Merge remote-tracking branch 'stefanha/block' into staging
[qemu.git] / block / qcow2-cluster.c
blob56fccf9487eee9270082ea8fa4576fb5aeff4c05
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
37 int64_t new_l1_table_offset;
38 uint8_t data[12];
40 if (min_size <= s->l1_size)
41 return 0;
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
56 #ifdef DEBUG_ALLOC2
57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67 if (new_l1_table_offset < 0) {
68 g_free(new_l1_table);
69 return new_l1_table_offset;
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
74 goto fail;
77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
86 /* set new table */
87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88 cpu_to_be32w((uint32_t*)data, new_l1_size);
89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
92 goto fail;
94 g_free(s->l1_table);
95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
101 g_free(new_l1_table);
102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103 return ret;
107 * l2_load
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
119 BDRVQcowState *s = bs->opaque;
120 int ret;
122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
124 return ret;
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
134 BDRVQcowState *s = bs->opaque;
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
137 int i, ret;
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
151 return 0;
155 * l2_allocate
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
166 BDRVQcowState *s = bs->opaque;
167 uint64_t old_l2_offset;
168 uint64_t *l2_table;
169 int64_t l2_offset;
170 int ret;
172 old_l2_offset = s->l1_table[l1_index];
174 trace_qcow2_l2_allocate(bs, l1_index);
176 /* allocate a new l2 entry */
178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179 if (l2_offset < 0) {
180 return l2_offset;
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
188 /* allocate a new entry in the l2 cache */
190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
196 l2_table = *table;
198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
202 uint64_t* old_table;
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
213 memcpy(l2_table, old_table, s->cluster_size);
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
216 if (ret < 0) {
217 goto fail;
221 /* write the l2 table to the file */
222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
227 if (ret < 0) {
228 goto fail;
231 /* update the L1 entry */
232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
239 *table = l2_table;
240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
241 return 0;
243 fail:
244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
246 s->l1_table[l1_index] = old_l2_offset;
247 return ret;
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
260 int i;
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
264 if (!offset)
265 return 0;
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
270 break;
274 return (i - start);
277 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
279 int i;
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
289 return i;
292 /* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
295 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
317 static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
322 BDRVQcowState *s = bs->opaque;
323 QEMUIOVector qiov;
324 struct iovec iov;
325 int n, ret;
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
336 n = n_end - n_start;
337 if (n <= 0) {
338 return 0;
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
344 qemu_iovec_init_external(&qiov, &iov, 1);
346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
353 if (ret < 0) {
354 goto out;
357 if (s->crypt_method) {
358 qcow2_encrypt_sectors(s, start_sect + n_start,
359 iov.iov_base, iov.iov_base, n, 1,
360 &s->aes_encrypt_key);
363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
365 if (ret < 0) {
366 goto out;
369 ret = 0;
370 out:
371 qemu_vfree(iov.iov_base);
372 return ret;
377 * get_cluster_offset
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
382 * on entry, *num is the number of contiguous sectors we'd like to
383 * access following offset.
385 * on exit, *num is the number of contiguous sectors we can read.
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
390 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
393 BDRVQcowState *s = bs->opaque;
394 unsigned int l1_index, l2_index;
395 uint64_t l2_offset, *l2_table;
396 int l1_bits, c;
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
399 int ret;
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
404 l1_bits = s->l2_bits + s->cluster_bits;
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
412 /* compute the number of available sectors */
414 nb_available = (nb_available >> 9) + index_in_cluster;
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
420 *cluster_offset = 0;
422 /* seek the the l2 offset in the l1 table */
424 l1_index = offset >> l1_bits;
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
427 goto out;
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
433 goto out;
436 /* load the l2 table in memory */
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
443 /* find the cluster offset for the given disk offset */
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
456 case QCOW2_CLUSTER_ZERO:
457 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
458 &l2_table[l2_index], 0,
459 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
460 *cluster_offset = 0;
461 break;
462 case QCOW2_CLUSTER_UNALLOCATED:
463 /* how many empty clusters ? */
464 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
465 *cluster_offset = 0;
466 break;
467 case QCOW2_CLUSTER_NORMAL:
468 /* how many allocated clusters ? */
469 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
470 &l2_table[l2_index], 0,
471 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
472 *cluster_offset &= L2E_OFFSET_MASK;
473 break;
474 default:
475 abort();
478 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
480 nb_available = (c * s->cluster_sectors);
482 out:
483 if (nb_available > nb_needed)
484 nb_available = nb_needed;
486 *num = nb_available - index_in_cluster;
488 return ret;
492 * get_cluster_table
494 * for a given disk offset, load (and allocate if needed)
495 * the l2 table.
