block_int-common.h: split function pointers in BdrvChildClass
[qemu.git] / accel / kvm / kvm-all.c
blob0e66ebb49717509aa887a8053f1958ec8c172109
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
49 #include "hw/boards.h"
51 /* This check must be after config-host.h is included */
52 #ifdef CONFIG_EVENTFD
53 #include <sys/eventfd.h>
54 #endif
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
59 #ifdef PAGE_SIZE
60 #undef PAGE_SIZE
61 #endif
62 #define PAGE_SIZE qemu_real_host_page_size
64 #ifndef KVM_GUESTDBG_BLOCKIRQ
65 #define KVM_GUESTDBG_BLOCKIRQ 0
66 #endif
68 //#define DEBUG_KVM
70 #ifdef DEBUG_KVM
71 #define DPRINTF(fmt, ...) \
72 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
73 #else
74 #define DPRINTF(fmt, ...) \
75 do { } while (0)
76 #endif
78 #define KVM_MSI_HASHTAB_SIZE 256
80 struct KVMParkedVcpu {
81 unsigned long vcpu_id;
82 int kvm_fd;
83 QLIST_ENTRY(KVMParkedVcpu) node;
86 enum KVMDirtyRingReaperState {
87 KVM_DIRTY_RING_REAPER_NONE = 0,
88 /* The reaper is sleeping */
89 KVM_DIRTY_RING_REAPER_WAIT,
90 /* The reaper is reaping for dirty pages */
91 KVM_DIRTY_RING_REAPER_REAPING,
95 * KVM reaper instance, responsible for collecting the KVM dirty bits
96 * via the dirty ring.
98 struct KVMDirtyRingReaper {
99 /* The reaper thread */
100 QemuThread reaper_thr;
101 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
102 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
105 struct KVMState
107 AccelState parent_obj;
109 int nr_slots;
110 int fd;
111 int vmfd;
112 int coalesced_mmio;
113 int coalesced_pio;
114 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
115 bool coalesced_flush_in_progress;
116 int vcpu_events;
117 int robust_singlestep;
118 int debugregs;
119 #ifdef KVM_CAP_SET_GUEST_DEBUG
120 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
121 #endif
122 int max_nested_state_len;
123 int many_ioeventfds;
124 int intx_set_mask;
125 int kvm_shadow_mem;
126 bool kernel_irqchip_allowed;
127 bool kernel_irqchip_required;
128 OnOffAuto kernel_irqchip_split;
129 bool sync_mmu;
130 uint64_t manual_dirty_log_protect;
131 /* The man page (and posix) say ioctl numbers are signed int, but
132 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
133 * unsigned, and treating them as signed here can break things */
134 unsigned irq_set_ioctl;
135 unsigned int sigmask_len;
136 GHashTable *gsimap;
137 #ifdef KVM_CAP_IRQ_ROUTING
138 struct kvm_irq_routing *irq_routes;
139 int nr_allocated_irq_routes;
140 unsigned long *used_gsi_bitmap;
141 unsigned int gsi_count;
142 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
143 #endif
144 KVMMemoryListener memory_listener;
145 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
147 /* For "info mtree -f" to tell if an MR is registered in KVM */
148 int nr_as;
149 struct KVMAs {
150 KVMMemoryListener *ml;
151 AddressSpace *as;
152 } *as;
153 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */
154 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */
155 struct KVMDirtyRingReaper reaper;
158 KVMState *kvm_state;
159 bool kvm_kernel_irqchip;
160 bool kvm_split_irqchip;
161 bool kvm_async_interrupts_allowed;
162 bool kvm_halt_in_kernel_allowed;
163 bool kvm_eventfds_allowed;
164 bool kvm_irqfds_allowed;
165 bool kvm_resamplefds_allowed;
166 bool kvm_msi_via_irqfd_allowed;
167 bool kvm_gsi_routing_allowed;
168 bool kvm_gsi_direct_mapping;
169 bool kvm_allowed;
170 bool kvm_readonly_mem_allowed;
171 bool kvm_vm_attributes_allowed;
172 bool kvm_direct_msi_allowed;
173 bool kvm_ioeventfd_any_length_allowed;
174 bool kvm_msi_use_devid;
175 bool kvm_has_guest_debug;
176 int kvm_sstep_flags;
177 static bool kvm_immediate_exit;
178 static hwaddr kvm_max_slot_size = ~0;
180 static const KVMCapabilityInfo kvm_required_capabilites[] = {
181 KVM_CAP_INFO(USER_MEMORY),
182 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
183 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
184 KVM_CAP_LAST_INFO
187 static NotifierList kvm_irqchip_change_notifiers =
188 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
190 struct KVMResampleFd {
191 int gsi;
192 EventNotifier *resample_event;
193 QLIST_ENTRY(KVMResampleFd) node;
195 typedef struct KVMResampleFd KVMResampleFd;
198 * Only used with split irqchip where we need to do the resample fd
199 * kick for the kernel from userspace.
201 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
202 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
204 static QemuMutex kml_slots_lock;
206 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
207 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
209 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
211 static inline void kvm_resample_fd_remove(int gsi)
213 KVMResampleFd *rfd;
215 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
216 if (rfd->gsi == gsi) {
217 QLIST_REMOVE(rfd, node);
218 g_free(rfd);
219 break;
224 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
226 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
228 rfd->gsi = gsi;
229 rfd->resample_event = event;
231 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
234 void kvm_resample_fd_notify(int gsi)
236 KVMResampleFd *rfd;
238 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
239 if (rfd->gsi == gsi) {
240 event_notifier_set(rfd->resample_event);
241 trace_kvm_resample_fd_notify(gsi);
242 return;
247 int kvm_get_max_memslots(void)
249 KVMState *s = KVM_STATE(current_accel());
251 return s->nr_slots;
254 /* Called with KVMMemoryListener.slots_lock held */
255 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
257 KVMState *s = kvm_state;
258 int i;
260 for (i = 0; i < s->nr_slots; i++) {
261 if (kml->slots[i].memory_size == 0) {
262 return &kml->slots[i];
266 return NULL;
269 bool kvm_has_free_slot(MachineState *ms)
271 KVMState *s = KVM_STATE(ms->accelerator);
272 bool result;
273 KVMMemoryListener *kml = &s->memory_listener;
275 kvm_slots_lock();
276 result = !!kvm_get_free_slot(kml);
277 kvm_slots_unlock();
279 return result;
282 /* Called with KVMMemoryListener.slots_lock held */
283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
285 KVMSlot *slot = kvm_get_free_slot(kml);
287 if (slot) {
288 return slot;
291 fprintf(stderr, "%s: no free slot available\n", __func__);
292 abort();
295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
296 hwaddr start_addr,
297 hwaddr size)
299 KVMState *s = kvm_state;
300 int i;
302 for (i = 0; i < s->nr_slots; i++) {
303 KVMSlot *mem = &kml->slots[i];
305 if (start_addr == mem->start_addr && size == mem->memory_size) {
306 return mem;
310 return NULL;
314 * Calculate and align the start address and the size of the section.
315 * Return the size. If the size is 0, the aligned section is empty.
317 static hwaddr kvm_align_section(MemoryRegionSection *section,
318 hwaddr *start)
320 hwaddr size = int128_get64(section->size);
321 hwaddr delta, aligned;
323 /* kvm works in page size chunks, but the function may be called
324 with sub-page size and unaligned start address. Pad the start
325 address to next and truncate size to previous page boundary. */
326 aligned = ROUND_UP(section->offset_within_address_space,
327 qemu_real_host_page_size);
328 delta = aligned - section->offset_within_address_space;
329 *start = aligned;
330 if (delta > size) {
331 return 0;
334 return (size - delta) & qemu_real_host_page_mask;
337 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
338 hwaddr *phys_addr)
340 KVMMemoryListener *kml = &s->memory_listener;
341 int i, ret = 0;
343 kvm_slots_lock();
344 for (i = 0; i < s->nr_slots; i++) {
345 KVMSlot *mem = &kml->slots[i];
347 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
348 *phys_addr = mem->start_addr + (ram - mem->ram);
349 ret = 1;
350 break;
353 kvm_slots_unlock();
355 return ret;
358 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
360 KVMState *s = kvm_state;
361 struct kvm_userspace_memory_region mem;
362 int ret;
364 mem.slot = slot->slot | (kml->as_id << 16);
365 mem.guest_phys_addr = slot->start_addr;
366 mem.userspace_addr = (unsigned long)slot->ram;
367 mem.flags = slot->flags;
369 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
370 /* Set the slot size to 0 before setting the slot to the desired
371 * value. This is needed based on KVM commit 75d61fbc. */
372 mem.memory_size = 0;
373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
374 if (ret < 0) {
375 goto err;
378 mem.memory_size = slot->memory_size;
379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
380 slot->old_flags = mem.flags;
381 err:
382 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
383 mem.memory_size, mem.userspace_addr, ret);
384 if (ret < 0) {
385 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
386 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
387 __func__, mem.slot, slot->start_addr,
388 (uint64_t)mem.memory_size, strerror(errno));
390 return ret;
393 static int do_kvm_destroy_vcpu(CPUState *cpu)
395 KVMState *s = kvm_state;
396 long mmap_size;
397 struct KVMParkedVcpu *vcpu = NULL;
398 int ret = 0;
400 DPRINTF("kvm_destroy_vcpu\n");
402 ret = kvm_arch_destroy_vcpu(cpu);
403 if (ret < 0) {
404 goto err;
407 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
408 if (mmap_size < 0) {
409 ret = mmap_size;
410 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
411 goto err;
414 ret = munmap(cpu->kvm_run, mmap_size);
415 if (ret < 0) {
416 goto err;
419 if (cpu->kvm_dirty_gfns) {
420 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
421 if (ret < 0) {
422 goto err;
426 vcpu = g_malloc0(sizeof(*vcpu));
427 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
428 vcpu->kvm_fd = cpu->kvm_fd;
429 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
430 err:
431 return ret;
434 void kvm_destroy_vcpu(CPUState *cpu)
436 if (do_kvm_destroy_vcpu(cpu) < 0) {
437 error_report("kvm_destroy_vcpu failed");
438 exit(EXIT_FAILURE);
442 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
444 struct KVMParkedVcpu *cpu;
446 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
447 if (cpu->vcpu_id == vcpu_id) {
448 int kvm_fd;
450 QLIST_REMOVE(cpu, node);
451 kvm_fd = cpu->kvm_fd;
452 g_free(cpu);
453 return kvm_fd;
457 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
460 int kvm_init_vcpu(CPUState *cpu, Error **errp)
462 KVMState *s = kvm_state;
463 long mmap_size;
464 int ret;
466 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
468 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
469 if (ret < 0) {
470 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
471 kvm_arch_vcpu_id(cpu));
472 goto err;
475 cpu->kvm_fd = ret;
476 cpu->kvm_state = s;
477 cpu->vcpu_dirty = true;
478 cpu->dirty_pages = 0;
480 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
481 if (mmap_size < 0) {
482 ret = mmap_size;
483 error_setg_errno(errp, -mmap_size,
484 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
485 goto err;
488 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
489 cpu->kvm_fd, 0);
490 if (cpu->kvm_run == MAP_FAILED) {
491 ret = -errno;
492 error_setg_errno(errp, ret,
493 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
494 kvm_arch_vcpu_id(cpu));
495 goto err;
498 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
499 s->coalesced_mmio_ring =
500 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
503 if (s->kvm_dirty_ring_size) {
