allocate new clusters */
1089 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1090 if (*host_offset == 0) {
1091 int64_t cluster_offset =
1092 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1093 if (cluster_offset < 0) {
1094 return cluster_offset;
1096 *host_offset = cluster_offset;
1097 return 0;
1098 } else {
1099 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1100 if (ret < 0) {
1101 return ret;
1103 *nb_clusters = ret;
1104 return 0;
1109 * Allocates new clusters for an area that either is yet unallocated or needs a
1110 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1111 * the new allocation can match the specified host offset.
1113 * Note that guest_offset may not be cluster aligned. In this case, the
1114 * returned *host_offset points to exact byte referenced by guest_offset and
1115 * therefore isn't cluster aligned as well.
1117 * Returns:
1118 * 0: if no clusters could be allocated. *bytes is set to 0,
1119 * *host_offset is left unchanged.
1121 * 1: if new clusters were allocated. *bytes may be decreased if the
1122 * new allocation doesn't cover all of the requested area.
1123 * *host_offset is updated to contain the host offset of the first
1124 * newly allocated cluster.
1126 * -errno: in error cases
1128 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1129 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1131 BDRVQcow2State *s = bs->opaque;
1132 int l2_index;
1133 uint64_t *l2_table;
1134 uint64_t entry;
1135 uint64_t nb_clusters;
1136 int ret;
1138 uint64_t alloc_cluster_offset;
1140 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1141 *bytes);
1142 assert(*bytes > 0);
1145 * Calculate the number of clusters to look for. We stop at L2 table
1146 * boundaries to keep things simple.
1148 nb_clusters =
1149 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1151 l2_index = offset_to_l2_index(s, guest_offset);
1152 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1153 assert(nb_clusters <= INT_MAX);
1155 /* Find L2 entry for the first involved cluster */
1156 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1157 if (ret < 0) {
1158 return ret;
1161 entry = be64_to_cpu(l2_table[l2_index]);
1163 /* For the moment, overwrite compressed clusters one by one */
1164 if (entry & QCOW_OFLAG_COMPRESSED) {
1165 nb_clusters = 1;
1166 } else {
1167 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1170 /* This function is only called when there were no non-COW clusters, so if
1171 * we can't find any unallocated or COW clusters either, something is
1172 * wrong with our code. */
1173 assert(nb_clusters > 0);
1175 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1177 /* Allocate, if necessary at a given offset in the image file */
1178 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1179 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1180 &nb_clusters);
1181 if (ret < 0) {
1182 goto fail;
1185 /* Can't extend contiguous allocation */
1186 if (nb_clusters == 0) {
1187 *bytes = 0;
1188 return 0;
1191 /* !*host_offset would overwrite the image header and is reserved for "no
1192 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1193 * following overlap check; do that now to avoid having an invalid value in
1194 * *host_offset. */
1195 if (!alloc_cluster_offset) {
1196 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1197 nb_clusters * s->cluster_size);
1198 assert(ret < 0);
1199 goto fail;
1203 * Save info needed for meta data update.
1205 * requested_bytes: Number of bytes from the start of the first
1206 * newly allocated cluster to the end of the (possibly shortened
1207 * before) write request.
1209 * avail_bytes: Number of bytes from the start of the first
1210 * newly allocated to the end of the last newly allocated cluster.
1212 * nb_bytes: The number of bytes from the start of the first
1213 * newly allocated cluster to the end of the area that the write
1214 * request actually writes to (excluding COW at the end)
1216 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1217 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1218 int nb_bytes = MIN(requested_bytes, avail_bytes);
1219 QCowL2Meta *old_m = *m;
1221 *m = g_malloc0(sizeof(**m));
1223 **m = (QCowL2Meta) {
1224 .next = old_m,
1226 .alloc_offset = alloc_cluster_offset,
1227 .offset = start_of_cluster(s, guest_offset),
1228 .nb_clusters = nb_clusters,
1230 .cow_start = {
1231 .offset = 0,
1232 .nb_bytes = offset_into_cluster(s, guest_offset),
1234 .cow_end = {
1235 .offset = nb_bytes,
1236 .nb_bytes = avail_bytes - nb_bytes,
1239 qemu_co_queue_init(&(*m)->dependent_requests);
1240 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1242 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1243 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1244 assert(*bytes != 0);
1246 return 1;
1248 fail:
1249 if (*m && (*m)->nb_clusters > 0) {
1250 QLIST_REMOVE(*m, next_in_flight);
1252 return ret;
1256 * alloc_cluster_offset
1258 * For a given offset on the virtual disk, find the cluster offset in qcow2
1259 * file. If the offset is not found, allocate a new cluster.