497 * the l2 table offset in the qcow2 file and the cluster index
498 * in the l2 table are given to the caller.
500 * Returns 0 on success, -errno in failure case
502 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
503 uint64_t **new_l2_table,
504 int *new_l2_index)
506 BDRVQcowState *s = bs->opaque;
507 unsigned int l1_index, l2_index;
508 uint64_t l2_offset;
509 uint64_t *l2_table = NULL;
510 int ret;
512 /* seek the the l2 offset in the l1 table */
514 l1_index = offset >> (s->l2_bits + s->cluster_bits);
515 if (l1_index >= s->l1_size) {
516 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
517 if (ret < 0) {
518 return ret;
522 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
524 /* seek the l2 table of the given l2 offset */
526 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
527 /* load the l2 table in memory */
528 ret = l2_load(bs, l2_offset, &l2_table);
529 if (ret < 0) {
530 return ret;
532 } else {
533 /* First allocate a new L2 table (and do COW if needed) */
534 ret = l2_allocate(bs, l1_index, &l2_table);
535 if (ret < 0) {
536 return ret;
539 /* Then decrease the refcount of the old table */
540 if (l2_offset) {
541 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
545 /* find the cluster offset for the given disk offset */
547 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
549 *new_l2_table = l2_table;
550 *new_l2_index = l2_index;
552 return 0;
556 * alloc_compressed_cluster_offset
558 * For a given offset of the disk image, return cluster offset in
559 * qcow2 file.
561 * If the offset is not found, allocate a new compressed cluster.
563 * Return the cluster offset if successful,
564 * Return 0, otherwise.
568 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
569 uint64_t offset,
570 int compressed_size)
572 BDRVQcowState *s = bs->opaque;
573 int l2_index, ret;
574 uint64_t *l2_table;
575 int64_t cluster_offset;
576 int nb_csectors;
578 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
579 if (ret < 0) {
580 return 0;
583 /* Compression can't overwrite anything. Fail if the cluster was already
584 * allocated. */
585 cluster_offset = be64_to_cpu(l2_table[l2_index]);
586 if (cluster_offset & L2E_OFFSET_MASK) {
587 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
588 return 0;
591 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
592 if (cluster_offset < 0) {
593 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
594 return 0;
597 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
598 (cluster_offset >> 9);
600 cluster_offset |= QCOW_OFLAG_COMPRESSED |
601 ((uint64_t)nb_csectors << s->csize_shift);
603 /* update L2 table */
605 /* compressed clusters never have the copied flag */
607 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
608 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
609 l2_table[l2_index] = cpu_to_be64(cluster_offset);
610 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
611 if (ret < 0) {
612 return 0;
615 return cluster_offset;
618 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
620 BDRVQcowState *s = bs->opaque;
621 int ret;
623 if (r->nb_sectors == 0) {
624 return 0;
627 qemu_co_mutex_unlock(&s->lock);
628 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
629 r->offset / BDRV_SECTOR_SIZE,
630 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
631 qemu_co_mutex_lock(&s->lock);
633 if (ret < 0) {
634 return ret;
638 * Before we update the L2 table to actually point to the new cluster, we
639 * need to be sure that the refcounts have been increased and COW was
640 * handled.
642 qcow2_cache_depends_on_flush(s->l2_table_cache);
644 return 0;
647 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
649 BDRVQcowState *s = bs->opaque;
650 int i, j = 0, l2_index, ret;
651 uint64_t *old_cluster, *l2_table;
652 uint64_t cluster_offset = m->alloc_offset;
654 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
655 assert(m->nb_clusters > 0);
657 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
659 /* copy content of unmodified sectors */
660 ret = perform_cow(bs, m, &m->cow_start);
661 if (ret < 0) {
662 goto err;
665 ret = perform_cow(bs, m, &m->cow_end);
666 if (ret < 0) {
667 goto err;
670 /* Update L2 table. */
671 if (s->compatible_features & QCOW2_COMPAT_LAZY_REFCOUNTS) {
672 qcow2_mark_dirty(bs);
674 if (qcow2_need_accurate_refcounts(s)) {
675 qcow2_cache_set_dependency(bs, s->l2_table_cache,
676 s->refcount_block_cache);
679 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
680 if (ret < 0) {
681 goto err;
683 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
685 for (i = 0; i < m->nb_clusters; i++) {
686 /* if two concurrent writes happen to the same unallocated cluster
687 * each write allocates separate cluster and writes data concurrently.
