2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
30 #include "qemu/bswap.h"
33 int qcow2_shrink_l1_table(BlockDriverState
*bs
, uint64_t exact_size
)
35 BDRVQcow2State
*s
= bs
->opaque
;
36 int new_l1_size
, i
, ret
;
38 if (exact_size
>= s
->l1_size
) {
42 new_l1_size
= exact_size
;
45 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
48 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
49 ret
= bdrv_pwrite_zeroes(bs
->file
, s
->l1_table_offset
+
50 new_l1_size
* L1E_SIZE
,
51 (s
->l1_size
- new_l1_size
) * L1E_SIZE
, 0);
56 ret
= bdrv_flush(bs
->file
->bs
);
61 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
62 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
63 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
66 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
67 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
78 memset(s
->l1_table
+ new_l1_size
, 0,
79 (s
->l1_size
- new_l1_size
) * L1E_SIZE
);
83 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
86 BDRVQcow2State
*s
= bs
->opaque
;
87 int new_l1_size2
, ret
, i
;
88 uint64_t *new_l1_table
;
89 int64_t old_l1_table_offset
, old_l1_size
;
90 int64_t new_l1_table_offset
, new_l1_size
;
93 if (min_size
<= s
->l1_size
)
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
99 if (min_size
> INT_MAX
/ L1E_SIZE
) {
104 new_l1_size
= min_size
;
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size
= s
->l1_size
;
108 if (new_l1_size
== 0) {
111 while (min_size
> new_l1_size
) {
112 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
117 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ L1E_SIZE
) {
122 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
123 s
->l1_size
, new_l1_size
);
126 new_l1_size2
= L1E_SIZE
* new_l1_size
;
127 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
, new_l1_size2
);
128 if (new_l1_table
== NULL
) {
131 memset(new_l1_table
, 0, new_l1_size2
);
134 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* L1E_SIZE
);
137 /* write new table (align to cluster) */
138 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
139 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
140 if (new_l1_table_offset
< 0) {
141 qemu_vfree(new_l1_table
);
142 return new_l1_table_offset
;
145 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
150 /* the L1 position has not yet been updated, so these clusters must
151 * indeed be completely free */
152 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
153 new_l1_size2
, false);
158 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
159 for(i
= 0; i
< s
->l1_size
; i
++)
160 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
161 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
,
162 new_l1_table
, new_l1_size2
);
165 for(i
= 0; i
< s
->l1_size
; i
++)
166 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
169 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
170 stl_be_p(data
, new_l1_size
);
171 stq_be_p(data
+ 4, new_l1_table_offset
);
172 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
177 qemu_vfree(s
->l1_table
);
178 old_l1_table_offset
= s
->l1_table_offset
;
179 s
->l1_table_offset
= new_l1_table_offset
;
180 s
->l1_table
= new_l1_table
;
181 old_l1_size
= s
->l1_size
;
182 s
->l1_size
= new_l1_size
;
183 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* L1E_SIZE
,
184 QCOW2_DISCARD_OTHER
);
187 qemu_vfree(new_l1_table
);
188 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
189 QCOW2_DISCARD_OTHER
);
196 * @bs: The BlockDriverState
197 * @offset: A guest offset, used to calculate what slice of the L2
199 * @l2_offset: Offset to the L2 table in the image file.
200 * @l2_slice: Location to store the pointer to the L2 slice.
202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203 * that are loaded by the qcow2 cache). If the slice is in the cache,
204 * the cache is used; otherwise the L2 slice is loaded from the image
207 static int l2_load(BlockDriverState
*bs
, uint64_t offset
,
208 uint64_t l2_offset
, uint64_t **l2_slice
)
210 BDRVQcow2State
*s
= bs
->opaque
;
211 int start_of_slice
= l2_entry_size(s
) *
212 (offset_to_l2_index(s
, offset
) - offset_to_l2_slice_index(s
, offset
));
214 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
+ start_of_slice
,
219 * Writes an L1 entry to disk (note that depending on the alignment
220 * requirements this function may write more that just one entry in
221 * order to prevent bdrv_pwrite from performing a read-modify-write)
223 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
225 BDRVQcow2State
*s
= bs
->opaque
;
228 int bufsize
= MAX(L1E_SIZE
,
229 MIN(bs
->file
->bs
->bl
.request_alignment
, s
->cluster_size
));
230 int nentries
= bufsize
/ L1E_SIZE
;
231 g_autofree
uint64_t *buf
= g_try_new0(uint64_t, nentries
);
237 l1_start_index
= QEMU_ALIGN_DOWN(l1_index
, nentries
);
238 for (i
= 0; i
< MIN(nentries
, s
->l1_size
- l1_start_index
); i
++) {
239 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
242 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
243 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
, bufsize
, false);
248 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
249 ret
= bdrv_pwrite_sync(bs
->file
,
250 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
,
262 * Allocate a new l2 entry in the file. If l1_index points to an already
263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264 * table) copy the contents of the old L2 table into the newly allocated one.
