target-arm: A64: Implement minimal set of EL0-visible sysregs
[qemu.git] / block / qed.c
blob450a1fa2e9fbda7ccb7e8bdcd243bdc91f23c2f5
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
33 static const AIOCBInfo qed_aiocb_info = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
41 const QEDHeader *header = (const QEDHeader *)buf;
43 if (buf_size < sizeof(*header)) {
44 return 0;
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
49 return 100;
52 /**
53 * Check whether an image format is raw
55 * @fmt: Backing file format, may be NULL
57 static bool qed_fmt_is_raw(const char *fmt)
59 return fmt && strcmp(fmt, "raw") == 0;
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
92 int qed_write_header_sync(BDRVQEDState *s)
94 QEDHeader le;
95 int ret;
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
102 return 0;
105 typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112 } QEDWriteHeaderCB;
114 static void qed_write_header_cb(void *opaque, int ret)
116 QEDWriteHeaderCB *write_header_cb = opaque;
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
122 static void qed_write_header_read_cb(void *opaque, int ret)
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
141 * Update header in-place (does not rewrite backing filename or other strings)
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
174 uint64_t table_entries;
175 uint64_t l2_size;
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
180 return l2_size * table_entries;
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
192 return true;
195 static bool qed_is_table_size_valid(uint32_t table_size)
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
204 return true;
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
216 return true;
220 * Read a string of known length from the image file
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
229 * The string is NUL-terminated.
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
242 buf[n] = '\0';
243 return 0;
247 * Allocate new clusters
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
272 * Allocate a new zeroed L2 table
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
286 static void qed_aio_next_io(void *opaque, int ret);
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
290 assert(!s->allocating_write_reqs_plugged);
292 s->allocating_write_reqs_plugged = true;
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
297 QEDAIOCB *acb;
299 assert(s->allocating_write_reqs_plugged);
301 s->allocating_write_reqs_plugged = false;
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
309 static void qed_finish_clear_need_check(void *opaque, int ret)
311 /* Do nothing */
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
316 BDRVQEDState *s = opaque;
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
324 static void qed_clear_need_check(void *opaque, int ret)
326 BDRVQEDState *s = opaque;
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
337 static void qed_need_check_timer_cb(void *opaque)
339 BDRVQEDState *s = opaque;
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
344 trace_qed_need_check_timer_cb(s);
346 qed_plug_allocating_write_reqs(s);
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
352 static void qed_start_need_check_timer(BDRVQEDState *s)
354 trace_qed_start_need_check_timer(s);
356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357 * migration.
359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
366 trace_qed_cancel_need_check_timer(s);
367 timer_del(s->need_check_timer);
370 static void bdrv_qed_rebind(BlockDriverState *bs)
372 BDRVQEDState *s = bs->opaque;
373 s->bs = bs;
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377 Error **errp)
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
391 qed_header_le_to_cpu(&le_header, &s->header);
393 if (s->header.magic != QED_MAGIC) {
394 return -EMEDIUMTYPE;
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
414 s->file_size = qed_start_of_cluster(s, file_size);
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
480 /* If image was not closed cleanly, check consistency */
481 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
487 if (!bdrv_is_read_only(bs->file) &&
488 !(flags & BDRV_O_INCOMING)) {
489 BdrvCheckResult result = {0};
491 ret = qed_check(s, &result, true);
492 if (ret) {
493 goto out;
498 bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
499 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
500 qed_need_check_timer_cb, s);
502 out:
503 if (ret) {
504 qed_free_l2_cache(&s->l2_cache);
505 qemu_vfree(s->l1_table);
507 return ret;
510 /* We have nothing to do for QED reopen, stubs just return