504 /* Use MAP_SHARED to share pages with the kernel */
505 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
506 PROT_READ | PROT_WRITE, MAP_SHARED,
507 cpu->kvm_fd,
508 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
509 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
510 ret = -errno;
511 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
512 goto err;
516 ret = kvm_arch_init_vcpu(cpu);
517 if (ret < 0) {
518 error_setg_errno(errp, -ret,
519 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
520 kvm_arch_vcpu_id(cpu));
522 err:
523 return ret;
527 * dirty pages logging control
530 static int kvm_mem_flags(MemoryRegion *mr)
532 bool readonly = mr->readonly || memory_region_is_romd(mr);
533 int flags = 0;
535 if (memory_region_get_dirty_log_mask(mr) != 0) {
536 flags |= KVM_MEM_LOG_DIRTY_PAGES;
538 if (readonly && kvm_readonly_mem_allowed) {
539 flags |= KVM_MEM_READONLY;
541 return flags;
544 /* Called with KVMMemoryListener.slots_lock held */
545 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
546 MemoryRegion *mr)
548 mem->flags = kvm_mem_flags(mr);
550 /* If nothing changed effectively, no need to issue ioctl */
551 if (mem->flags == mem->old_flags) {
552 return 0;
555 kvm_slot_init_dirty_bitmap(mem);
556 return kvm_set_user_memory_region(kml, mem, false);
559 static int kvm_section_update_flags(KVMMemoryListener *kml,
560 MemoryRegionSection *section)
562 hwaddr start_addr, size, slot_size;
563 KVMSlot *mem;
564 int ret = 0;
566 size = kvm_align_section(section, &start_addr);
567 if (!size) {
568 return 0;
571 kvm_slots_lock();
573 while (size && !ret) {
574 slot_size = MIN(kvm_max_slot_size, size);
575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
576 if (!mem) {
577 /* We don't have a slot if we want to trap every access. */
578 goto out;
581 ret = kvm_slot_update_flags(kml, mem, section->mr);
582 start_addr += slot_size;
583 size -= slot_size;
586 out:
587 kvm_slots_unlock();
588 return ret;
591 static void kvm_log_start(MemoryListener *listener,
592 MemoryRegionSection *section,
593 int old, int new)
595 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
596 int r;
598 if (old != 0) {
599 return;
602 r = kvm_section_update_flags(kml, section);
603 if (r < 0) {
604 abort();
608 static void kvm_log_stop(MemoryListener *listener,
609 MemoryRegionSection *section,
610 int old, int new)
612 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
613 int r;
615 if (new != 0) {
616 return;
619 r = kvm_section_update_flags(kml, section);
620 if (r < 0) {
621 abort();
625 /* get kvm's dirty pages bitmap and update qemu's */
626 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
628 ram_addr_t start = slot->ram_start_offset;
629 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
631 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
634 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
636 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
639 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
641 /* Allocate the dirty bitmap for a slot */
642 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
644 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
645 return;
649 * XXX bad kernel interface alert
650 * For dirty bitmap, kernel allocates array of size aligned to
651 * bits-per-long. But for case when the kernel is 64bits and
652 * the userspace is 32bits, userspace can't align to the same
653 * bits-per-long, since sizeof(long) is different between kernel
654 * and user space. This way, userspace will provide buffer which
655 * may be 4 bytes less than the kernel will use, resulting in
656 * userspace memory corruption (which is not detectable by valgrind
657 * too, in most cases).
658 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
659 * a hope that sizeof(long) won't become >8 any time soon.
661 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
662 * And mem->memory_size is aligned to it (otherwise this mem can't
663 * be registered to KVM).
665 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
666 /*HOST_LONG_BITS*/ 64) / 8;
667 mem->dirty_bmap = g_malloc0(bitmap_size);
668 mem->dirty_bmap_size = bitmap_size;
672 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
673 * succeeded, false otherwise
675 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
677 struct kvm_dirty_log d = {};
678 int ret;
680 d.dirty_bitmap = slot->dirty_bmap;
681 d.slot = slot->slot | (slot->as_id << 16);
682 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
684 if (ret == -ENOENT) {
685 /* kernel does not have dirty bitmap in this slot */
686 ret = 0;
688 if (ret) {
689 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
690 __func__, ret);
692 return ret == 0;
695 /* Should be with all slots_lock held for the address spaces. */
696 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
697 uint32_t slot_id, uint64_t offset)
699 KVMMemoryListener *kml;
700 KVMSlot *mem;
702 if (as_id >= s->nr_as) {
703 return;
706 kml = s->as[as_id].ml;
707 mem = &kml->slots[slot_id];
709 if (!mem->memory_size || offset >=
710 (mem->memory_size / qemu_real_host_page_size)) {
711 return;
714 set_bit(offset, mem->dirty_bmap);
717 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
719 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
722 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
724 gfn->flags = KVM_DIRTY_GFN_F_RESET;
728 * Should be with all slots_lock held for the address spaces. It returns the
729 * dirty page we've collected on this dirty ring.
731 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
733 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
734 uint32_t ring_size = s->kvm_dirty_ring_size;
735 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
737 assert(dirty_gfns && ring_size);
738 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
740 while (true) {
741 cur = &dirty_gfns[fetch % ring_size];
742 if (!dirty_gfn_is_dirtied(cur)) {
743 break;
745 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
746 cur->offset);
747 dirty_gfn_set_collected(cur);
748 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
749 fetch++;
750 count++;
752 cpu->kvm_fetch_index = fetch;
753 cpu->dirty_pages += count;
755 return count;
758 /* Must be with slots_lock held */
759 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
761 int ret;
762 CPUState *cpu;
763 uint64_t total = 0;
764 int64_t stamp;
766 stamp = get_clock();
768 CPU_FOREACH(cpu) {
769 total += kvm_dirty_ring_reap_one(s, cpu);
772 if (total) {
773 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
774 assert(ret == total);
777 stamp = get_clock() - stamp;
779 if (total) {
780 trace_kvm_dirty_ring_reap(total, stamp / 1000);
783 return total;
787 * Currently for simplicity, we must hold BQL before calling this. We can
788 * consider to drop the BQL if we're clear with all the race conditions.
790 static uint64_t kvm_dirty_ring_reap(KVMState *s)
792 uint64_t total;
795 * We need to lock all kvm slots for all address spaces here,
796 * because:
798 * (1) We need to mark dirty for dirty bitmaps in multiple slots
799 * and for tons of pages, so it's better to take the lock here
800 * once rather than once per page. And more importantly,
802 * (2) We must _NOT_ publish dirty bits to the other threads
803 * (e.g., the migration thread) via the kvm memory slot dirty
804 * bitmaps before correctly re-protect those dirtied pages.
805 * Otherwise we can have potential risk of data corruption if
806 * the page data is read in the other thread before we do
807 * reset below.
809 kvm_slots_lock();
810 total = kvm_dirty_ring_reap_locked(s);
811 kvm_slots_unlock();
813 return total;
816 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
818 /* No need to do anything */
822 * Kick all vcpus out in a synchronized way. When returned, we
823 * guarantee that every vcpu has been kicked and at least returned to
824 * userspace once.
826 static void kvm_cpu_synchronize_kick_all(void)
828 CPUState *cpu;
830 CPU_FOREACH(cpu) {
831 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
836 * Flush all the existing dirty pages to the KVM slot buffers. When
837 * this call returns, we guarantee that all the touched dirty pages
838 * before calling this function have been put into the per-kvmslot
839 * dirty bitmap.
841 * This function must be called with BQL held.
843 static void kvm_dirty_ring_flush(void)
845 trace_kvm_dirty_ring_flush(0);
847 * The function needs to be serialized. Since this function
848 * should always be with BQL held, serialization is guaranteed.
849 * However, let's be sure of it.
851 assert(qemu_mutex_iothread_locked());
853 * First make sure to flush the hardware buffers by kicking all
854 * vcpus out in a synchronous way.
856 kvm_cpu_synchronize_kick_all();
857 kvm_dirty_ring_reap(kvm_state);
858 trace_kvm_dirty_ring_flush(1);
862 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
864 * This function will first try to fetch dirty bitmap from the kernel,
865 * and then updates qemu's dirty bitmap.
867 * NOTE: caller must be with kml->slots_lock held.
869 * @kml: the KVM memory listener object
870 * @section: the memory section to sync the dirty bitmap with
872 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
873 MemoryRegionSection *section)
875 KVMState *s = kvm_state;
876 KVMSlot *mem;
877 hwaddr start_addr, size;
878 hwaddr slot_size;
880 size = kvm_align_section(section, &start_addr);
881 while (size) {
882 slot_size = MIN(kvm_max_slot_size, size);
883 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
884 if (!mem) {
885 /* We don't have a slot if we want to trap every access. */
886 return;
888 if (kvm_slot_get_dirty_log(s, mem)) {
889 kvm_slot_sync_dirty_pages(mem);
891 start_addr += slot_size;
892 size -= slot_size;
896 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
897 #define KVM_CLEAR_LOG_SHIFT 6
898 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
899 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
901 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
902 uint64_t size)
904 KVMState *s = kvm_state;
905 uint64_t end, bmap_start, start_delta, bmap_npages;
906 struct kvm_clear_dirty_log d;
907 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
908 int ret;
911 * We need to extend either the start or the size or both to
912 * satisfy the KVM interface requirement. Firstly, do the start
913 * page alignment on 64 host pages
915 bmap_start = start & KVM_CLEAR_LOG_MASK;
916 start_delta = start - bmap_start;
917 bmap_start /= psize;
920 * The kernel interface has restriction on the size too, that either:
922 * (1) the size is 64 host pages aligned (just like the start), or
923 * (2) the size fills up until the end of the KVM memslot.
925 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
926 << KVM_CLEAR_LOG_SHIFT;
927 end = mem->memory_size / psize;
928 if (bmap_npages > end - bmap_start) {
929 bmap_npages = end - bmap_start;
931 start_delta /= psize;
934 * Prepare the bitmap to clear dirty bits. Here we must guarantee
935 * that we won't clear any unknown dirty bits otherwise we might
936 * accidentally clear some set bits which are not yet synced from
937 * the kernel into QEMU's bitmap, then we'll lose track of the
938 * guest modifications upon those pages (which can directly lead
939 * to guest data loss or panic after migration).