1261 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1262 * other fields in m are meaningless.
1264 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1265 * contiguous clusters that have been allocated. In this case, the other
1266 * fields of m are valid and contain information about the first allocated
1267 * cluster.
1269 * If the request conflicts with another write request in flight, the coroutine
1270 * is queued and will be reentered when the dependency has completed.
1272 * Return 0 on success and -errno in error cases
1274 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1275 unsigned int *bytes, uint64_t *host_offset,
1276 QCowL2Meta **m)
1278 BDRVQcow2State *s = bs->opaque;
1279 uint64_t start, remaining;
1280 uint64_t cluster_offset;
1281 uint64_t cur_bytes;
1282 int ret;
1284 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1286 again:
1287 start = offset;
1288 remaining = *bytes;
1289 cluster_offset = 0;
1290 *host_offset = 0;
1291 cur_bytes = 0;
1292 *m = NULL;
1294 while (true) {
1296 if (!*host_offset) {
1297 *host_offset = start_of_cluster(s, cluster_offset);
1300 assert(remaining >= cur_bytes);
1302 start += cur_bytes;
1303 remaining -= cur_bytes;
1304 cluster_offset += cur_bytes;
1306 if (remaining == 0) {
1307 break;
1310 cur_bytes = remaining;
1313 * Now start gathering as many contiguous clusters as possible:
1315 * 1. Check for overlaps with in-flight allocations
1317 * a) Overlap not in the first cluster -> shorten this request and
1318 * let the caller handle the rest in its next loop iteration.
1320 * b) Real overlaps of two requests. Yield and restart the search
1321 * for contiguous clusters (the situation could have changed
1322 * while we were sleeping)
1324 * c) TODO: Request starts in the same cluster as the in-flight
1325 * allocation ends. Shorten the COW of the in-fight allocation,
1326 * set cluster_offset to write to the same cluster and set up
1327 * the right synchronisation between the in-flight request and
1328 * the new one.
1330 ret = handle_dependencies(bs, start, &cur_bytes, m);
1331 if (ret == -EAGAIN) {
1332 /* Currently handle_dependencies() doesn't yield if we already had
1333 * an allocation. If it did, we would have to clean up the L2Meta
1334 * structs before starting over. */
1335 assert(*m == NULL);
1336 goto again;
1337 } else if (ret < 0) {
1338 return ret;
1339 } else if (cur_bytes == 0) {
1340 break;
1341 } else {
1342 /* handle_dependencies() may have decreased cur_bytes (shortened
1343 * the allocations below) so that the next dependency is processed
1344 * correctly during the next loop iteration. */
1348 * 2. Count contiguous COPIED clusters.
1350 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1351 if (ret < 0) {
1352 return ret;
1353 } else if (ret) {
1354 continue;
1355 } else if (cur_bytes == 0) {
1356 break;
1360 * 3. If the request still hasn't completed, allocate new clusters,
1361 * considering any cluster_offset of steps 1c or 2.