511 * success */
512 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
513 BlockReopenQueue *queue, Error **errp)
515 return 0;
518 static void bdrv_qed_close(BlockDriverState *bs)
520 BDRVQEDState *s = bs->opaque;
522 qed_cancel_need_check_timer(s);
523 timer_free(s->need_check_timer);
525 /* Ensure writes reach stable storage */
526 bdrv_flush(bs->file);
528 /* Clean shutdown, no check required on next open */
529 if (s->header.features & QED_F_NEED_CHECK) {
530 s->header.features &= ~QED_F_NEED_CHECK;
531 qed_write_header_sync(s);
534 qed_free_l2_cache(&s->l2_cache);
535 qemu_vfree(s->l1_table);
538 static int qed_create(const char *filename, uint32_t cluster_size,
539 uint64_t image_size, uint32_t table_size,
540 const char *backing_file, const char *backing_fmt)
542 QEDHeader header = {
543 .magic = QED_MAGIC,
544 .cluster_size = cluster_size,
545 .table_size = table_size,
546 .header_size = 1,
547 .features = 0,
548 .compat_features = 0,
549 .l1_table_offset = cluster_size,
550 .image_size = image_size,
552 QEDHeader le_header;
553 uint8_t *l1_table = NULL;
554 size_t l1_size = header.cluster_size * header.table_size;
555 Error *local_err = NULL;
556 int ret = 0;
557 BlockDriverState *bs = NULL;
559 ret = bdrv_create_file(filename, NULL, &local_err);
560 if (ret < 0) {
561 qerror_report_err(local_err);
562 error_free(local_err);
563 return ret;
566 ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR | BDRV_O_CACHE_WB,
567 &local_err);
568 if (ret < 0) {
569 qerror_report_err(local_err);
570 error_free(local_err);
571 return ret;
574 /* File must start empty and grow, check truncate is supported */
575 ret = bdrv_truncate(bs, 0);
576 if (ret < 0) {
577 goto out;
580 if (backing_file) {
581 header.features |= QED_F_BACKING_FILE;
582 header.backing_filename_offset = sizeof(le_header);
583 header.backing_filename_size = strlen(backing_file);
585 if (qed_fmt_is_raw(backing_fmt)) {
586 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
590 qed_header_cpu_to_le(&header, &le_header);
591 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
592 if (ret < 0) {
593 goto out;
595 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
596 header.backing_filename_size);
597 if (ret < 0) {
598 goto out;
601 l1_table = g_malloc0(l1_size);
602 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
603 if (ret < 0) {
604 goto out;
607 ret = 0; /* success */
608 out:
609 g_free(l1_table);
610 bdrv_unref(bs);
611 return ret;
614 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options,
615 Error **errp)
617 uint64_t image_size = 0;
618 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
619 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
620 const char *backing_file = NULL;
621 const char *backing_fmt = NULL;
623 while (options && options->name) {
624 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
625 image_size = options->value.n;
626 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
627 backing_file = options->value.s;
628 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
629 backing_fmt = options->value.s;
630 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
631 if (options->value.n) {
632 cluster_size = options->value.n;
634 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
635 if (options->value.n) {
636 table_size = options->value.n;
639 options++;
642 if (!qed_is_cluster_size_valid(cluster_size)) {
643 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
644 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
645 return -EINVAL;
647 if (!qed_is_table_size_valid(table_size)) {
648 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
649 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
650 return -EINVAL;
652 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
653 fprintf(stderr, "QED image size must be a non-zero multiple of "
654 "cluster size and less than %" PRIu64 " bytes\n",
655 qed_max_image_size(cluster_size, table_size));
656 return -EINVAL;
659 return qed_create(filename, cluster_size, image_size, table_size,
660 backing_file, backing_fmt);
663 typedef struct {
664 BlockDriverState *bs;
665 Coroutine *co;
666 uint64_t pos;
667 int64_t status;
668 int *pnum;
669 } QEDIsAllocatedCB;
671 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
673 QEDIsAllocatedCB *cb = opaque;
674 BDRVQEDState *s = cb->bs->opaque;
675 *cb->pnum = len / BDRV_SECTOR_SIZE;
676 switch (ret) {
677 case QED_CLUSTER_FOUND:
678 offset |= qed_offset_into_cluster(s, cb->pos);
679 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
680 break;
681 case QED_CLUSTER_ZERO:
682 cb->status = BDRV_BLOCK_ZERO;