941 * Layout of the KVMSlot.dirty_bmap:
943 * |<-------- bmap_npages -----------..>|
944 * [1]
945 * start_delta size
946 * |----------------|-------------|------------------|------------|
947 * ^ ^ ^ ^
948 * | | | |
949 * start bmap_start (start) end
950 * of memslot of memslot
952 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
955 assert(bmap_start % BITS_PER_LONG == 0);
956 /* We should never do log_clear before log_sync */
957 assert(mem->dirty_bmap);
958 if (start_delta || bmap_npages - size / psize) {
959 /* Slow path - we need to manipulate a temp bitmap */
960 bmap_clear = bitmap_new(bmap_npages);
961 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
962 bmap_start, start_delta + size / psize);
964 * We need to fill the holes at start because that was not
965 * specified by the caller and we extended the bitmap only for
966 * 64 pages alignment
968 bitmap_clear(bmap_clear, 0, start_delta);
969 d.dirty_bitmap = bmap_clear;
970 } else {
972 * Fast path - both start and size align well with BITS_PER_LONG
973 * (or the end of memory slot)
975 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
978 d.first_page = bmap_start;
979 /* It should never overflow. If it happens, say something */
980 assert(bmap_npages <= UINT32_MAX);
981 d.num_pages = bmap_npages;
982 d.slot = mem->slot | (as_id << 16);
984 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
985 if (ret < 0 && ret != -ENOENT) {
986 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
987 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
988 __func__, d.slot, (uint64_t)d.first_page,
989 (uint32_t)d.num_pages, ret);
990 } else {
991 ret = 0;
992 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
996 * After we have updated the remote dirty bitmap, we update the
997 * cached bitmap as well for the memslot, then if another user
998 * clears the same region we know we shouldn't clear it again on
999 * the remote otherwise it's data loss as well.
1001 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1002 size / psize);
1003 /* This handles the NULL case well */
1004 g_free(bmap_clear);
1005 return ret;
1010 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1012 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1013 * protection in the host kernel because in that case this operation
1014 * will be done within log_sync().
1016 * @kml: the kvm memory listener
1017 * @section: the memory range to clear dirty bitmap
1019 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1020 MemoryRegionSection *section)
1022 KVMState *s = kvm_state;
1023 uint64_t start, size, offset, count;
1024 KVMSlot *mem;
1025 int ret = 0, i;
1027 if (!s->manual_dirty_log_protect) {
1028 /* No need to do explicit clear */
1029 return ret;
1032 start = section->offset_within_address_space;
1033 size = int128_get64(section->size);
1035 if (!size) {
1036 /* Nothing more we can do... */
1037 return ret;
1040 kvm_slots_lock();
1042 for (i = 0; i < s->nr_slots; i++) {
1043 mem = &kml->slots[i];
1044 /* Discard slots that are empty or do not overlap the section */
1045 if (!mem->memory_size ||
1046 mem->start_addr > start + size - 1 ||
1047 start > mem->start_addr + mem->memory_size - 1) {
1048 continue;
1051 if (start >= mem->start_addr) {
1052 /* The slot starts before section or is aligned to it. */
1053 offset = start - mem->start_addr;
1054 count = MIN(mem->memory_size - offset, size);
1055 } else {
1056 /* The slot starts after section. */
1057 offset = 0;
1058 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1060 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1061 if (ret < 0) {
1062 break;
1066 kvm_slots_unlock();
1068 return ret;
1071 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1072 MemoryRegionSection *secion,
1073 hwaddr start, hwaddr size)
1075 KVMState *s = kvm_state;
1077 if (s->coalesced_mmio) {
1078 struct kvm_coalesced_mmio_zone zone;
1080 zone.addr = start;
1081 zone.size = size;
1082 zone.pad = 0;
1084 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1088 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1089 MemoryRegionSection *secion,
1090 hwaddr start, hwaddr size)
1092 KVMState *s = kvm_state;
1094 if (s->coalesced_mmio) {
1095 struct kvm_coalesced_mmio_zone zone;
1097 zone.addr = start;
1098 zone.size = size;
1099 zone.pad = 0;
1101 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1105 static void kvm_coalesce_pio_add(MemoryListener *listener,
1106 MemoryRegionSection *section,
1107 hwaddr start, hwaddr size)
1109 KVMState *s = kvm_state;
1111 if (s->coalesced_pio) {
1112 struct kvm_coalesced_mmio_zone zone;
1114 zone.addr = start;
1115 zone.size = size;
1116 zone.pio = 1;
1118 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1122 static void kvm_coalesce_pio_del(MemoryListener *listener,
1123 MemoryRegionSection *section,
1124 hwaddr start, hwaddr size)
1126 KVMState *s = kvm_state;
1128 if (s->coalesced_pio) {
1129 struct kvm_coalesced_mmio_zone zone;
1131 zone.addr = start;
1132 zone.size = size;
1133 zone.pio = 1;
1135 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1139 static MemoryListener kvm_coalesced_pio_listener = {
1140 .name = "kvm-coalesced-pio",
1141 .coalesced_io_add = kvm_coalesce_pio_add,
1142 .coalesced_io_del = kvm_coalesce_pio_del,
1145 int kvm_check_extension(KVMState *s, unsigned int extension)
1147 int ret;
1149 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1150 if (ret < 0) {
1151 ret = 0;
1154 return ret;
1157 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1159 int ret;
1161 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1162 if (ret < 0) {
1163 /* VM wide version not implemented, use global one instead */
1164 ret = kvm_check_extension(s, extension);
1167 return ret;
1170 typedef struct HWPoisonPage {
1171 ram_addr_t ram_addr;
1172 QLIST_ENTRY(HWPoisonPage) list;
1173 } HWPoisonPage;
1175 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1176 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1178 static void kvm_unpoison_all(void *param)
1180 HWPoisonPage *page, *next_page;
1182 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1183 QLIST_REMOVE(page, list);
1184 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1185 g_free(page);
1189 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1191 HWPoisonPage *page;
1193 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1194 if (page->ram_addr == ram_addr) {
1195 return;
1198 page = g_new(HWPoisonPage, 1);
1199 page->ram_addr = ram_addr;
1200 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1203 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1205 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
1206 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
1207 * endianness, but the memory core hands them in target endianness.
1208 * For example, PPC is always treated as big-endian even if running
1209 * on KVM and on PPC64LE. Correct here.
1211 switch (size) {
1212 case 2:
1213 val = bswap16(val);
1214 break;
1215 case 4:
1216 val = bswap32(val);
1217 break;
1219 #endif
1220 return val;
1223 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1224 bool assign, uint32_t size, bool datamatch)
1226 int ret;
1227 struct kvm_ioeventfd iofd = {
1228 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1229 .addr = addr,
1230 .len = size,
1231 .flags = 0,
1232 .fd = fd,
1235 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1236 datamatch);
1237 if (!kvm_enabled()) {
1238 return -ENOSYS;
1241 if (datamatch) {
1242 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1244 if (!assign) {
1245 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1248 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1250 if (ret < 0) {
1251 return -errno;
1254 return 0;
1257 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1258 bool assign, uint32_t size, bool datamatch)
1260 struct kvm_ioeventfd kick = {
1261 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1262 .addr = addr,
1263 .flags = KVM_IOEVENTFD_FLAG_PIO,
1264 .len = size,
1265 .fd = fd,
1267 int r;
1268 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1269 if (!kvm_enabled()) {
1270 return -ENOSYS;
1272 if (datamatch) {
1273 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1275 if (!assign) {
1276 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1278 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1279 if (r < 0) {
1280 return r;
1282 return 0;
1286 static int kvm_check_many_ioeventfds(void)
1288 /* Userspace can use ioeventfd for io notification. This requires a host
1289 * that supports eventfd(2) and an I/O thread; since eventfd does not
1290 * support SIGIO it cannot interrupt the vcpu.
1292 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1293 * can avoid creating too many ioeventfds.
1295 #if defined(CONFIG_EVENTFD)
1296 int ioeventfds[7];
1297 int i, ret = 0;
1298 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1299 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1300 if (ioeventfds[i] < 0) {
1301 break;
1303 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1304 if (ret < 0) {
1305 close(ioeventfds[i]);
1306 break;
1310 /* Decide whether many devices are supported or not */
1311 ret = i == ARRAY_SIZE(ioeventfds);
1313 while (i-- > 0) {
1314 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1315 close(ioeventfds[i]);
1317 return ret;
1318 #else
1319 return 0;
1320 #endif
1323 static const KVMCapabilityInfo *
1324 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1326 while (list->name) {
1327 if (!kvm_check_extension(s, list->value)) {
1328 return list;
1330 list++;
1332 return NULL;
1335 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1337 g_assert(
1338 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1340 kvm_max_slot_size = max_slot_size;
1343 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1344 MemoryRegionSection *section, bool add)
1346 KVMSlot *mem;
1347 int err;
1348 MemoryRegion *mr = section->mr;
1349 bool writeable = !mr->readonly && !mr->rom_device;
1350 hwaddr start_addr, size, slot_size, mr_offset;
1351 ram_addr_t ram_start_offset;
1352 void *ram;
1354 if (!memory_region_is_ram(mr)) {
1355 if (writeable || !kvm_readonly_mem_allowed) {
1356 return;
1357 } else if (!mr->romd_mode) {
1358 /* If the memory device is not in romd_mode, then we actually want
1359 * to remove the kvm memory slot so all accesses will trap. */
1360 add = false;
1364 size = kvm_align_section(section, &start_addr);
1365 if (!size) {
1366 return;
1369 /* The offset of the kvmslot within the memory region */
1370 mr_offset = section->offset_within_region + start_addr -
1371 section->offset_within_address_space;
1373 /* use aligned delta to align the ram address and offset */
1374 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1375 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1377 kvm_slots_lock();
1379 if (!add) {
1380 do {
1381 slot_size = MIN(kvm_max_slot_size, size);
1382 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1383 if (!mem) {
1384 goto out;
1386 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1388 * NOTE: We should be aware of the fact that here we're only
1389 * doing a best effort to sync dirty bits. No matter whether
1390 * we're using dirty log or dirty ring, we ignored two facts:
1392 * (1) dirty bits can reside in hardware buffers (PML)
1394 * (2) after we collected dirty bits here, pages can be dirtied
1395 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1396 * remove the slot.
1398 * Not easy. Let's cross the fingers until it's fixed.