1363 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1364 if (ret < 0) {
1365 return ret;
1366 } else if (ret) {
1367 continue;
1368 } else {
1369 assert(cur_bytes == 0);
1370 break;
1374 *bytes -= remaining;
1375 assert(*bytes > 0);
1376 assert(*host_offset != 0);
1378 return 0;
1381 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1382 const uint8_t *buf, int buf_size)
1384 z_stream strm1, *strm = &strm1;
1385 int ret, out_len;
1387 memset(strm, 0, sizeof(*strm));
1389 strm->next_in = (uint8_t *)buf;
1390 strm->avail_in = buf_size;
1391 strm->next_out = out_buf;
1392 strm->avail_out = out_buf_size;
1394 ret = inflateInit2(strm, -12);
1395 if (ret != Z_OK)
1396 return -1;
1397 ret = inflate(strm, Z_FINISH);
1398 out_len = strm->next_out - out_buf;
1399 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1400 out_len != out_buf_size) {
1401 inflateEnd(strm);
1402 return -1;
1404 inflateEnd(strm);
1405 return 0;
1408 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1410 BDRVQcow2State *s = bs->opaque;
1411 int ret, csize, nb_csectors, sector_offset;
1412 uint64_t coffset;
1414 coffset = cluster_offset & s->cluster_offset_mask;
1415 if (s->cluster_cache_offset != coffset) {
1416 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1417 sector_offset = coffset & 511;
1418 csize = nb_csectors * 512 - sector_offset;
1419 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1420 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1421 nb_csectors);
1422 if (ret < 0) {
1423 return ret;
1425 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1426 s->cluster_data + sector_offset, csize) < 0) {
1427 return -EIO;
1429 s->cluster_cache_offset = coffset;
1431 return 0;
1435 * This discards as many clusters of nb_clusters as possible at once (i.e.
1436 * all clusters in the same L2 table) and returns the number of discarded
1437 * clusters.
1439 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1440 uint64_t nb_clusters, enum qcow2_discard_type type,
1441 bool full_discard)
1443 BDRVQcow2State *s = bs->opaque;
1444 uint64_t *l2_table;
1445 int l2_index;
1446 int ret;
1447 int i;
1449 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1450 if (ret < 0) {
1451 return ret;
1454 /* Limit nb_clusters to one L2 table */
1455 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1456 assert(nb_clusters <= INT_MAX);
1458 for (i = 0; i < nb_clusters; i++) {
1459 uint64_t old_l2_entry;
1461 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1464 * If full_discard is false, make sure that a discarded area reads back
1465 * as zeroes for v3 images (we cannot do it for v2 without actually
1466 * writing a zero-filled buffer). We can skip the operation if the
1467 * cluster is already marked as zero, or if it's unallocated and we
1468 * don't have a backing file.
1470 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1471 * holding s->lock, so that doesn't work today.
1473 * If full_discard is true, the sector should not read back as zeroes,
1474 * but rather fall through to the backing file.
1476 switch (qcow2_get_cluster_type(old_l2_entry)) {
1477 case QCOW2_CLUSTER_UNALLOCATED:
1478 if (full_discard || !bs->backing) {
1479 continue;
1481 break;
1483 case QCOW2_CLUSTER_ZERO:
1484 if (!full_discard) {
1485 continue;
1487 break;
1489 case QCOW2_CLUSTER_NORMAL:
1490 case QCOW2_CLUSTER_COMPRESSED:
1491 break;
1493 default:
1494 abort();
1497 /* First remove L2 entries */
1498 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1499 if (!full_discard && s->qcow_version >= 3) {
1500 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1501 } else {
1502 l2_table[l2_index + i] = cpu_to_be64(0);
1505 /* Then decrease the refcount */
1506 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1509 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1511 return nb_clusters;
1514 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1515 int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1517 BDRVQcow2State *s = bs->opaque;
1518 uint64_t end_offset;
1519 uint64_t nb_clusters;
1520 int ret;
1522 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1524 /* Round start up and end down */
1525 offset = align_offset(offset, s->cluster_size);
1526 end_offset = start_of_cluster(s, end_offset);
1528 if (offset > end_offset) {
1529 return 0;
1532 nb_clusters = size_to_clusters(s, end_offset - offset);
1534 s->cache_discards = true;
1536 /* Each L2 table is handled by its own loop iteration */
1537 while (nb_clusters > 0) {
1538 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1539 if (ret < 0) {
1540 goto fail;
1543 nb_clusters -= ret;
1544 offset += (ret * s->cluster_size);
1547 ret = 0;
1548 fail:
1549 s->cache_discards = false;
1550 qcow2_process_discards(bs, ret);
1552 return ret;
1556 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1557 * all clusters in the same L2 table) and returns the number of zeroed
1558 * clusters.