683 break;
684 case QED_CLUSTER_L2:
685 case QED_CLUSTER_L1:
686 cb->status = 0;
687 break;
688 default:
689 assert(ret < 0);
690 cb->status = ret;
691 break;
694 if (cb->co) {
695 qemu_coroutine_enter(cb->co, NULL);
699 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
700 int64_t sector_num,
701 int nb_sectors, int *pnum)
703 BDRVQEDState *s = bs->opaque;
704 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
705 QEDIsAllocatedCB cb = {
706 .bs = bs,
707 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
708 .status = BDRV_BLOCK_OFFSET_MASK,
709 .pnum = pnum,
711 QEDRequest request = { .l2_table = NULL };
713 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
715 /* Now sleep if the callback wasn't invoked immediately */
716 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
717 cb.co = qemu_coroutine_self();
718 qemu_coroutine_yield();
721 qed_unref_l2_cache_entry(request.l2_table);
723 return cb.status;
726 static int bdrv_qed_make_empty(BlockDriverState *bs)
728 return -ENOTSUP;
731 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
733 return acb->common.bs->opaque;
737 * Read from the backing file or zero-fill if no backing file
739 * @s: QED state
740 * @pos: Byte position in device
741 * @qiov: Destination I/O vector
742 * @cb: Completion function
743 * @opaque: User data for completion function
745 * This function reads qiov->size bytes starting at pos from the backing file.
746 * If there is no backing file then zeroes are read.
748 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
749 QEMUIOVector *qiov,
750 BlockDriverCompletionFunc *cb, void *opaque)
752 uint64_t backing_length = 0;
753 size_t size;
755 /* If there is a backing file, get its length. Treat the absence of a
756 * backing file like a zero length backing file.
758 if (s->bs->backing_hd) {
759 int64_t l = bdrv_getlength(s->bs->backing_hd);
760 if (l < 0) {
761 cb(opaque, l);
762 return;
764 backing_length = l;
767 /* Zero all sectors if reading beyond the end of the backing file */
768 if (pos >= backing_length ||
769 pos + qiov->size > backing_length) {
770 qemu_iovec_memset(qiov, 0, 0, qiov->size);
773 /* Complete now if there are no backing file sectors to read */
774 if (pos >= backing_length) {
775 cb(opaque, 0);
776 return;
779 /* If the read straddles the end of the backing file, shorten it */
780 size = MIN((uint64_t)backing_length - pos, qiov->size);
782 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
783 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
784 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
787 typedef struct {
788 GenericCB gencb;
789 BDRVQEDState *s;
790 QEMUIOVector qiov;
791 struct iovec iov;
792 uint64_t offset;
793 } CopyFromBackingFileCB;
795 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
797 CopyFromBackingFileCB *copy_cb = opaque;
798 qemu_vfree(copy_cb->iov.iov_base);
799 gencb_complete(&copy_cb->gencb, ret);
802 static void qed_copy_from_backing_file_write(void *opaque, int ret)
804 CopyFromBackingFileCB *copy_cb = opaque;
805 BDRVQEDState *s = copy_cb->s;
807 if (ret) {
808 qed_copy_from_backing_file_cb(copy_cb, ret);
809 return;
812 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
813 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
814 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
815 qed_copy_from_backing_file_cb, copy_cb);
819 * Copy data from backing file into the image
821 * @s: QED state
822 * @pos: Byte position in device
823 * @len: Number of bytes
824 * @offset: Byte offset in image file
825 * @cb: Completion function
826 * @opaque: User data for completion function
828 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
829 uint64_t len, uint64_t offset,
830 BlockDriverCompletionFunc *cb,
831 void *opaque)
833 CopyFromBackingFileCB *copy_cb;
835 /* Skip copy entirely if there is no work to do */
836 if (len == 0) {
837 cb(opaque, 0);
838 return;
841 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
842 copy_cb->s = s;
843 copy_cb->offset = offset;
844 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
845 copy_cb->iov.iov_len = len;
846 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
848 qed_read_backing_file(s, pos, &copy_cb->qiov,
849 qed_copy_from_backing_file_write, copy_cb);
853 * Link one or more contiguous clusters into a table
855 * @s: QED state
856 * @table: L2 table
857 * @index: First cluster index
858 * @n: Number of contiguous clusters
859 * @cluster: First cluster offset
861 * The cluster offset may be an allocated byte offset in the image file, the
862 * zero cluster marker, or the unallocated cluster marker.