688 * The first one to complete updates l2 table with pointer to its
689 * cluster the second one has to do RMW (which is done above by
690 * copy_sectors()), update l2 table with its cluster pointer and free
691 * old cluster. This is what this loop does */
692 if(l2_table[l2_index + i] != 0)
693 old_cluster[j++] = l2_table[l2_index + i];
695 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
696 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
700 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
701 if (ret < 0) {
702 goto err;
706 * If this was a COW, we need to decrease the refcount of the old cluster.
707 * Also flush bs->file to get the right order for L2 and refcount update.
709 if (j != 0) {
710 for (i = 0; i < j; i++) {
711 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
715 ret = 0;
716 err:
717 g_free(old_cluster);
718 return ret;
722 * Returns the number of contiguous clusters that can be used for an allocating
723 * write, but require COW to be performed (this includes yet unallocated space,
724 * which must copy from the backing file)
726 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
727 uint64_t *l2_table, int l2_index)
729 int i;
731 for (i = 0; i < nb_clusters; i++) {
732 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
733 int cluster_type = qcow2_get_cluster_type(l2_entry);
735 switch(cluster_type) {
736 case QCOW2_CLUSTER_NORMAL:
737 if (l2_entry & QCOW_OFLAG_COPIED) {
738 goto out;
740 break;
741 case QCOW2_CLUSTER_UNALLOCATED:
742 case QCOW2_CLUSTER_COMPRESSED:
743 case QCOW2_CLUSTER_ZERO:
744 break;
745 default:
746 abort();
750 out:
751 assert(i <= nb_clusters);
752 return i;
756 * Check if there already is an AIO write request in flight which allocates
757 * the same cluster. In this case we need to wait until the previous
758 * request has completed and updated the L2 table accordingly.
760 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
761 unsigned int *nb_clusters)
763 BDRVQcowState *s = bs->opaque;
764 QCowL2Meta *old_alloc;
766 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
768 uint64_t start = guest_offset >> s->cluster_bits;
769 uint64_t end = start + *nb_clusters;
770 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
771 uint64_t old_end = old_start + old_alloc->nb_clusters;
773 if (end < old_start || start > old_end) {
774 /* No intersection */
775 } else {
776 if (start < old_start) {
777 /* Stop at the start of a running allocation */
778 *nb_clusters = old_start - start;
779 } else {
780 *nb_clusters = 0;
783 if (*nb_clusters == 0) {
784 /* Wait for the dependency to complete. We need to recheck
785 * the free/allocated clusters when we continue. */
786 qemu_co_mutex_unlock(&s->lock);
787 qemu_co_queue_wait(&old_alloc->dependent_requests);
788 qemu_co_mutex_lock(&s->lock);
789 return -EAGAIN;
794 if (!*nb_clusters) {
795 abort();
798 return 0;
802 * Allocates new clusters for the given guest_offset.
804 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
805 * contain the number of clusters that have been allocated and are contiguous
806 * in the image file.
808 * If *host_offset is non-zero, it specifies the offset in the image file at
809 * which the new clusters must start. *nb_clusters can be 0 on return in this
810 * case if the cluster at host_offset is already in use. If *host_offset is
811 * zero, the clusters can be allocated anywhere in the image file.
813 * *host_offset is updated to contain the offset into the image file at which
814 * the first allocated cluster starts.
816 * Return 0 on success and -errno in error cases. -EAGAIN means that the
817 * function has been waiting for another request and the allocation must be
818 * restarted, but the whole request should not be failed.
820 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
821 uint64_t *host_offset, unsigned int *nb_clusters)
823 BDRVQcowState *s = bs->opaque;
824 int ret;
826 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
827 *host_offset, *nb_clusters);
829 ret = handle_dependencies(bs, guest_offset, nb_clusters);
830 if (ret < 0) {
831 return ret;
834 /* Allocate new clusters */
835 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
836 if (*host_offset == 0) {
837 int64_t cluster_offset =
838 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
839 if (cluster_offset < 0) {
840 return cluster_offset;
842 *host_offset = cluster_offset;
843 return 0;
844 } else {
845 ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
846 if (ret < 0) {
847 return ret;
849 *nb_clusters = ret;
850 return 0;
855 * alloc_cluster_offset
857 * For a given offset on the virtual disk, find the cluster offset in qcow2
858 * file. If the offset is not found, allocate a new cluster.
860 * If the cluster was already allocated, m->nb_clusters is set to 0 and
861 * other fields in m are meaningless.
863 * If the cluster is newly allocated, m->nb_clusters is set to the number of
864 * contiguous clusters that have been allocated. In this case, the other
865 * fields of m are valid and contain information about the first allocated
866 * cluster.
868 * If the request conflicts with another write request in flight, the coroutine
869 * is queued and will be reentered when the dependency has completed.