1400 if (kvm_state->kvm_dirty_ring_size) {
1401 kvm_dirty_ring_reap_locked(kvm_state);
1402 } else {
1403 kvm_slot_get_dirty_log(kvm_state, mem);
1405 kvm_slot_sync_dirty_pages(mem);
1408 /* unregister the slot */
1409 g_free(mem->dirty_bmap);
1410 mem->dirty_bmap = NULL;
1411 mem->memory_size = 0;
1412 mem->flags = 0;
1413 err = kvm_set_user_memory_region(kml, mem, false);
1414 if (err) {
1415 fprintf(stderr, "%s: error unregistering slot: %s\n",
1416 __func__, strerror(-err));
1417 abort();
1419 start_addr += slot_size;
1420 size -= slot_size;
1421 } while (size);
1422 goto out;
1425 /* register the new slot */
1426 do {
1427 slot_size = MIN(kvm_max_slot_size, size);
1428 mem = kvm_alloc_slot(kml);
1429 mem->as_id = kml->as_id;
1430 mem->memory_size = slot_size;
1431 mem->start_addr = start_addr;
1432 mem->ram_start_offset = ram_start_offset;
1433 mem->ram = ram;
1434 mem->flags = kvm_mem_flags(mr);
1435 kvm_slot_init_dirty_bitmap(mem);
1436 err = kvm_set_user_memory_region(kml, mem, true);
1437 if (err) {
1438 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1439 strerror(-err));
1440 abort();
1442 start_addr += slot_size;
1443 ram_start_offset += slot_size;
1444 ram += slot_size;
1445 size -= slot_size;
1446 } while (size);
1448 out:
1449 kvm_slots_unlock();
1452 static void *kvm_dirty_ring_reaper_thread(void *data)
1454 KVMState *s = data;
1455 struct KVMDirtyRingReaper *r = &s->reaper;
1457 rcu_register_thread();
1459 trace_kvm_dirty_ring_reaper("init");
1461 while (true) {
1462 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1463 trace_kvm_dirty_ring_reaper("wait");
1465 * TODO: provide a smarter timeout rather than a constant?
1467 sleep(1);
1469 trace_kvm_dirty_ring_reaper("wakeup");
1470 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1472 qemu_mutex_lock_iothread();
1473 kvm_dirty_ring_reap(s);
1474 qemu_mutex_unlock_iothread();
1476 r->reaper_iteration++;
1479 trace_kvm_dirty_ring_reaper("exit");
1481 rcu_unregister_thread();
1483 return NULL;
1486 static int kvm_dirty_ring_reaper_init(KVMState *s)
1488 struct KVMDirtyRingReaper *r = &s->reaper;
1490 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1491 kvm_dirty_ring_reaper_thread,
1492 s, QEMU_THREAD_JOINABLE);
1494 return 0;
1497 static void kvm_region_add(MemoryListener *listener,
1498 MemoryRegionSection *section)
1500 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1502 memory_region_ref(section->mr);
1503 kvm_set_phys_mem(kml, section, true);
1506 static void kvm_region_del(MemoryListener *listener,
1507 MemoryRegionSection *section)
1509 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1511 kvm_set_phys_mem(kml, section, false);
1512 memory_region_unref(section->mr);
1515 static void kvm_log_sync(MemoryListener *listener,
1516 MemoryRegionSection *section)
1518 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1520 kvm_slots_lock();
1521 kvm_physical_sync_dirty_bitmap(kml, section);
1522 kvm_slots_unlock();
1525 static void kvm_log_sync_global(MemoryListener *l)
1527 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1528 KVMState *s = kvm_state;
1529 KVMSlot *mem;
1530 int i;
1532 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1533 kvm_dirty_ring_flush();
1536 * TODO: make this faster when nr_slots is big while there are
1537 * only a few used slots (small VMs).
1539 kvm_slots_lock();
1540 for (i = 0; i < s->nr_slots; i++) {
1541 mem = &kml->slots[i];
1542 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1543 kvm_slot_sync_dirty_pages(mem);
1545 * This is not needed by KVM_GET_DIRTY_LOG because the
1546 * ioctl will unconditionally overwrite the whole region.
1547 * However kvm dirty ring has no such side effect.
1549 kvm_slot_reset_dirty_pages(mem);
1552 kvm_slots_unlock();
1555 static void kvm_log_clear(MemoryListener *listener,
1556 MemoryRegionSection *section)
1558 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1559 int r;
1561 r = kvm_physical_log_clear(kml, section);
1562 if (r < 0) {
1563 error_report_once("%s: kvm log clear failed: mr=%s "
1564 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1565 section->mr->name, section->offset_within_region,
1566 int128_get64(section->size));
1567 abort();
1571 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1572 MemoryRegionSection *section,
1573 bool match_data, uint64_t data,
1574 EventNotifier *e)
1576 int fd = event_notifier_get_fd(e);
1577 int r;
1579 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1580 data, true, int128_get64(section->size),
1581 match_data);
1582 if (r < 0) {
1583 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1584 __func__, strerror(-r), -r);
1585 abort();
1589 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1590 MemoryRegionSection *section,
1591 bool match_data, uint64_t data,
1592 EventNotifier *e)
1594 int fd = event_notifier_get_fd(e);
1595 int r;
1597 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1598 data, false, int128_get64(section->size),
1599 match_data);
1600 if (r < 0) {
1601 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1602 __func__, strerror(-r), -r);
1603 abort();
1607 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1608 MemoryRegionSection *section,
1609 bool match_data, uint64_t data,
1610 EventNotifier *e)
1612 int fd = event_notifier_get_fd(e);
1613 int r;
1615 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1616 data, true, int128_get64(section->size),
1617 match_data);
1618 if (r < 0) {
1619 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1620 __func__, strerror(-r), -r);
1621 abort();
1625 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1626 MemoryRegionSection *section,
1627 bool match_data, uint64_t data,
1628 EventNotifier *e)
1631 int fd = event_notifier_get_fd(e);
1632 int r;
1634 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1635 data, false, int128_get64(section->size),
1636 match_data);
1637 if (r < 0) {
1638 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1639 __func__, strerror(-r), -r);
1640 abort();
1644 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1645 AddressSpace *as, int as_id, const char *name)
1647 int i;
1649 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1650 kml->as_id = as_id;
1652 for (i = 0; i < s->nr_slots; i++) {
1653 kml->slots[i].slot = i;
1656 kml->listener.region_add = kvm_region_add;
1657 kml->listener.region_del = kvm_region_del;
1658 kml->listener.log_start = kvm_log_start;
1659 kml->listener.log_stop = kvm_log_stop;
1660 kml->listener.priority = 10;
1661 kml->listener.name = name;
1663 if (s->kvm_dirty_ring_size) {
1664 kml->listener.log_sync_global = kvm_log_sync_global;
1665 } else {
1666 kml->listener.log_sync = kvm_log_sync;
1667 kml->listener.log_clear = kvm_log_clear;
1670 memory_listener_register(&kml->listener, as);
1672 for (i = 0; i < s->nr_as; ++i) {
1673 if (!s->as[i].as) {
1674 s->as[i].as = as;
1675 s->as[i].ml = kml;
1676 break;
1681 static MemoryListener kvm_io_listener = {
1682 .name = "kvm-io",
1683 .eventfd_add = kvm_io_ioeventfd_add,
1684 .eventfd_del = kvm_io_ioeventfd_del,
1685 .priority = 10,
1688 int kvm_set_irq(KVMState *s, int irq, int level)
1690 struct kvm_irq_level event;
1691 int ret;
1693 assert(kvm_async_interrupts_enabled());
1695 event.level = level;
1696 event.irq = irq;
1697 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1698 if (ret < 0) {
1699 perror("kvm_set_irq");
1700 abort();
1703 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1706 #ifdef KVM_CAP_IRQ_ROUTING
1707 typedef struct KVMMSIRoute {
1708 struct kvm_irq_routing_entry kroute;
1709 QTAILQ_ENTRY(KVMMSIRoute) entry;
1710 } KVMMSIRoute;
1712 static void set_gsi(KVMState *s, unsigned int gsi)
1714 set_bit(gsi, s->used_gsi_bitmap);
1717 static void clear_gsi(KVMState *s, unsigned int gsi)
1719 clear_bit(gsi, s->used_gsi_bitmap);
1722 void kvm_init_irq_routing(KVMState *s)
1724 int gsi_count, i;
1726 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1727 if (gsi_count > 0) {
1728 /* Round up so we can search ints using ffs */
1729 s->used_gsi_bitmap = bitmap_new(gsi_count);
1730 s->gsi_count = gsi_count;
1733 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1734 s->nr_allocated_irq_routes = 0;
1736 if (!kvm_direct_msi_allowed) {
1737 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1738 QTAILQ_INIT(&s->msi_hashtab[i]);
1742 kvm_arch_init_irq_routing(s);
1745 void kvm_irqchip_commit_routes(KVMState *s)
1747 int ret;
1749 if (kvm_gsi_direct_mapping()) {
1750 return;
1753 if (!kvm_gsi_routing_enabled()) {
1754 return;
1757 s->irq_routes->flags = 0;
1758 trace_kvm_irqchip_commit_routes();
1759 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1760 assert(ret == 0);
1763 static void kvm_add_routing_entry(KVMState *s,
1764 struct kvm_irq_routing_entry *entry)
1766 struct kvm_irq_routing_entry *new;
1767 int n, size;
1769 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1770 n = s->nr_allocated_irq_routes * 2;
1771 if (n < 64) {
1772 n = 64;
1774 size = sizeof(struct kvm_irq_routing);
1775 size += n * sizeof(*new);
1776 s->irq_routes = g_realloc(s->irq_routes, size);
1777 s->nr_allocated_irq_routes = n;
1779 n = s->irq_routes->nr++;
1780 new = &s->irq_routes->entries[n];
1782 *new = *entry;
1784 set_gsi(s, entry->gsi);
1787 static int kvm_update_routing_entry(KVMState *s,
1788 struct kvm_irq_routing_entry *new_entry)
1790 struct kvm_irq_routing_entry *entry;
1791 int n;
1793 for (n = 0; n < s->irq_routes->nr; n++) {
1794 entry = &s->irq_routes->entries[n];
1795 if (entry->gsi != new_entry->gsi) {
1796 continue;
1799 if(!memcmp(entry, new_entry, sizeof *entry)) {
1800 return 0;
1803 *entry = *new_entry;
1805 return 0;
1808 return -ESRCH;
1811 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1813 struct kvm_irq_routing_entry e = {};
1815 assert(pin < s->gsi_count);
1817 e.gsi = irq;
1818 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1819 e.flags = 0;
1820 e.u.irqchip.irqchip = irqchip;
1821 e.u.irqchip.pin = pin;
1822 kvm_add_routing_entry(s, &e);
1825 void kvm_irqchip_release_virq(KVMState *s, int virq)
1827 struct kvm_irq_routing_entry *e;
1828 int i;
1830 if (kvm_gsi_direct_mapping()) {
1831 return;
1834 for (i = 0; i < s->irq_routes->nr; i++) {
1835 e = &s->irq_routes->entries[i];
1836 if (e->gsi == virq) {
1837 s->irq_routes->nr--;
1838 *e = s->irq_routes->entries[s->irq_routes->nr];
1841 clear_gsi(s, virq);
1842 kvm_arch_release_virq_post(virq);
1843 trace_kvm_irqchip_release_virq(virq);
1846 void kvm_irqchip_add_change_notifier(Notifier *n)
1848 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1851 void kvm_irqchip_remove_change_notifier(Notifier *n)
1853 notifier_remove(n);
1856 void kvm_irqchip_change_notify(void)
1858 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1861 static unsigned int kvm_hash_msi(uint32_t data)
1863 /* This is optimized for IA32 MSI layout. However, no other arch shall
1864 * repeat the mistake of not providing a direct MSI injection API. */
1865 return data & 0xff;
1868 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1870 KVMMSIRoute *route, *next;
1871 unsigned int hash;
1873 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1874 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1875 kvm_irqchip_release_virq(s, route->kroute.gsi);
1876 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1877 g_free(route);
1882 static int kvm_irqchip_get_virq(KVMState *s)
1884 int next_virq;
1887 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1888 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1889 * number can succeed even though a new route entry cannot be added.