864 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
865 unsigned int n, uint64_t cluster)
867 int i;
868 for (i = index; i < index + n; i++) {
869 table->offsets[i] = cluster;
870 if (!qed_offset_is_unalloc_cluster(cluster) &&
871 !qed_offset_is_zero_cluster(cluster)) {
872 cluster += s->header.cluster_size;
877 static void qed_aio_complete_bh(void *opaque)
879 QEDAIOCB *acb = opaque;
880 BlockDriverCompletionFunc *cb = acb->common.cb;
881 void *user_opaque = acb->common.opaque;
882 int ret = acb->bh_ret;
883 bool *finished = acb->finished;
885 qemu_bh_delete(acb->bh);
886 qemu_aio_release(acb);
888 /* Invoke callback */
889 cb(user_opaque, ret);
891 /* Signal cancel completion */
892 if (finished) {
893 *finished = true;
897 static void qed_aio_complete(QEDAIOCB *acb, int ret)
899 BDRVQEDState *s = acb_to_s(acb);
901 trace_qed_aio_complete(s, acb, ret);
903 /* Free resources */
904 qemu_iovec_destroy(&acb->cur_qiov);
905 qed_unref_l2_cache_entry(acb->request.l2_table);
907 /* Free the buffer we may have allocated for zero writes */
908 if (acb->flags & QED_AIOCB_ZERO) {
909 qemu_vfree(acb->qiov->iov[0].iov_base);
910 acb->qiov->iov[0].iov_base = NULL;
913 /* Arrange for a bh to invoke the completion function */
914 acb->bh_ret = ret;
915 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
916 qemu_bh_schedule(acb->bh);
918 /* Start next allocating write request waiting behind this one. Note that
919 * requests enqueue themselves when they first hit an unallocated cluster
920 * but they wait until the entire request is finished before waking up the
921 * next request in the queue. This ensures that we don't cycle through
922 * requests multiple times but rather finish one at a time completely.
924 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
925 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
926 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
927 if (acb) {
928 qed_aio_next_io(acb, 0);
929 } else if (s->header.features & QED_F_NEED_CHECK) {
930 qed_start_need_check_timer(s);
936 * Commit the current L2 table to the cache
938 static void qed_commit_l2_update(void *opaque, int ret)
940 QEDAIOCB *acb = opaque;
941 BDRVQEDState *s = acb_to_s(acb);
942 CachedL2Table *l2_table = acb->request.l2_table;
943 uint64_t l2_offset = l2_table->offset;
945 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
947 /* This is guaranteed to succeed because we just committed the entry to the
948 * cache.
950 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
951 assert(acb->request.l2_table != NULL);
953 qed_aio_next_io(opaque, ret);
957 * Update L1 table with new L2 table offset and write it out
959 static void qed_aio_write_l1_update(void *opaque, int ret)
961 QEDAIOCB *acb = opaque;
962 BDRVQEDState *s = acb_to_s(acb);
963 int index;
965 if (ret) {
966 qed_aio_complete(acb, ret);
967 return;
970 index = qed_l1_index(s, acb->cur_pos);
971 s->l1_table->offsets[index] = acb->request.l2_table->offset;
973 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
977 * Update L2 table with new cluster offsets and write them out
979 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
981 BDRVQEDState *s = acb_to_s(acb);
982 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
983 int index;
985 if (ret) {
986 goto err;
989 if (need_alloc) {
990 qed_unref_l2_cache_entry(acb->request.l2_table);
991 acb->request.l2_table = qed_new_l2_table(s);
994 index = qed_l2_index(s, acb->cur_pos);
995 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
996 offset);
998 if (need_alloc) {
999 /* Write out the whole new L2 table */
1000 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1001 qed_aio_write_l1_update, acb);
1002 } else {
1003 /* Write out only the updated part of the L2 table */
1004 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1005 qed_aio_next_io, acb);
1007 return;
1009 err:
1010 qed_aio_complete(acb, ret);
1013 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1015 QEDAIOCB *acb = opaque;
1016 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1020 * Flush new data clusters before updating the L2 table
1022 * This flush is necessary when a backing file is in use. A crash during an
1023 * allocating write could result in empty clusters in the image. If the write
1024 * only touched a subregion of the cluster, then backing image sectors have
1025 * been lost in the untouched region. The solution is to flush after writing a
1026 * new data cluster and before updating the L2 table.