265 * Otherwise the new table is initialized with zeros.
269 static int l2_allocate(BlockDriverState
*bs
, int l1_index
)
271 BDRVQcow2State
*s
= bs
->opaque
;
272 uint64_t old_l2_offset
;
273 uint64_t *l2_slice
= NULL
;
274 unsigned slice
, slice_size2
, n_slices
;
278 old_l2_offset
= s
->l1_table
[l1_index
];
280 trace_qcow2_l2_allocate(bs
, l1_index
);
282 /* allocate a new l2 entry */
284 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* l2_entry_size(s
));
290 /* The offset must fit in the offset field of the L1 table entry */
291 assert((l2_offset
& L1E_OFFSET_MASK
) == l2_offset
);
293 /* If we're allocating the table at offset 0 then something is wrong */
294 if (l2_offset
== 0) {
295 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
296 "allocation of L2 table at offset 0");
301 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
306 /* allocate a new entry in the l2 cache */
308 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
309 n_slices
= s
->cluster_size
/ slice_size2
;
311 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
312 for (slice
= 0; slice
< n_slices
; slice
++) {
313 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
,
314 l2_offset
+ slice
* slice_size2
,
315 (void **) &l2_slice
);
320 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
321 /* if there was no old l2 table, clear the new slice */
322 memset(l2_slice
, 0, slice_size2
);
325 uint64_t old_l2_slice_offset
=
326 (old_l2_offset
& L1E_OFFSET_MASK
) + slice
* slice_size2
;
328 /* if there was an old l2 table, read a slice from the disk */
329 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
330 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_slice_offset
,
331 (void **) &old_slice
);
336 memcpy(l2_slice
, old_slice
, slice_size2
);
338 qcow2_cache_put(s
->l2_table_cache
, (void **) &old_slice
);
341 /* write the l2 slice to the file */
342 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
344 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
345 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
346 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
349 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
354 /* update the L1 entry */
355 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
356 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
357 ret
= qcow2_write_l1_entry(bs
, l1_index
);
362 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
366 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
367 if (l2_slice
!= NULL
) {
368 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
370 s
->l1_table
[l1_index
] = old_l2_offset
;
372 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
373 QCOW2_DISCARD_ALWAYS
);
379 * For a given L2 entry, count the number of contiguous subclusters of
380 * the same type starting from @sc_from. Compressed clusters are
381 * treated as if they were divided into subclusters of size
382 * s->subcluster_size.
384 * Return the number of contiguous subclusters and set @type to the
387 * If the L2 entry is invalid return -errno and set @type to
388 * QCOW2_SUBCLUSTER_INVALID.
390 static int qcow2_get_subcluster_range_type(BlockDriverState
*bs
,
394 QCow2SubclusterType
*type
)
396 BDRVQcow2State
*s
= bs
->opaque
;
399 *type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_from
);
401 if (*type
== QCOW2_SUBCLUSTER_INVALID
) {
403 } else if (!has_subclusters(s
) || *type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
404 return s
->subclusters_per_cluster
- sc_from
;
408 case QCOW2_SUBCLUSTER_NORMAL
:
409 val
= l2_bitmap
| QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
410 return cto32(val
) - sc_from
;
412 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
413 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
414 val
= (l2_bitmap
| QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from
)) >> 32;
415 return cto32(val
) - sc_from
;
417 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
418 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
419 val
= ((l2_bitmap
>> 32) | l2_bitmap
)
420 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
421 return ctz32(val
) - sc_from
;
424 g_assert_not_reached();
429 * Return the number of contiguous subclusters of the exact same type
430 * in a given L2 slice, starting from cluster @l2_index, subcluster
431 * @sc_index. Allocated subclusters are required to be contiguous in
433 * At most @nb_clusters are checked (note that this means clusters,
435 * Compressed clusters are always processed one by one but for the
436 * purpose of this count they are treated as if they were divided into
437 * subclusters of size s->subcluster_size.