1890 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1892 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1893 kvm_flush_dynamic_msi_routes(s);
1896 /* Return the lowest unused GSI in the bitmap */
1897 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1898 if (next_virq >= s->gsi_count) {
1899 return -ENOSPC;
1900 } else {
1901 return next_virq;
1905 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1907 unsigned int hash = kvm_hash_msi(msg.data);
1908 KVMMSIRoute *route;
1910 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1911 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1912 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1913 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1914 return route;
1917 return NULL;
1920 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1922 struct kvm_msi msi;
1923 KVMMSIRoute *route;
1925 if (kvm_direct_msi_allowed) {
1926 msi.address_lo = (uint32_t)msg.address;
1927 msi.address_hi = msg.address >> 32;
1928 msi.data = le32_to_cpu(msg.data);
1929 msi.flags = 0;
1930 memset(msi.pad, 0, sizeof(msi.pad));
1932 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1935 route = kvm_lookup_msi_route(s, msg);
1936 if (!route) {
1937 int virq;
1939 virq = kvm_irqchip_get_virq(s);
1940 if (virq < 0) {
1941 return virq;
1944 route = g_malloc0(sizeof(KVMMSIRoute));
1945 route->kroute.gsi = virq;
1946 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1947 route->kroute.flags = 0;
1948 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1949 route->kroute.u.msi.address_hi = msg.address >> 32;
1950 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1952 kvm_add_routing_entry(s, &route->kroute);
1953 kvm_irqchip_commit_routes(s);
1955 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1956 entry);
1959 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1961 return kvm_set_irq(s, route->kroute.gsi, 1);
1964 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1966 struct kvm_irq_routing_entry kroute = {};
1967 int virq;
1968 MSIMessage msg = {0, 0};
1970 if (pci_available && dev) {
1971 msg = pci_get_msi_message(dev, vector);
1974 if (kvm_gsi_direct_mapping()) {
1975 return kvm_arch_msi_data_to_gsi(msg.data);
1978 if (!kvm_gsi_routing_enabled()) {
1979 return -ENOSYS;
1982 virq = kvm_irqchip_get_virq(s);
1983 if (virq < 0) {
1984 return virq;
1987 kroute.gsi = virq;
1988 kroute.type = KVM_IRQ_ROUTING_MSI;
1989 kroute.flags = 0;
1990 kroute.u.msi.address_lo = (uint32_t)msg.address;
1991 kroute.u.msi.address_hi = msg.address >> 32;
1992 kroute.u.msi.data = le32_to_cpu(msg.data);
1993 if (pci_available && kvm_msi_devid_required()) {
1994 kroute.flags = KVM_MSI_VALID_DEVID;
1995 kroute.u.msi.devid = pci_requester_id(dev);
1997 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1998 kvm_irqchip_release_virq(s, virq);
1999 return -EINVAL;
2002 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2003 vector, virq);
2005 kvm_add_routing_entry(s, &kroute);
2006 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2007 kvm_irqchip_commit_routes(s);
2009 return virq;
2012 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2013 PCIDevice *dev)
2015 struct kvm_irq_routing_entry kroute = {};
2017 if (kvm_gsi_direct_mapping()) {
2018 return 0;
2021 if (!kvm_irqchip_in_kernel()) {
2022 return -ENOSYS;
2025 kroute.gsi = virq;
2026 kroute.type = KVM_IRQ_ROUTING_MSI;
2027 kroute.flags = 0;
2028 kroute.u.msi.address_lo = (uint32_t)msg.address;
2029 kroute.u.msi.address_hi = msg.address >> 32;
2030 kroute.u.msi.data = le32_to_cpu(msg.data);
2031 if (pci_available && kvm_msi_devid_required()) {
2032 kroute.flags = KVM_MSI_VALID_DEVID;
2033 kroute.u.msi.devid = pci_requester_id(dev);
2035 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2036 return -EINVAL;
2039 trace_kvm_irqchip_update_msi_route(virq);
2041 return kvm_update_routing_entry(s, &kroute);
2044 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2045 EventNotifier *resample, int virq,
2046 bool assign)
2048 int fd = event_notifier_get_fd(event);
2049 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2051 struct kvm_irqfd irqfd = {
2052 .fd = fd,
2053 .gsi = virq,
2054 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2057 if (rfd != -1) {
2058 assert(assign);
2059 if (kvm_irqchip_is_split()) {
2061 * When the slow irqchip (e.g. IOAPIC) is in the
2062 * userspace, KVM kernel resamplefd will not work because
2063 * the EOI of the interrupt will be delivered to userspace
2064 * instead, so the KVM kernel resamplefd kick will be
2065 * skipped. The userspace here mimics what the kernel
2066 * provides with resamplefd, remember the resamplefd and
2067 * kick it when we receive EOI of this IRQ.
2069 * This is hackery because IOAPIC is mostly bypassed
2070 * (except EOI broadcasts) when irqfd is used. However
2071 * this can bring much performance back for split irqchip
2072 * with INTx IRQs (for VFIO, this gives 93% perf of the
2073 * full fast path, which is 46% perf boost comparing to
2074 * the INTx slow path).
2076 kvm_resample_fd_insert(virq, resample);
2077 } else {
2078 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2079 irqfd.resamplefd = rfd;
2081 } else if (!assign) {
2082 if (kvm_irqchip_is_split()) {
2083 kvm_resample_fd_remove(virq);
2087 if (!kvm_irqfds_enabled()) {
2088 return -ENOSYS;
2091 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2094 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2096 struct kvm_irq_routing_entry kroute = {};
2097 int virq;
2099 if (!kvm_gsi_routing_enabled()) {
2100 return -ENOSYS;
2103 virq = kvm_irqchip_get_virq(s);
2104 if (virq < 0) {
2105 return virq;
2108 kroute.gsi = virq;
2109 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2110 kroute.flags = 0;
2111 kroute.u.adapter.summary_addr = adapter->summary_addr;
2112 kroute.u.adapter.ind_addr = adapter->ind_addr;
2113 kroute.u.adapter.summary_offset = adapter->summary_offset;
2114 kroute.u.adapter.ind_offset = adapter->ind_offset;
2115 kroute.u.adapter.adapter_id = adapter->adapter_id;
2117 kvm_add_routing_entry(s, &kroute);
2119 return virq;
2122 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2124 struct kvm_irq_routing_entry kroute = {};
2125 int virq;
2127 if (!kvm_gsi_routing_enabled()) {
2128 return -ENOSYS;
2130 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2131 return -ENOSYS;
2133 virq = kvm_irqchip_get_virq(s);
2134 if (virq < 0) {
2135 return virq;
2138 kroute.gsi = virq;
2139 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2140 kroute.flags = 0;
2141 kroute.u.hv_sint.vcpu = vcpu;
2142 kroute.u.hv_sint.sint = sint;
2144 kvm_add_routing_entry(s, &kroute);
2145 kvm_irqchip_commit_routes(s);
2147 return virq;
2150 #else /* !KVM_CAP_IRQ_ROUTING */
2152 void kvm_init_irq_routing(KVMState *s)
2156 void kvm_irqchip_release_virq(KVMState *s, int virq)
2160 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2162 abort();
2165 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
2167 return -ENOSYS;
2170 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2172 return -ENOSYS;
2175 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2177 return -ENOSYS;
2180 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2181 EventNotifier *resample, int virq,
2182 bool assign)
2184 abort();
2187 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2189 return -ENOSYS;
2191 #endif /* !KVM_CAP_IRQ_ROUTING */
2193 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2194 EventNotifier *rn, int virq)
2196 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2199 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2200 int virq)
2202 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2205 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2206 EventNotifier *rn, qemu_irq irq)
2208 gpointer key, gsi;
2209 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2211 if (!found) {
2212 return -ENXIO;
2214 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2217 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2218 qemu_irq irq)
2220 gpointer key, gsi;
2221 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2223 if (!found) {
2224 return -ENXIO;
2226 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2229 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2231 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2234 static void kvm_irqchip_create(KVMState *s)
2236 int ret;
2238 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2239 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2241 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2242 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2243 if (ret < 0) {
2244 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2245 exit(1);
2247 } else {
2248 return;
2251 /* First probe and see if there's a arch-specific hook to create the
2252 * in-kernel irqchip for us */
2253 ret = kvm_arch_irqchip_create(s);
2254 if (ret == 0) {
2255 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2256 perror("Split IRQ chip mode not supported.");
2257 exit(1);
2258 } else {
2259 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2262 if (ret < 0) {
2263 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2264 exit(1);
2267 kvm_kernel_irqchip = true;
2268 /* If we have an in-kernel IRQ chip then we must have asynchronous
2269 * interrupt delivery (though the reverse is not necessarily true)
2271 kvm_async_interrupts_allowed = true;
2272 kvm_halt_in_kernel_allowed = true;
2274 kvm_init_irq_routing(s);
2276 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2279 /* Find number of supported CPUs using the recommended
2280 * procedure from the kernel API documentation to cope with
2281 * older kernels that may be missing capabilities.
2283 static int kvm_recommended_vcpus(KVMState *s)
2285 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2286 return (ret) ? ret : 4;
2289 static int kvm_max_vcpus(KVMState *s)
2291 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2292 return (ret) ? ret : kvm_recommended_vcpus(s);
2295 static int kvm_max_vcpu_id(KVMState *s)
2297 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2298 return (ret) ? ret : kvm_max_vcpus(s);
2301 bool kvm_vcpu_id_is_valid(int vcpu_id)
2303 KVMState *s = KVM_STATE(current_accel());
2304 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2307 bool kvm_dirty_ring_enabled(void)
2309 return kvm_state->kvm_dirty_ring_size ? true : false;
2312 static int kvm_init(MachineState *ms)
2314 MachineClass *mc = MACHINE_GET_CLASS(ms);
2315 static const char upgrade_note[] =
2316 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2317 "(see http://sourceforge.net/projects/kvm).\n";
2318 struct {
2319 const char *name;
2320 int num;
2321 } num_cpus[] = {
2322 { "SMP", ms->smp.cpus },
2323 { "hotpluggable", ms->smp.max_cpus },
2324 { NULL, }
2325 }, *nc = num_cpus;
2326 int soft_vcpus_limit, hard_vcpus_limit;
2327 KVMState *s;
2328 const KVMCapabilityInfo *missing_cap;
2329 int ret;
2330 int type = 0;
2331 uint64_t dirty_log_manual_caps;
2333 qemu_mutex_init(&kml_slots_lock);
2335 s = KVM_STATE(ms->accelerator);
2338 * On systems where the kernel can support different base page
2339 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2340 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2341 * page size for the system though.