1028 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1030 QEDAIOCB *acb = opaque;
1031 BDRVQEDState *s = acb_to_s(acb);
1033 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1034 qed_aio_complete(acb, -EIO);
1039 * Write data to the image file
1041 static void qed_aio_write_main(void *opaque, int ret)
1043 QEDAIOCB *acb = opaque;
1044 BDRVQEDState *s = acb_to_s(acb);
1045 uint64_t offset = acb->cur_cluster +
1046 qed_offset_into_cluster(s, acb->cur_pos);
1047 BlockDriverCompletionFunc *next_fn;
1049 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1051 if (ret) {
1052 qed_aio_complete(acb, ret);
1053 return;
1056 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1057 next_fn = qed_aio_next_io;
1058 } else {
1059 if (s->bs->backing_hd) {
1060 next_fn = qed_aio_write_flush_before_l2_update;
1061 } else {
1062 next_fn = qed_aio_write_l2_update_cb;
1066 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1067 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1068 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1069 next_fn, acb);
1073 * Populate back untouched region of new data cluster
1075 static void qed_aio_write_postfill(void *opaque, int ret)
1077 QEDAIOCB *acb = opaque;
1078 BDRVQEDState *s = acb_to_s(acb);
1079 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1080 uint64_t len =
1081 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1082 uint64_t offset = acb->cur_cluster +
1083 qed_offset_into_cluster(s, acb->cur_pos) +
1084 acb->cur_qiov.size;
1086 if (ret) {
1087 qed_aio_complete(acb, ret);
1088 return;
1091 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1092 qed_copy_from_backing_file(s, start, len, offset,
1093 qed_aio_write_main, acb);
1097 * Populate front untouched region of new data cluster
1099 static void qed_aio_write_prefill(void *opaque, int ret)
1101 QEDAIOCB *acb = opaque;
1102 BDRVQEDState *s = acb_to_s(acb);
1103 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1104 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1106 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1107 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1108 qed_aio_write_postfill, acb);
1112 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1114 static bool qed_should_set_need_check(BDRVQEDState *s)
1116 /* The flush before L2 update path ensures consistency */
1117 if (s->bs->backing_hd) {
1118 return false;
1121 return !(s->header.features & QED_F_NEED_CHECK);
1124 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1126 QEDAIOCB *acb = opaque;
1128 if (ret) {
1129 qed_aio_complete(acb, ret);
1130 return;
1133 qed_aio_write_l2_update(acb, 0, 1);
1137 * Write new data cluster
1139 * @acb: Write request
1140 * @len: Length in bytes
1142 * This path is taken when writing to previously unallocated clusters.
1144 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1146 BDRVQEDState *s = acb_to_s(acb);
1147 BlockDriverCompletionFunc *cb;
1149 /* Cancel timer when the first allocating request comes in */
1150 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1151 qed_cancel_need_check_timer(s);
1154 /* Freeze this request if another allocating write is in progress */
1155 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1156 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1158 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1159 s->allocating_write_reqs_plugged) {
1160 return; /* wait for existing request to finish */
1163 acb->cur_nclusters = qed_bytes_to_clusters(s,
1164 qed_offset_into_cluster(s, acb->cur_pos) + len);
1165 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1167 if (acb->flags & QED_AIOCB_ZERO) {
1168 /* Skip ahead if the clusters are already zero */
1169 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1170 qed_aio_next_io(acb, 0);
1171 return;
1174 cb = qed_aio_write_zero_cluster;
1175 } else {
1176 cb = qed_aio_write_prefill;
1177 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1180 if (qed_should_set_need_check(s)) {
1181 s->header.features |= QED_F_NEED_CHECK;
1182 qed_write_header(s, cb, acb);
1183 } else {
1184 cb(acb, 0);
1189 * Write data cluster in place
1191 * @acb: Write request
1192 * @offset: Cluster offset in bytes
1193 * @len: Length in bytes
1195 * This path is taken when writing to already allocated clusters.