871 * Return 0 on success and -errno in error cases
873 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
874 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
876 BDRVQcowState *s = bs->opaque;
877 int l2_index, ret, sectors;
878 uint64_t *l2_table;
879 unsigned int nb_clusters, keep_clusters;
880 uint64_t cluster_offset;
882 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
883 n_start, n_end);
885 /* Find L2 entry for the first involved cluster */
886 again:
887 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
888 if (ret < 0) {
889 return ret;
893 * Calculate the number of clusters to look for. We stop at L2 table
894 * boundaries to keep things simple.
896 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
897 s->l2_size - l2_index);
899 cluster_offset = be64_to_cpu(l2_table[l2_index]);
902 * Check how many clusters are already allocated and don't need COW, and how
903 * many need a new allocation.
905 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
906 && (cluster_offset & QCOW_OFLAG_COPIED))
908 /* We keep all QCOW_OFLAG_COPIED clusters */
909 keep_clusters =
910 count_contiguous_clusters(nb_clusters, s->cluster_size,
911 &l2_table[l2_index], 0,
912 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
913 assert(keep_clusters <= nb_clusters);
914 nb_clusters -= keep_clusters;
915 } else {
916 keep_clusters = 0;
917 cluster_offset = 0;
920 if (nb_clusters > 0) {
921 /* For the moment, overwrite compressed clusters one by one */
922 uint64_t entry = be64_to_cpu(l2_table[l2_index + keep_clusters]);
923 if (entry & QCOW_OFLAG_COMPRESSED) {
924 nb_clusters = 1;
925 } else {
926 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table,
927 l2_index + keep_clusters);
931 cluster_offset &= L2E_OFFSET_MASK;
934 * The L2 table isn't used any more after this. As long as the cache works
935 * synchronously, it's important to release it before calling
936 * do_alloc_cluster_offset, which may yield if we need to wait for another
937 * request to complete. If we still had the reference, we could use up the
938 * whole cache with sleeping requests.
940 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
941 if (ret < 0) {
942 return ret;
945 /* If there is something left to allocate, do that now */
946 if (nb_clusters > 0) {
947 uint64_t alloc_offset;
948 uint64_t alloc_cluster_offset;
949 uint64_t keep_bytes = keep_clusters * s->cluster_size;
951 /* Calculate start and size of allocation */
952 alloc_offset = offset + keep_bytes;
954 if (keep_clusters == 0) {
955 alloc_cluster_offset = 0;
956 } else {
957 alloc_cluster_offset = cluster_offset + keep_bytes;
960 /* Allocate, if necessary at a given offset in the image file */
961 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
962 &nb_clusters);
963 if (ret == -EAGAIN) {
964 goto again;
965 } else if (ret < 0) {
966 goto fail;
969 /* save info needed for meta data update */
970 if (nb_clusters > 0) {
972 * requested_sectors: Number of sectors from the start of the first
973 * newly allocated cluster to the end of the (possibly shortened
974 * before) write request.
976 * avail_sectors: Number of sectors from the start of the first
977 * newly allocated to the end of the last newly allocated cluster.
979 * nb_sectors: The number of sectors from the start of the first
980 * newly allocated cluster to the end of the aread that the write
981 * request actually writes to (excluding COW at the end)
983 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
984 int avail_sectors = nb_clusters
985 << (s->cluster_bits - BDRV_SECTOR_BITS);
986 int alloc_n_start = keep_clusters == 0 ? n_start : 0;
987 int nb_sectors = MIN(requested_sectors, avail_sectors);
989 if (keep_clusters == 0) {
990 cluster_offset = alloc_cluster_offset;
993 *m = g_malloc0(sizeof(**m));
995 **m = (QCowL2Meta) {
996 .alloc_offset = alloc_cluster_offset,
997 .offset = alloc_offset & ~(s->cluster_size - 1),
998 .nb_clusters = nb_clusters,
999 .nb_available = nb_sectors,
1001 .cow_start = {
1002 .offset = 0,
1003 .nb_sectors = alloc_n_start,
1005 .cow_end = {
1006 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1007 .nb_sectors = avail_sectors - nb_sectors,
1010 qemu_co_queue_init(&(*m)->dependent_requests);
1011 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1015 /* Some cleanup work */
1016 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
1017 if (sectors > n_end) {
1018 sectors = n_end;
1021 assert(sectors > n_start);
1022 *num = sectors - n_start;
1023 *host_offset = cluster_offset;
1025 return 0;
1027 fail:
1028 if (*m && (*m)->nb_clusters > 0) {
1029 QLIST_REMOVE(*m, next_in_flight);
1031 return ret;
1034 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1035 const uint8_t *buf, int buf_size)
1037 z_stream strm1, *strm = &strm1;
1038 int ret, out_len;