2343 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2345 s->sigmask_len = 8;
2347 #ifdef KVM_CAP_SET_GUEST_DEBUG
2348 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2349 #endif
2350 QLIST_INIT(&s->kvm_parked_vcpus);
2351 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2352 if (s->fd == -1) {
2353 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2354 ret = -errno;
2355 goto err;
2358 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2359 if (ret < KVM_API_VERSION) {
2360 if (ret >= 0) {
2361 ret = -EINVAL;
2363 fprintf(stderr, "kvm version too old\n");
2364 goto err;
2367 if (ret > KVM_API_VERSION) {
2368 ret = -EINVAL;
2369 fprintf(stderr, "kvm version not supported\n");
2370 goto err;
2373 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2374 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2376 /* If unspecified, use the default value */
2377 if (!s->nr_slots) {
2378 s->nr_slots = 32;
2381 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2382 if (s->nr_as <= 1) {
2383 s->nr_as = 1;
2385 s->as = g_new0(struct KVMAs, s->nr_as);
2387 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2388 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2389 "kvm-type",
2390 &error_abort);
2391 type = mc->kvm_type(ms, kvm_type);
2392 } else if (mc->kvm_type) {
2393 type = mc->kvm_type(ms, NULL);
2396 do {
2397 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2398 } while (ret == -EINTR);
2400 if (ret < 0) {
2401 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2402 strerror(-ret));
2404 #ifdef TARGET_S390X
2405 if (ret == -EINVAL) {
2406 fprintf(stderr,
2407 "Host kernel setup problem detected. Please verify:\n");
2408 fprintf(stderr, "- for kernels supporting the switch_amode or"
2409 " user_mode parameters, whether\n");
2410 fprintf(stderr,
2411 " user space is running in primary address space\n");
2412 fprintf(stderr,
2413 "- for kernels supporting the vm.allocate_pgste sysctl, "
2414 "whether it is enabled\n");
2416 #elif defined(TARGET_PPC)
2417 if (ret == -EINVAL) {
2418 fprintf(stderr,
2419 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2420 (type == 2) ? "pr" : "hv");
2422 #endif
2423 goto err;
2426 s->vmfd = ret;
2428 /* check the vcpu limits */
2429 soft_vcpus_limit = kvm_recommended_vcpus(s);
2430 hard_vcpus_limit = kvm_max_vcpus(s);
2432 while (nc->name) {
2433 if (nc->num > soft_vcpus_limit) {
2434 warn_report("Number of %s cpus requested (%d) exceeds "
2435 "the recommended cpus supported by KVM (%d)",
2436 nc->name, nc->num, soft_vcpus_limit);
2438 if (nc->num > hard_vcpus_limit) {
2439 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2440 "the maximum cpus supported by KVM (%d)\n",
2441 nc->name, nc->num, hard_vcpus_limit);
2442 exit(1);
2445 nc++;
2448 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2449 if (!missing_cap) {
2450 missing_cap =
2451 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2453 if (missing_cap) {
2454 ret = -EINVAL;
2455 fprintf(stderr, "kvm does not support %s\n%s",
2456 missing_cap->name, upgrade_note);
2457 goto err;
2460 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2461 s->coalesced_pio = s->coalesced_mmio &&
2462 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2465 * Enable KVM dirty ring if supported, otherwise fall back to
2466 * dirty logging mode
2468 if (s->kvm_dirty_ring_size > 0) {
2469 uint64_t ring_bytes;
2471 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2473 /* Read the max supported pages */
2474 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2475 if (ret > 0) {
2476 if (ring_bytes > ret) {
2477 error_report("KVM dirty ring size %" PRIu32 " too big "
2478 "(maximum is %ld). Please use a smaller value.",
2479 s->kvm_dirty_ring_size,
2480 (long)ret / sizeof(struct kvm_dirty_gfn));
2481 ret = -EINVAL;
2482 goto err;
2485 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2486 if (ret) {
2487 error_report("Enabling of KVM dirty ring failed: %s. "
2488 "Suggested minimum value is 1024.", strerror(-ret));
2489 goto err;
2492 s->kvm_dirty_ring_bytes = ring_bytes;
2493 } else {
2494 warn_report("KVM dirty ring not available, using bitmap method");
2495 s->kvm_dirty_ring_size = 0;
2500 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2501 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2502 * page is wr-protected initially, which is against how kvm dirty ring is
2503 * usage - kvm dirty ring requires all pages are wr-protected at the very
2504 * beginning. Enabling this feature for dirty ring causes data corruption.
2506 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2507 * we may expect a higher stall time when starting the migration. In the
2508 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2509 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2510 * guest pages.
2512 if (!s->kvm_dirty_ring_size) {
2513 dirty_log_manual_caps =
2514 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2515 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2516 KVM_DIRTY_LOG_INITIALLY_SET);
2517 s->manual_dirty_log_protect = dirty_log_manual_caps;
2518 if (dirty_log_manual_caps) {
2519 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2520 dirty_log_manual_caps);
2521 if (ret) {
2522 warn_report("Trying to enable capability %"PRIu64" of "
2523 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2524 "Falling back to the legacy mode. ",
2525 dirty_log_manual_caps);
2526 s->manual_dirty_log_protect = 0;
2531 #ifdef KVM_CAP_VCPU_EVENTS
2532 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2533 #endif
2535 s->robust_singlestep =
2536 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2538 #ifdef KVM_CAP_DEBUGREGS
2539 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2540 #endif
2542 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2544 #ifdef KVM_CAP_IRQ_ROUTING
2545 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2546 #endif
2548 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2550 s->irq_set_ioctl = KVM_IRQ_LINE;
2551 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2552 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2555 kvm_readonly_mem_allowed =
2556 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2558 kvm_eventfds_allowed =
2559 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2561 kvm_irqfds_allowed =
2562 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2564 kvm_resamplefds_allowed =
2565 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2567 kvm_vm_attributes_allowed =
2568 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2570 kvm_ioeventfd_any_length_allowed =
2571 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2573 #ifdef KVM_CAP_SET_GUEST_DEBUG
2574 kvm_has_guest_debug =
2575 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2576 #endif
2578 kvm_sstep_flags = 0;
2579 if (kvm_has_guest_debug) {
2580 kvm_sstep_flags = SSTEP_ENABLE;
2582 #if defined KVM_CAP_SET_GUEST_DEBUG2
2583 int guest_debug_flags =
2584 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2586 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2587 kvm_sstep_flags |= SSTEP_NOIRQ;
2589 #endif
2592 kvm_state = s;
2594 ret = kvm_arch_init(ms, s);
2595 if (ret < 0) {
2596 goto err;
2599 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2600 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2603 qemu_register_reset(kvm_unpoison_all, NULL);
2605 if (s->kernel_irqchip_allowed) {
2606 kvm_irqchip_create(s);
2609 if (kvm_eventfds_allowed) {
2610 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2611 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2613 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2614 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2616 kvm_memory_listener_register(s, &s->memory_listener,
2617 &address_space_memory, 0, "kvm-memory");
2618 if (kvm_eventfds_allowed) {
2619 memory_listener_register(&kvm_io_listener,
2620 &address_space_io);
2622 memory_listener_register(&kvm_coalesced_pio_listener,
2623 &address_space_io);
2625 s->many_ioeventfds = kvm_check_many_ioeventfds();
2627 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2628 if (!s->sync_mmu) {
2629 ret = ram_block_discard_disable(true);
2630 assert(!ret);
2633 if (s->kvm_dirty_ring_size) {
2634 ret = kvm_dirty_ring_reaper_init(s);
2635 if (ret) {
2636 goto err;
2640 return 0;
2642 err:
2643 assert(ret < 0);
2644 if (s->vmfd >= 0) {
2645 close(s->vmfd);
2647 if (s->fd != -1) {
2648 close(s->fd);
2650 g_free(s->memory_listener.slots);
2652 return ret;
2655 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2657 s->sigmask_len = sigmask_len;
2660 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2661 int size, uint32_t count)
2663 int i;
2664 uint8_t *ptr = data;
2666 for (i = 0; i < count; i++) {
2667 address_space_rw(&address_space_io, port, attrs,
2668 ptr, size,
2669 direction == KVM_EXIT_IO_OUT);
2670 ptr += size;
2674 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2676 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2677 run->internal.suberror);
2679 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2680 int i;
2682 for (i = 0; i < run->internal.ndata; ++i) {
2683 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2684 i, (uint64_t)run->internal.data[i]);
2687 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2688 fprintf(stderr, "emulation failure\n");
2689 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2690 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2691 return EXCP_INTERRUPT;
2694 /* FIXME: Should trigger a qmp message to let management know
2695 * something went wrong.
2697 return -1;
2700 void kvm_flush_coalesced_mmio_buffer(void)
2702 KVMState *s = kvm_state;
2704 if (s->coalesced_flush_in_progress) {
2705 return;
2708 s->coalesced_flush_in_progress = true;
2710 if (s->coalesced_mmio_ring) {
2711 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2712 while (ring->first != ring->last) {
2713 struct kvm_coalesced_mmio *ent;
2715 ent = &ring->coalesced_mmio[ring->first];
2717 if (ent->pio == 1) {
2718 address_space_write(&address_space_io, ent->phys_addr,
2719 MEMTXATTRS_UNSPECIFIED, ent->data,
2720 ent->len);
2721 } else {
2722 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2724 smp_wmb();
2725 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2729 s->coalesced_flush_in_progress = false;
2732 bool kvm_cpu_check_are_resettable(void)
2734 return kvm_arch_cpu_check_are_resettable();
2737 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2739 if (!cpu->vcpu_dirty) {
2740 kvm_arch_get_registers(cpu);
2741 cpu->vcpu_dirty = true;
2745 void kvm_cpu_synchronize_state(CPUState *cpu)
2747 if (!cpu->vcpu_dirty) {
2748 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2752 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2754 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2755 cpu->vcpu_dirty = false;
2758 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2760 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2763 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2765 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2766 cpu->vcpu_dirty = false;
2769 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2771 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2774 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2776 cpu->vcpu_dirty = true;
2779 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2781 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2784 #ifdef KVM_HAVE_MCE_INJECTION
2785 static __thread void *pending_sigbus_addr;
2786 static __thread int pending_sigbus_code;
2787 static __thread bool have_sigbus_pending;
2788 #endif
2790 static void kvm_cpu_kick(CPUState *cpu)
2792 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2795 static void kvm_cpu_kick_self(void)
2797 if (kvm_immediate_exit) {
2798 kvm_cpu_kick(current_cpu);
2799 } else {
2800 qemu_cpu_kick_self();
2804 static void kvm_eat_signals(CPUState *cpu)
2806 struct timespec ts = { 0, 0 };
2807 siginfo_t siginfo;
2808 sigset_t waitset;
2809 sigset_t chkset;
2810 int r;
2812 if (kvm_immediate_exit) {
2813 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2814 /* Write kvm_run->immediate_exit before the cpu->exit_request
2815 * write in kvm_cpu_exec.