1197 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1199 /* Allocate buffer for zero writes */
1200 if (acb->flags & QED_AIOCB_ZERO) {
1201 struct iovec *iov = acb->qiov->iov;
1203 if (!iov->iov_base) {
1204 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1205 memset(iov->iov_base, 0, iov->iov_len);
1209 /* Calculate the I/O vector */
1210 acb->cur_cluster = offset;
1211 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1213 /* Do the actual write */
1214 qed_aio_write_main(acb, 0);
1218 * Write data cluster
1220 * @opaque: Write request
1221 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1222 * or -errno
1223 * @offset: Cluster offset in bytes
1224 * @len: Length in bytes
1226 * Callback from qed_find_cluster().
1228 static void qed_aio_write_data(void *opaque, int ret,
1229 uint64_t offset, size_t len)
1231 QEDAIOCB *acb = opaque;
1233 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1235 acb->find_cluster_ret = ret;
1237 switch (ret) {
1238 case QED_CLUSTER_FOUND:
1239 qed_aio_write_inplace(acb, offset, len);
1240 break;
1242 case QED_CLUSTER_L2:
1243 case QED_CLUSTER_L1:
1244 case QED_CLUSTER_ZERO:
1245 qed_aio_write_alloc(acb, len);
1246 break;
1248 default:
1249 qed_aio_complete(acb, ret);
1250 break;
1255 * Read data cluster
1257 * @opaque: Read request
1258 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1259 * or -errno
1260 * @offset: Cluster offset in bytes
1261 * @len: Length in bytes
1263 * Callback from qed_find_cluster().
1265 static void qed_aio_read_data(void *opaque, int ret,
1266 uint64_t offset, size_t len)
1268 QEDAIOCB *acb = opaque;
1269 BDRVQEDState *s = acb_to_s(acb);
1270 BlockDriverState *bs = acb->common.bs;
1272 /* Adjust offset into cluster */
1273 offset += qed_offset_into_cluster(s, acb->cur_pos);
1275 trace_qed_aio_read_data(s, acb, ret, offset, len);
1277 if (ret < 0) {
1278 goto err;
1281 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1283 /* Handle zero cluster and backing file reads */
1284 if (ret == QED_CLUSTER_ZERO) {
1285 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1286 qed_aio_next_io(acb, 0);
1287 return;
1288 } else if (ret != QED_CLUSTER_FOUND) {
1289 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1290 qed_aio_next_io, acb);
1291 return;
1294 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1295 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1296 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1297 qed_aio_next_io, acb);
1298 return;
1300 err:
1301 qed_aio_complete(acb, ret);
1305 * Begin next I/O or complete the request
1307 static void qed_aio_next_io(void *opaque, int ret)
1309 QEDAIOCB *acb = opaque;
1310 BDRVQEDState *s = acb_to_s(acb);
1311 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1312 qed_aio_write_data : qed_aio_read_data;
1314 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1316 /* Handle I/O error */
1317 if (ret) {
1318 qed_aio_complete(acb, ret);
1319 return;
1322 acb->qiov_offset += acb->cur_qiov.size;
1323 acb->cur_pos += acb->cur_qiov.size;
1324 qemu_iovec_reset(&acb->cur_qiov);
1326 /* Complete request */
1327 if (acb->cur_pos >= acb->end_pos) {
1328 qed_aio_complete(acb, 0);
1329 return;
1332 /* Find next cluster and start I/O */
1333 qed_find_cluster(s, &acb->request,
1334 acb->cur_pos, acb->end_pos - acb->cur_pos,
1335 io_fn, acb);
1338 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1339 int64_t sector_num,
1340 QEMUIOVector *qiov, int nb_sectors,
1341 BlockDriverCompletionFunc *cb,
1342 void *opaque, int flags)
1344 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1346 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1347 opaque, flags);
1349 acb->flags = flags;
1350 acb->finished = NULL;
1351 acb->qiov = qiov;
1352 acb->qiov_offset = 0;