438 * On failure return -errno and update @l2_index to point to the
441 static int count_contiguous_subclusters(BlockDriverState
*bs
, int nb_clusters
,
442 unsigned sc_index
, uint64_t *l2_slice
,
445 BDRVQcow2State
*s
= bs
->opaque
;
447 bool check_offset
= false;
448 uint64_t expected_offset
= 0;
449 QCow2SubclusterType expected_type
= QCOW2_SUBCLUSTER_NORMAL
, type
;
451 assert(*l2_index
+ nb_clusters
<= s
->l2_slice_size
);
453 for (i
= 0; i
< nb_clusters
; i
++) {
454 unsigned first_sc
= (i
== 0) ? sc_index
: 0;
455 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, *l2_index
+ i
);
456 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, *l2_index
+ i
);
457 int ret
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
460 *l2_index
+= i
; /* Point to the invalid entry */
464 if (type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
465 /* Compressed clusters are always processed one by one */
468 expected_type
= type
;
469 expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
470 check_offset
= (type
== QCOW2_SUBCLUSTER_NORMAL
||
471 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
||
472 type
== QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
);
473 } else if (type
!= expected_type
) {
475 } else if (check_offset
) {
476 expected_offset
+= s
->cluster_size
;
477 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
482 /* Stop if there are type changes before the end of the cluster */
483 if (first_sc
+ ret
< s
->subclusters_per_cluster
) {
491 static int coroutine_fn
do_perform_cow_read(BlockDriverState
*bs
,
492 uint64_t src_cluster_offset
,
493 unsigned offset_in_cluster
,
498 if (qiov
->size
== 0) {
502 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
509 * We never deal with requests that don't satisfy
510 * bdrv_check_qiov_request(), and aligning requests to clusters never
511 * breaks this condition. So, do some assertions before calling
512 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
514 assert(src_cluster_offset
<= INT64_MAX
);
515 assert(src_cluster_offset
+ offset_in_cluster
<= INT64_MAX
);
516 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
517 assert((uint64_t)qiov
->size
<= INT64_MAX
);
518 bdrv_check_qiov_request(src_cluster_offset
+ offset_in_cluster
, qiov
->size
,
519 qiov
, 0, &error_abort
);
521 * Call .bdrv_co_readv() directly instead of using the public block-layer
522 * interface. This avoids double I/O throttling and request tracking,
523 * which can lead to deadlock when block layer copy-on-read is enabled.
525 ret
= bs
->drv
->bdrv_co_preadv_part(bs
,
526 src_cluster_offset
+ offset_in_cluster
,
527 qiov
->size
, qiov
, 0, 0);
535 static int coroutine_fn
do_perform_cow_write(BlockDriverState
*bs
,
536 uint64_t cluster_offset
,
537 unsigned offset_in_cluster
,
540 BDRVQcow2State
*s
= bs
->opaque
;
543 if (qiov
->size
== 0) {
547 ret
= qcow2_pre_write_overlap_check(bs
, 0,
548 cluster_offset
+ offset_in_cluster
, qiov
->size
, true);
553 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
554 ret
= bdrv_co_pwritev(s
->data_file
, cluster_offset
+ offset_in_cluster
,
555 qiov
->size
, qiov
, 0);
567 * For a given offset of the virtual disk find the equivalent host
568 * offset in the qcow2 file and store it in *host_offset. Neither
569 * offset needs to be aligned to a cluster boundary.
571 * If the cluster is unallocated then *host_offset will be 0.
572 * If the cluster is compressed then *host_offset will contain the l2 entry.
574 * On entry, *bytes is the maximum number of contiguous bytes starting at
575 * offset that we are interested in.
577 * On exit, *bytes is the number of bytes starting at offset that have the same
578 * subcluster type and (if applicable) are stored contiguously in the image
579 * file. The subcluster type is stored in *subcluster_type.
580 * Compressed clusters are always processed one by one.
582 * Returns 0 on success, -errno in error cases.