1560 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1561 uint64_t nb_clusters, int flags)
1563 BDRVQcow2State *s = bs->opaque;
1564 uint64_t *l2_table;
1565 int l2_index;
1566 int ret;
1567 int i;
1569 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1570 if (ret < 0) {
1571 return ret;
1574 /* Limit nb_clusters to one L2 table */
1575 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1576 assert(nb_clusters <= INT_MAX);
1578 for (i = 0; i < nb_clusters; i++) {
1579 uint64_t old_offset;
1581 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1583 /* Update L2 entries */
1584 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1585 if (old_offset & QCOW_OFLAG_COMPRESSED || flags & BDRV_REQ_MAY_UNMAP) {
1586 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1587 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1588 } else {
1589 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1593 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1595 return nb_clusters;
1598 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors,
1599 int flags)
1601 BDRVQcow2State *s = bs->opaque;
1602 uint64_t nb_clusters;
1603 int ret;
1605 /* The zero flag is only supported by version 3 and newer */
1606 if (s->qcow_version < 3) {
1607 return -ENOTSUP;
1610 /* Each L2 table is handled by its own loop iteration */
1611 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1613 s->cache_discards = true;
1615 while (nb_clusters > 0) {
1616 ret = zero_single_l2(bs, offset, nb_clusters, flags);
1617 if (ret < 0) {
1618 goto fail;
1621 nb_clusters -= ret;
1622 offset += (ret * s->cluster_size);
1625 ret = 0;
1626 fail:
1627 s->cache_discards = false;
1628 qcow2_process_discards(bs, ret);
1630 return ret;
1634 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1635 * non-backed non-pre-allocated zero clusters).
1637 * l1_entries and *visited_l1_entries are used to keep track of progress for
1638 * status_cb(). l1_entries contains the total number of L1 entries and
1639 * *visited_l1_entries counts all visited L1 entries.
1641 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1642 int l1_size, int64_t *visited_l1_entries,
1643 int64_t l1_entries,
1644 BlockDriverAmendStatusCB *status_cb,
1645 void *cb_opaque)
1647 BDRVQcow2State *s = bs->opaque;
1648 bool is_active_l1 = (l1_table == s->l1_table);
1649 uint64_t *l2_table = NULL;
1650 int ret;
1651 int i, j;
1653 if (!is_active_l1) {
1654 /* inactive L2 tables require a buffer to be stored in when loading
1655 * them from disk */
1656 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1657 if (l2_table == NULL) {
1658 return -ENOMEM;
1662 for (i = 0; i < l1_size; i++) {
1663 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1664 bool l2_dirty = false;
1665 uint64_t l2_refcount;
1667 if (!l2_offset) {
1668 /* unallocated */
1669 (*visited_l1_entries)++;
1670 if (status_cb) {
1671 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1673 continue;
1676 if (offset_into_cluster(s, l2_offset)) {
1677 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1678 PRIx64 " unaligned (L1 index: %#x)",
1679 l2_offset, i);
1680 ret = -EIO;
1681 goto fail;
1684 if (is_active_l1) {
1685 /* get active L2 tables from cache */
1686 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1687 (void **)&l2_table);
1688 } else {
1689 /* load inactive L2 tables from disk */
1690 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1691 (void *)l2_table, s->cluster_sectors);
1693 if (ret < 0) {
1694 goto fail;
1697 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1698 &l2_refcount);
1699 if (ret < 0) {
1700 goto fail;
1703 for (j = 0; j < s->l2_size; j++) {
1704 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1705 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1706 int cluster_type = qcow2_get_cluster_type(l2_entry);
1707 bool preallocated = offset != 0;
1709 if (cluster_type != QCOW2_CLUSTER_ZERO) {
1710 continue;
1713 if (!preallocated) {
1714 if (!bs->backing) {
1715 /* not backed; therefore we can simply deallocate the
1716 * cluster */
1717 l2_table[j] = 0;
1718 l2_dirty = true;
1719 continue;
1722 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1723 if (offset < 0) {
1724 ret = offset;
1725 goto fail;
1728 if (l2_refcount > 1) {