2817 smp_wmb();
2818 return;
2821 sigemptyset(&waitset);
2822 sigaddset(&waitset, SIG_IPI);
2824 do {
2825 r = sigtimedwait(&waitset, &siginfo, &ts);
2826 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2827 perror("sigtimedwait");
2828 exit(1);
2831 r = sigpending(&chkset);
2832 if (r == -1) {
2833 perror("sigpending");
2834 exit(1);
2836 } while (sigismember(&chkset, SIG_IPI));
2839 int kvm_cpu_exec(CPUState *cpu)
2841 struct kvm_run *run = cpu->kvm_run;
2842 int ret, run_ret;
2844 DPRINTF("kvm_cpu_exec()\n");
2846 if (kvm_arch_process_async_events(cpu)) {
2847 qatomic_set(&cpu->exit_request, 0);
2848 return EXCP_HLT;
2851 qemu_mutex_unlock_iothread();
2852 cpu_exec_start(cpu);
2854 do {
2855 MemTxAttrs attrs;
2857 if (cpu->vcpu_dirty) {
2858 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2859 cpu->vcpu_dirty = false;
2862 kvm_arch_pre_run(cpu, run);
2863 if (qatomic_read(&cpu->exit_request)) {
2864 DPRINTF("interrupt exit requested\n");
2866 * KVM requires us to reenter the kernel after IO exits to complete
2867 * instruction emulation. This self-signal will ensure that we
2868 * leave ASAP again.
2870 kvm_cpu_kick_self();
2873 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2874 * Matching barrier in kvm_eat_signals.
2876 smp_rmb();
2878 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2880 attrs = kvm_arch_post_run(cpu, run);
2882 #ifdef KVM_HAVE_MCE_INJECTION
2883 if (unlikely(have_sigbus_pending)) {
2884 qemu_mutex_lock_iothread();
2885 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2886 pending_sigbus_addr);
2887 have_sigbus_pending = false;
2888 qemu_mutex_unlock_iothread();
2890 #endif
2892 if (run_ret < 0) {
2893 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2894 DPRINTF("io window exit\n");
2895 kvm_eat_signals(cpu);
2896 ret = EXCP_INTERRUPT;
2897 break;
2899 fprintf(stderr, "error: kvm run failed %s\n",
2900 strerror(-run_ret));
2901 #ifdef TARGET_PPC
2902 if (run_ret == -EBUSY) {
2903 fprintf(stderr,
2904 "This is probably because your SMT is enabled.\n"
2905 "VCPU can only run on primary threads with all "
2906 "secondary threads offline.\n");
2908 #endif
2909 ret = -1;
2910 break;
2913 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2914 switch (run->exit_reason) {
2915 case KVM_EXIT_IO:
2916 DPRINTF("handle_io\n");
2917 /* Called outside BQL */
2918 kvm_handle_io(run->io.port, attrs,
2919 (uint8_t *)run + run->io.data_offset,
2920 run->io.direction,
2921 run->io.size,
2922 run->io.count);
2923 ret = 0;
2924 break;
2925 case KVM_EXIT_MMIO:
2926 DPRINTF("handle_mmio\n");
2927 /* Called outside BQL */
2928 address_space_rw(&address_space_memory,
2929 run->mmio.phys_addr, attrs,
2930 run->mmio.data,
2931 run->mmio.len,
2932 run->mmio.is_write);
2933 ret = 0;
2934 break;
2935 case KVM_EXIT_IRQ_WINDOW_OPEN:
2936 DPRINTF("irq_window_open\n");
2937 ret = EXCP_INTERRUPT;
2938 break;
2939 case KVM_EXIT_SHUTDOWN:
2940 DPRINTF("shutdown\n");
2941 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2942 ret = EXCP_INTERRUPT;
2943 break;
2944 case KVM_EXIT_UNKNOWN:
2945 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2946 (uint64_t)run->hw.hardware_exit_reason);
2947 ret = -1;
2948 break;
2949 case KVM_EXIT_INTERNAL_ERROR:
2950 ret = kvm_handle_internal_error(cpu, run);
2951 break;
2952 case KVM_EXIT_DIRTY_RING_FULL:
2954 * We shouldn't continue if the dirty ring of this vcpu is
2955 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2957 trace_kvm_dirty_ring_full(cpu->cpu_index);
2958 qemu_mutex_lock_iothread();
2959 kvm_dirty_ring_reap(kvm_state);
2960 qemu_mutex_unlock_iothread();
2961 ret = 0;
2962 break;
2963 case KVM_EXIT_SYSTEM_EVENT:
2964 switch (run->system_event.type) {
2965 case KVM_SYSTEM_EVENT_SHUTDOWN:
2966 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2967 ret = EXCP_INTERRUPT;
2968 break;
2969 case KVM_SYSTEM_EVENT_RESET:
2970 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2971 ret = EXCP_INTERRUPT;
2972 break;
2973 case KVM_SYSTEM_EVENT_CRASH:
2974 kvm_cpu_synchronize_state(cpu);
2975 qemu_mutex_lock_iothread();
2976 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2977 qemu_mutex_unlock_iothread();
2978 ret = 0;
2979 break;
2980 default:
2981 DPRINTF("kvm_arch_handle_exit\n");
2982 ret = kvm_arch_handle_exit(cpu, run);
2983 break;
2985 break;
2986 default:
2987 DPRINTF("kvm_arch_handle_exit\n");
2988 ret = kvm_arch_handle_exit(cpu, run);
2989 break;
2991 } while (ret == 0);
2993 cpu_exec_end(cpu);
2994 qemu_mutex_lock_iothread();
2996 if (ret < 0) {
2997 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2998 vm_stop(RUN_STATE_INTERNAL_ERROR);
3001 qatomic_set(&cpu->exit_request, 0);
3002 return ret;
3005 int kvm_ioctl(KVMState *s, int type, ...)
3007 int ret;
3008 void *arg;
3009 va_list ap;
3011 va_start(ap, type);
3012 arg = va_arg(ap, void *);
3013 va_end(ap);
3015 trace_kvm_ioctl(type, arg);
3016 ret = ioctl(s->fd, type, arg);
3017 if (ret == -1) {
3018 ret = -errno;
3020 return ret;
3023 int kvm_vm_ioctl(KVMState *s, int type, ...)
3025 int ret;
3026 void *arg;
3027 va_list ap;
3029 va_start(ap, type);
3030 arg = va_arg(ap, void *);
3031 va_end(ap);
3033 trace_kvm_vm_ioctl(type, arg);
3034 ret = ioctl(s->vmfd, type, arg);
3035 if (ret == -1) {
3036 ret = -errno;
3038 return ret;
3041 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3043 int ret;
3044 void *arg;
3045 va_list ap;
3047 va_start(ap, type);
3048 arg = va_arg(ap, void *);
3049 va_end(ap);
3051 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3052 ret = ioctl(cpu->kvm_fd, type, arg);
3053 if (ret == -1) {
3054 ret = -errno;
3056 return ret;
3059 int kvm_device_ioctl(int fd, int type, ...)