1040 memset(strm, 0, sizeof(*strm));
1042 strm->next_in = (uint8_t *)buf;
1043 strm->avail_in = buf_size;
1044 strm->next_out = out_buf;
1045 strm->avail_out = out_buf_size;
1047 ret = inflateInit2(strm, -12);
1048 if (ret != Z_OK)
1049 return -1;
1050 ret = inflate(strm, Z_FINISH);
1051 out_len = strm->next_out - out_buf;
1052 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1053 out_len != out_buf_size) {
1054 inflateEnd(strm);
1055 return -1;
1057 inflateEnd(strm);
1058 return 0;
1061 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1063 BDRVQcowState *s = bs->opaque;
1064 int ret, csize, nb_csectors, sector_offset;
1065 uint64_t coffset;
1067 coffset = cluster_offset & s->cluster_offset_mask;
1068 if (s->cluster_cache_offset != coffset) {
1069 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1070 sector_offset = coffset & 511;
1071 csize = nb_csectors * 512 - sector_offset;
1072 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1073 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1074 if (ret < 0) {
1075 return ret;
1077 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1078 s->cluster_data + sector_offset, csize) < 0) {
1079 return -EIO;
1081 s->cluster_cache_offset = coffset;
1083 return 0;
1087 * This discards as many clusters of nb_clusters as possible at once (i.e.
1088 * all clusters in the same L2 table) and returns the number of discarded
1089 * clusters.
1091 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1092 unsigned int nb_clusters)
1094 BDRVQcowState *s = bs->opaque;
1095 uint64_t *l2_table;
1096 int l2_index;
1097 int ret;
1098 int i;
1100 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1101 if (ret < 0) {
1102 return ret;
1105 /* Limit nb_clusters to one L2 table */
1106 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1108 for (i = 0; i < nb_clusters; i++) {
1109 uint64_t old_offset;
1111 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1112 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1113 continue;
1116 /* First remove L2 entries */
1117 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1118 l2_table[l2_index + i] = cpu_to_be64(0);
1120 /* Then decrease the refcount */
1121 qcow2_free_any_clusters(bs, old_offset, 1);
1124 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1125 if (ret < 0) {
1126 return ret;
1129 return nb_clusters;
1132 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1133 int nb_sectors)
1135 BDRVQcowState *s = bs->opaque;
1136 uint64_t end_offset;
1137 unsigned int nb_clusters;
1138 int ret;
1140 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1142 /* Round start up and end down */
1143 offset = align_offset(offset, s->cluster_size);
1144 end_offset &= ~(s->cluster_size - 1);
1146 if (offset > end_offset) {
1147 return 0;
1150 nb_clusters = size_to_clusters(s, end_offset - offset);
1152 /* Each L2 table is handled by its own loop iteration */
1153 while (nb_clusters > 0) {
1154 ret = discard_single_l2(bs, offset, nb_clusters);
1155 if (ret < 0) {
1156 return ret;
1159 nb_clusters -= ret;
1160 offset += (ret * s->cluster_size);
1163 return 0;
1167 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1168 * all clusters in the same L2 table) and returns the number of zeroed
1169 * clusters.
1171 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1172 unsigned int nb_clusters)
1174 BDRVQcowState *s = bs->opaque;
1175 uint64_t *l2_table;
1176 int l2_index;
1177 int ret;
1178 int i;
1180 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1181 if (ret < 0) {
1182 return ret;
1185 /* Limit nb_clusters to one L2 table */
1186 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1188 for (i = 0; i < nb_clusters; i++) {
1189 uint64_t old_offset;
1191 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1193 /* Update L2 entries */
1194 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1195 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1196 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1197 qcow2_free_any_clusters(bs, old_offset, 1);
1198 } else {
1199 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1203 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1204 if (ret < 0) {
1205 return ret;
1208 return nb_clusters;
1211 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1213 BDRVQcowState *s = bs->opaque;
1214 unsigned int nb_clusters;
1215 int ret;
1217 /* The zero flag is only supported by version 3 and newer */
1218 if (s->qcow_version < 3) {
1219 return -ENOTSUP;
1222 /* Each L2 table is handled by its own loop iteration */
1223 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1225 while (nb_clusters > 0) {
1226 ret = zero_single_l2(bs, offset, nb_clusters);
1227 if (ret < 0) {
1228 return ret;
1231 nb_clusters -= ret;
1232 offset += (ret * s->cluster_size);
1235 return 0;