1729 /* For shared L2 tables, set the refcount accordingly (it is
1730 * already 1 and needs to be l2_refcount) */
1731 ret = qcow2_update_cluster_refcount(bs,
1732 offset >> s->cluster_bits,
1733 refcount_diff(1, l2_refcount), false,
1734 QCOW2_DISCARD_OTHER);
1735 if (ret < 0) {
1736 qcow2_free_clusters(bs, offset, s->cluster_size,
1737 QCOW2_DISCARD_OTHER);
1738 goto fail;
1743 if (offset_into_cluster(s, offset)) {
1744 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1745 "%#" PRIx64 " unaligned (L2 offset: %#"
1746 PRIx64 ", L2 index: %#x)", offset,
1747 l2_offset, j);
1748 if (!preallocated) {
1749 qcow2_free_clusters(bs, offset, s->cluster_size,
1750 QCOW2_DISCARD_ALWAYS);
1752 ret = -EIO;
1753 goto fail;
1756 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1757 if (ret < 0) {
1758 if (!preallocated) {
1759 qcow2_free_clusters(bs, offset, s->cluster_size,
1760 QCOW2_DISCARD_ALWAYS);
1762 goto fail;
1765 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1766 if (ret < 0) {
1767 if (!preallocated) {
1768 qcow2_free_clusters(bs, offset, s->cluster_size,
1769 QCOW2_DISCARD_ALWAYS);
1771 goto fail;
1774 if (l2_refcount == 1) {
1775 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1776 } else {
1777 l2_table[j] = cpu_to_be64(offset);
1779 l2_dirty = true;
1782 if (is_active_l1) {
1783 if (l2_dirty) {
1784 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1785 qcow2_cache_depends_on_flush(s->l2_table_cache);
1787 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1788 } else {
1789 if (l2_dirty) {
1790 ret = qcow2_pre_write_overlap_check(bs,
1791 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1792 s->cluster_size);
1793 if (ret < 0) {
1794 goto fail;
1797 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1798 (void *)l2_table, s->cluster_sectors);
1799 if (ret < 0) {
1800 goto fail;
1805 (*visited_l1_entries)++;
1806 if (status_cb) {
1807 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1811 ret = 0;
1813 fail:
1814 if (l2_table) {
1815 if (!is_active_l1) {
1816 qemu_vfree(l2_table);
1817 } else {
1818 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1821 return ret;
1825 * For backed images, expands all zero clusters on the image. For non-backed
1826 * images, deallocates all non-pre-allocated zero clusters (and claims the
1827 * allocation for pre-allocated ones). This is important for downgrading to a
1828 * qcow2 version which doesn't yet support metadata zero clusters.
1830 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1831 BlockDriverAmendStatusCB *status_cb,
1832 void *cb_opaque)
1834 BDRVQcow2State *s = bs->opaque;
1835 uint64_t *l1_table = NULL;
1836 int64_t l1_entries = 0, visited_l1_entries = 0;
1837 int ret;
1838 int i, j;
1840 if (status_cb) {
1841 l1_entries = s->l1_size;
1842 for (i = 0; i < s->nb_snapshots; i++) {
1843 l1_entries += s->snapshots[i].l1_size;
1847 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1848 &visited_l1_entries, l1_entries,
1849 status_cb, cb_opaque);
1850 if (ret < 0) {
1851 goto fail;
1854 /* Inactive L1 tables may point to active L2 tables - therefore it is
1855 * necessary to flush the L2 table cache before trying to access the L2
1856 * tables pointed to by inactive L1 entries (else we might try to expand
1857 * zero clusters that have already been expanded); furthermore, it is also
1858 * necessary to empty the L2 table cache, since it may contain tables which
1859 * are now going to be modified directly on disk, bypassing the cache.
1860 * qcow2_cache_empty() does both for us. */
1861 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1862 if (ret < 0) {
1863 goto fail;
1866 for (i = 0; i < s->nb_snapshots; i++) {
1867 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1868 sizeof(uint64_t), BDRV_SECTOR_SIZE);
1870 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1872 ret = bdrv_read(bs->file,
1873 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1874 (void *)l1_table, l1_sectors);
1875 if (ret < 0) {
1876 goto fail;
1879 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1880 be64_to_cpus(&l1_table[j]);
1883 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1884 &visited_l1_entries, l1_entries,
1885 status_cb, cb_opaque);
1886 if (ret < 0) {
1887 goto fail;
1891 ret = 0;
1893 fail:
1894 g_free(l1_table);
1895 return ret;