1353 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1354 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1355 acb->request.l2_table = NULL;
1356 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1358 /* Start request */
1359 qed_aio_next_io(acb, 0);
1360 return &acb->common;
1363 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1364 int64_t sector_num,
1365 QEMUIOVector *qiov, int nb_sectors,
1366 BlockDriverCompletionFunc *cb,
1367 void *opaque)
1369 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1372 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1373 int64_t sector_num,
1374 QEMUIOVector *qiov, int nb_sectors,
1375 BlockDriverCompletionFunc *cb,
1376 void *opaque)
1378 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1379 opaque, QED_AIOCB_WRITE);
1382 typedef struct {
1383 Coroutine *co;
1384 int ret;
1385 bool done;
1386 } QEDWriteZeroesCB;
1388 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1390 QEDWriteZeroesCB *cb = opaque;
1392 cb->done = true;
1393 cb->ret = ret;
1394 if (cb->co) {
1395 qemu_coroutine_enter(cb->co, NULL);
1399 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1400 int64_t sector_num,
1401 int nb_sectors,
1402 BdrvRequestFlags flags)
1404 BlockDriverAIOCB *blockacb;
1405 BDRVQEDState *s = bs->opaque;
1406 QEDWriteZeroesCB cb = { .done = false };
1407 QEMUIOVector qiov;
1408 struct iovec iov;
1410 /* Refuse if there are untouched backing file sectors */
1411 if (bs->backing_hd) {
1412 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1413 return -ENOTSUP;
1415 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1416 return -ENOTSUP;
1420 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1421 * then it will be allocated during request processing.
1423 iov.iov_base = NULL,
1424 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1426 qemu_iovec_init_external(&qiov, &iov, 1);
1427 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1428 qed_co_write_zeroes_cb, &cb,
1429 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1430 if (!blockacb) {
1431 return -EIO;
1433 if (!cb.done) {
1434 cb.co = qemu_coroutine_self();
1435 qemu_coroutine_yield();
1437 assert(cb.done);
1438 return cb.ret;
1441 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1443 BDRVQEDState *s = bs->opaque;
1444 uint64_t old_image_size;
1445 int ret;
1447 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1448 s->header.table_size)) {
1449 return -EINVAL;
1452 /* Shrinking is currently not supported */
1453 if ((uint64_t)offset < s->header.image_size) {
1454 return -ENOTSUP;
1457 old_image_size = s->header.image_size;
1458 s->header.image_size = offset;
1459 ret = qed_write_header_sync(s);
1460 if (ret < 0) {
1461 s->header.image_size = old_image_size;
1463 return ret;
1466 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1468 BDRVQEDState *s = bs->opaque;
1469 return s->header.image_size;
1472 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1474 BDRVQEDState *s = bs->opaque;
1476 memset(bdi, 0, sizeof(*bdi));
1477 bdi->cluster_size = s->header.cluster_size;
1478 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1479 bdi->unallocated_blocks_are_zero = true;
1480 bdi->can_write_zeroes_with_unmap = true;
1481 return 0;
1484 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1485 const char *backing_file,
1486 const char *backing_fmt)
1488 BDRVQEDState *s = bs->opaque;
1489 QEDHeader new_header, le_header;
1490 void *buffer;
1491 size_t buffer_len, backing_file_len;
1492 int ret;
1494 /* Refuse to set backing filename if unknown compat feature bits are
1495 * active. If the image uses an unknown compat feature then we may not
1496 * know the layout of data following the header structure and cannot safely
1497 * add a new string.