3061 int ret;
3062 void *arg;
3063 va_list ap;
3065 va_start(ap, type);
3066 arg = va_arg(ap, void *);
3067 va_end(ap);
3069 trace_kvm_device_ioctl(fd, type, arg);
3070 ret = ioctl(fd, type, arg);
3071 if (ret == -1) {
3072 ret = -errno;
3074 return ret;
3077 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3079 int ret;
3080 struct kvm_device_attr attribute = {
3081 .group = group,
3082 .attr = attr,
3085 if (!kvm_vm_attributes_allowed) {
3086 return 0;
3089 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3090 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3091 return ret ? 0 : 1;
3094 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3096 struct kvm_device_attr attribute = {
3097 .group = group,
3098 .attr = attr,
3099 .flags = 0,
3102 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3105 int kvm_device_access(int fd, int group, uint64_t attr,
3106 void *val, bool write, Error **errp)
3108 struct kvm_device_attr kvmattr;
3109 int err;
3111 kvmattr.flags = 0;
3112 kvmattr.group = group;
3113 kvmattr.attr = attr;
3114 kvmattr.addr = (uintptr_t)val;
3116 err = kvm_device_ioctl(fd,
3117 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3118 &kvmattr);
3119 if (err < 0) {
3120 error_setg_errno(errp, -err,
3121 "KVM_%s_DEVICE_ATTR failed: Group %d "
3122 "attr 0x%016" PRIx64,
3123 write ? "SET" : "GET", group, attr);
3125 return err;
3128 bool kvm_has_sync_mmu(void)
3130 return kvm_state->sync_mmu;
3133 int kvm_has_vcpu_events(void)
3135 return kvm_state->vcpu_events;
3138 int kvm_has_robust_singlestep(void)
3140 return kvm_state->robust_singlestep;
3143 int kvm_has_debugregs(void)
3145 return kvm_state->debugregs;
3148 int kvm_max_nested_state_length(void)
3150 return kvm_state->max_nested_state_len;
3153 int kvm_has_many_ioeventfds(void)
3155 if (!kvm_enabled()) {
3156 return 0;
3158 return kvm_state->many_ioeventfds;
3161 int kvm_has_gsi_routing(void)
3163 #ifdef KVM_CAP_IRQ_ROUTING
3164 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3165 #else
3166 return false;
3167 #endif
3170 int kvm_has_intx_set_mask(void)
3172 return kvm_state->intx_set_mask;
3175 bool kvm_arm_supports_user_irq(void)
3177 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3180 #ifdef KVM_CAP_SET_GUEST_DEBUG
3181 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3182 target_ulong pc)
3184 struct kvm_sw_breakpoint *bp;
3186 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3187 if (bp->pc == pc) {
3188 return bp;
3191 return NULL;
3194 int kvm_sw_breakpoints_active(CPUState *cpu)
3196 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3199 struct kvm_set_guest_debug_data {
3200 struct kvm_guest_debug dbg;
3201 int err;
3204 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3206 struct kvm_set_guest_debug_data *dbg_data =
3207 (struct kvm_set_guest_debug_data *) data.host_ptr;
3209 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3210 &dbg_data->dbg);
3213 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3215 struct kvm_set_guest_debug_data data;
3217 data.dbg.control = reinject_trap;
3219 if (cpu->singlestep_enabled) {
3220 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3222 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3223 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3226 kvm_arch_update_guest_debug(cpu, &data.dbg);
3228 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3229 RUN_ON_CPU_HOST_PTR(&data));
3230 return data.err;
3233 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3234 target_ulong len, int type)
3236 struct kvm_sw_breakpoint *bp;
3237 int err;
3239 if (type == GDB_BREAKPOINT_SW) {
3240 bp = kvm_find_sw_breakpoint(cpu, addr);
3241 if (bp) {
3242 bp->use_count++;
3243 return 0;
3246 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
3247 bp->pc = addr;
3248 bp->use_count = 1;
3249 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3250 if (err) {
3251 g_free(bp);
3252 return err;
3255 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3256 } else {
3257 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3258 if (err) {
3259 return err;
3263 CPU_FOREACH(cpu) {
3264 err = kvm_update_guest_debug(cpu, 0);
3265 if (err) {
3266 return err;
3269 return 0;
3272 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3273 target_ulong len, int type)
3275 struct kvm_sw_breakpoint *bp;
3276 int err;
3278 if (type == GDB_BREAKPOINT_SW) {
3279 bp = kvm_find_sw_breakpoint(cpu, addr);
3280 if (!bp) {
3281 return -ENOENT;
3284 if (bp->use_count > 1) {
3285 bp->use_count--;
3286 return 0;
3289 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3290 if (err) {
3291 return err;
3294 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3295 g_free(bp);
3296 } else {
3297 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3298 if (err) {
3299 return err;
3303 CPU_FOREACH(cpu) {
3304 err = kvm_update_guest_debug(cpu, 0);
3305 if (err) {
3306 return err;
3309 return 0;
3312 void kvm_remove_all_breakpoints(CPUState *cpu)
3314 struct kvm_sw_breakpoint *bp, *next;
3315 KVMState *s = cpu->kvm_state;
3316 CPUState *tmpcpu;
3318 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3319 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3320 /* Try harder to find a CPU that currently sees the breakpoint. */
3321 CPU_FOREACH(tmpcpu) {
3322 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3323 break;
3327 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3328 g_free(bp);
3330 kvm_arch_remove_all_hw_breakpoints();
3332 CPU_FOREACH(cpu) {
3333 kvm_update_guest_debug(cpu, 0);
3337 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3339 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3341 return -EINVAL;
3344 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3345 target_ulong len, int type)
3347 return -EINVAL;
3350 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3351 target_ulong len, int type)
3353 return -EINVAL;
3356 void kvm_remove_all_breakpoints(CPUState *cpu)
3359 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3361 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3363 KVMState *s = kvm_state;
3364 struct kvm_signal_mask *sigmask;
3365 int r;
3367 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3369 sigmask->len = s->sigmask_len;
3370 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3371 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3372 g_free(sigmask);
3374 return r;
3377 static void kvm_ipi_signal(int sig)
3379 if (current_cpu) {
3380 assert(kvm_immediate_exit);
3381 kvm_cpu_kick(current_cpu);
3385 void kvm_init_cpu_signals(CPUState *cpu)
3387 int r;
3388 sigset_t set;
3389 struct sigaction sigact;
3391 memset(&sigact, 0, sizeof(sigact));
3392 sigact.sa_handler = kvm_ipi_signal;
3393 sigaction(SIG_IPI, &sigact, NULL);
3395 pthread_sigmask(SIG_BLOCK, NULL, &set);
3396 #if defined KVM_HAVE_MCE_INJECTION
3397 sigdelset(&set, SIGBUS);
3398 pthread_sigmask(SIG_SETMASK, &set, NULL);
3399 #endif
3400 sigdelset(&set, SIG_IPI);
3401 if (kvm_immediate_exit) {
3402 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3403 } else {
3404 r = kvm_set_signal_mask(cpu, &set);
3406 if (r) {
3407 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3408 exit(1);
3412 /* Called asynchronously in VCPU thread. */
3413 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3415 #ifdef KVM_HAVE_MCE_INJECTION
3416 if (have_sigbus_pending) {
3417 return 1;
3419 have_sigbus_pending = true;
3420 pending_sigbus_addr = addr;
3421 pending_sigbus_code = code;
3422 qatomic_set(&cpu->exit_request, 1);
3423 return 0;
3424 #else
3425 return 1;
3426 #endif
3429 /* Called synchronously (via signalfd) in main thread. */
3430 int kvm_on_sigbus(int code, void *addr)
3432 #ifdef KVM_HAVE_MCE_INJECTION
3433 /* Action required MCE kills the process if SIGBUS is blocked. Because
3434 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3435 * we can only get action optional here.
3437 assert(code != BUS_MCEERR_AR);
3438 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3439 return 0;
3440 #else
3441 return 1;
3442 #endif
3445 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3447 int ret;
3448 struct kvm_create_device create_dev;
3450 create_dev.type = type;
3451 create_dev.fd = -1;
3452 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3454 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3455 return -ENOTSUP;
3458 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3459 if (ret) {
3460 return ret;
3463 return test ? 0 : create_dev.fd;
3466 bool kvm_device_supported(int vmfd, uint64_t type)
3468 struct kvm_create_device create_dev = {
3469 .type = type,
3470 .fd = -1,
3471 .flags = KVM_CREATE_DEVICE_TEST,
3474 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3475 return false;
3478 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3481 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3483 struct kvm_one_reg reg;
3484 int r;
3486 reg.id = id;
3487 reg.addr = (uintptr_t) source;
3488 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3489 if (r) {
3490 trace_kvm_failed_reg_set(id, strerror(-r));
3492 return r;
3495 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3497 struct kvm_one_reg reg;
3498 int r;
3500 reg.id = id;
3501 reg.addr = (uintptr_t) target;
3502 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3503 if (r) {
3504 trace_kvm_failed_reg_get(id, strerror(-r));
3506 return r;
3509 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3510 hwaddr start_addr, hwaddr size)
3512 KVMState *kvm = KVM_STATE(ms->accelerator);
3513 int i;
3515 for (i = 0; i < kvm->nr_as; ++i) {
3516 if (kvm->as[i].as == as && kvm->as[i].ml) {
3517 size = MIN(kvm_max_slot_size, size);
3518 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3519 start_addr, size);
3523 return false;
3526 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3527 const char *name, void *opaque,
3528 Error **errp)
3530 KVMState *s = KVM_STATE(obj);
3531 int64_t value = s->kvm_shadow_mem;
3533 visit_type_int(v, name, &value, errp);
3536 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3537 const char *name, void *opaque,
3538 Error **errp)
3540 KVMState *s = KVM_STATE(obj);
3541 int64_t value;
3543 if (s->fd != -1) {
3544 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3545 return;
3548 if (!visit_type_int(v, name, &value, errp)) {
3549 return;
3552 s->kvm_shadow_mem = value;
3555 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3556 const char *name, void *opaque,
3557 Error **errp)
3559 KVMState *s = KVM_STATE(obj);
3560 OnOffSplit mode;
3562 if (s->fd != -1) {
3563 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3564 return;
3567 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3568 return;
3570 switch (mode) {
3571 case ON_OFF_SPLIT_ON:
3572 s->kernel_irqchip_allowed = true;
3573 s->kernel_irqchip_required = true;
3574 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3575 break;
3576 case ON_OFF_SPLIT_OFF:
3577 s->kernel_irqchip_allowed = false;
3578 s->kernel_irqchip_required = false;
3579 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3580 break;
3581 case ON_OFF_SPLIT_SPLIT:
3582 s->kernel_irqchip_allowed = true;
3583 s->kernel_irqchip_required = true;
3584 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3585 break;
3586 default:
3587 /* The value was checked in visit_type_OnOffSplit() above. If
3588 * we get here, then something is wrong in QEMU.
3590 abort();
3594 bool kvm_kernel_irqchip_allowed(void)
3596 return kvm_state->kernel_irqchip_allowed;
3599 bool kvm_kernel_irqchip_required(void)
3601 return kvm_state->kernel_irqchip_required;
3604 bool kvm_kernel_irqchip_split(void)
3606 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3609 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3610 const char *name, void *opaque,
3611 Error **errp)
3613 KVMState *s = KVM_STATE(obj);
3614 uint32_t value = s->kvm_dirty_ring_size;
3616 visit_type_uint32(v, name, &value, errp);
3619 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3620 const char *name, void *opaque,
3621 Error **errp)
3623 KVMState *s = KVM_STATE(obj);
3624 Error *error = NULL;
3625 uint32_t value;
3627 if (s->fd != -1) {
3628 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3629 return;
3632 visit_type_uint32(v, name, &value, &error);
3633 if (error) {
3634 error_propagate(errp, error);
3635 return;
3637 if (value & (value - 1)) {
3638 error_setg(errp, "dirty-ring-size must be a power of two.");
3639 return;
3642 s->kvm_dirty_ring_size = value;
3645 static void kvm_accel_instance_init(Object *obj)
3647 KVMState *s = KVM_STATE(obj);
3649 s->fd = -1;
3650 s->vmfd = -1;
3651 s->kvm_shadow_mem = -1;
3652 s->kernel_irqchip_allowed = true;
3653 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3654 /* KVM dirty ring is by default off */
3655 s->kvm_dirty_ring_size = 0;
3658 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3660 AccelClass *ac = ACCEL_CLASS(oc);
3661 ac->name = "KVM";
3662 ac->init_machine = kvm_init;
3663 ac->has_memory = kvm_accel_has_memory;
3664 ac->allowed = &kvm_allowed;
3666 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3667 NULL, kvm_set_kernel_irqchip,
3668 NULL, NULL);
3669 object_class_property_set_description(oc, "kernel-irqchip",
3670 "Configure KVM in-kernel irqchip");
3672 object_class_property_add(oc, "kvm-shadow-mem", "int",
3673 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3674 NULL, NULL);
3675 object_class_property_set_description(oc, "kvm-shadow-mem",
3676 "KVM shadow MMU size");
3678 object_class_property_add(oc, "dirty-ring-size", "uint32",
3679 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3680 NULL, NULL);
3681 object_class_property_set_description(oc, "dirty-ring-size",
3682 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3685 static const TypeInfo kvm_accel_type = {
3686 .name = TYPE_KVM_ACCEL,
3687 .parent = TYPE_ACCEL,
3688 .instance_init = kvm_accel_instance_init,
3689 .class_init = kvm_accel_class_init,
3690 .instance_size = sizeof(KVMState),
3693 static void kvm_type_init(void)
3695 type_register_static(&kvm_accel_type);
3698 type_init(kvm_type_init);