1499 if (backing_file && (s->header.compat_features &
1500 ~QED_COMPAT_FEATURE_MASK)) {
1501 return -ENOTSUP;
1504 memcpy(&new_header, &s->header, sizeof(new_header));
1506 new_header.features &= ~(QED_F_BACKING_FILE |
1507 QED_F_BACKING_FORMAT_NO_PROBE);
1509 /* Adjust feature flags */
1510 if (backing_file) {
1511 new_header.features |= QED_F_BACKING_FILE;
1513 if (qed_fmt_is_raw(backing_fmt)) {
1514 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1518 /* Calculate new header size */
1519 backing_file_len = 0;
1521 if (backing_file) {
1522 backing_file_len = strlen(backing_file);
1525 buffer_len = sizeof(new_header);
1526 new_header.backing_filename_offset = buffer_len;
1527 new_header.backing_filename_size = backing_file_len;
1528 buffer_len += backing_file_len;
1530 /* Make sure we can rewrite header without failing */
1531 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1532 return -ENOSPC;
1535 /* Prepare new header */
1536 buffer = g_malloc(buffer_len);
1538 qed_header_cpu_to_le(&new_header, &le_header);
1539 memcpy(buffer, &le_header, sizeof(le_header));
1540 buffer_len = sizeof(le_header);
1542 if (backing_file) {
1543 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1544 buffer_len += backing_file_len;
1547 /* Write new header */
1548 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1549 g_free(buffer);
1550 if (ret == 0) {
1551 memcpy(&s->header, &new_header, sizeof(new_header));
1553 return ret;
1556 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1558 BDRVQEDState *s = bs->opaque;
1560 bdrv_qed_close(bs);
1561 memset(s, 0, sizeof(BDRVQEDState));
1562 bdrv_qed_open(bs, NULL, bs->open_flags, NULL);
1565 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1566 BdrvCheckMode fix)
1568 BDRVQEDState *s = bs->opaque;
1570 return qed_check(s, result, !!fix);
1573 static QEMUOptionParameter qed_create_options[] = {
1575 .name = BLOCK_OPT_SIZE,
1576 .type = OPT_SIZE,
1577 .help = "Virtual disk size (in bytes)"
1578 }, {
1579 .name = BLOCK_OPT_BACKING_FILE,
1580 .type = OPT_STRING,
1581 .help = "File name of a base image"
1582 }, {
1583 .name = BLOCK_OPT_BACKING_FMT,
1584 .type = OPT_STRING,
1585 .help = "Image format of the base image"
1586 }, {
1587 .name = BLOCK_OPT_CLUSTER_SIZE,
1588 .type = OPT_SIZE,
1589 .help = "Cluster size (in bytes)",
1590 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1591 }, {
1592 .name = BLOCK_OPT_TABLE_SIZE,
1593 .type = OPT_SIZE,
1594 .help = "L1/L2 table size (in clusters)"
1596 { /* end of list */ }
1599 static BlockDriver bdrv_qed = {
1600 .format_name = "qed",
1601 .instance_size = sizeof(BDRVQEDState),
1602 .create_options = qed_create_options,
1604 .bdrv_probe = bdrv_qed_probe,
1605 .bdrv_rebind = bdrv_qed_rebind,
1606 .bdrv_open = bdrv_qed_open,
1607 .bdrv_close = bdrv_qed_close,
1608 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1609 .bdrv_create = bdrv_qed_create,
1610 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1611 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1612 .bdrv_make_empty = bdrv_qed_make_empty,
1613 .bdrv_aio_readv = bdrv_qed_aio_readv,
1614 .bdrv_aio_writev = bdrv_qed_aio_writev,
1615 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1616 .bdrv_truncate = bdrv_qed_truncate,
1617 .bdrv_getlength = bdrv_qed_getlength,
1618 .bdrv_get_info = bdrv_qed_get_info,
1619 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1620 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1621 .bdrv_check = bdrv_qed_check,
1624 static void bdrv_qed_init(void)
1626 bdrv_register(&bdrv_qed);
1629 block_init(bdrv_qed_init);