584 int qcow2_get_host_offset(BlockDriverState
*bs
, uint64_t offset
,
585 unsigned int *bytes
, uint64_t *host_offset
,
586 QCow2SubclusterType
*subcluster_type
)
588 BDRVQcow2State
*s
= bs
->opaque
;
589 unsigned int l2_index
, sc_index
;
590 uint64_t l1_index
, l2_offset
, *l2_slice
, l2_entry
, l2_bitmap
;
592 unsigned int offset_in_cluster
;
593 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
594 QCow2SubclusterType type
;
597 offset_in_cluster
= offset_into_cluster(s
, offset
);
598 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
600 /* compute how many bytes there are between the start of the cluster
601 * containing offset and the end of the l2 slice that contains
602 * the entry pointing to it */
604 ((uint64_t) (s
->l2_slice_size
- offset_to_l2_slice_index(s
, offset
)))
607 if (bytes_needed
> bytes_available
) {
608 bytes_needed
= bytes_available
;
613 /* seek to the l2 offset in the l1 table */
615 l1_index
= offset_to_l1_index(s
, offset
);
616 if (l1_index
>= s
->l1_size
) {
617 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
621 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
623 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
627 if (offset_into_cluster(s
, l2_offset
)) {
628 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
629 " unaligned (L1 index: %#" PRIx64
")",
630 l2_offset
, l1_index
);
634 /* load the l2 slice in memory */
636 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
641 /* find the cluster offset for the given disk offset */
643 l2_index
= offset_to_l2_slice_index(s
, offset
);
644 sc_index
= offset_to_sc_index(s
, offset
);
645 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
646 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
648 nb_clusters
= size_to_clusters(s
, bytes_needed
);
649 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
650 * integers; the minimum cluster size is 512, so this assertion is always
652 assert(nb_clusters
<= INT_MAX
);
654 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
655 if (s
->qcow_version
< 3 && (type
== QCOW2_SUBCLUSTER_ZERO_PLAIN
||
656 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
)) {
657 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
658 " in pre-v3 image (L2 offset: %#" PRIx64
659 ", L2 index: %#x)", l2_offset
, l2_index
);
664 case QCOW2_SUBCLUSTER_INVALID
:
665 break; /* This is handled by count_contiguous_subclusters() below */
666 case QCOW2_SUBCLUSTER_COMPRESSED
:
667 if (has_data_file(bs
)) {
668 qcow2_signal_corruption(bs
, true, -1, -1, "Compressed cluster "
669 "entry found in image with external data "
670 "file (L2 offset: %#" PRIx64
", L2 index: "
671 "%#x)", l2_offset
, l2_index
);
675 *host_offset
= l2_entry
;
677 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
678 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
680 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
681 case QCOW2_SUBCLUSTER_NORMAL
:
682 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
: {
683 uint64_t host_cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
684 *host_offset
= host_cluster_offset
+ offset_in_cluster
;
685 if (offset_into_cluster(s
, host_cluster_offset
)) {
686 qcow2_signal_corruption(bs
, true, -1, -1,
687 "Cluster allocation offset %#"
688 PRIx64
" unaligned (L2 offset: %#" PRIx64
689 ", L2 index: %#x)", host_cluster_offset
,
690 l2_offset
, l2_index
);
694 if (has_data_file(bs
) && *host_offset
!= offset
) {
695 qcow2_signal_corruption(bs
, true, -1, -1,
696 "External data file host cluster offset %#"
697 PRIx64
" does not match guest cluster "
699 ", L2 index: %#x)", host_cluster_offset
,
700 offset
- offset_in_cluster
, l2_index
);
710 sc
= count_contiguous_subclusters(bs
, nb_clusters
, sc_index
,
711 l2_slice
, &l2_index
);
713 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster entry found "
714 " (L2 offset: %#" PRIx64
", L2 index: %#x)",
715 l2_offset
, l2_index
);
719 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
721 bytes_available
= ((int64_t)sc
+ sc_index
) << s
->subcluster_bits
;
724 if (bytes_available
> bytes_needed
) {
725 bytes_available
= bytes_needed
;
728 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
729 * subtracting offset_in_cluster will therefore definitely yield something
730 * not exceeding UINT_MAX */
731 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
732 *bytes
= bytes_available
- offset_in_cluster
;
734 *subcluster_type
= type
;
739 qcow2_cache_put(s
->l2_table_cache
, (void **)&l2_slice
);
746 * for a given disk offset, load (and allocate if needed)
747 * the appropriate slice of its l2 table.
749 * the cluster index in the l2 slice is given to the caller.
751 * Returns 0 on success, -errno in failure case
753 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
754 uint64_t **new_l2_slice
,
757 BDRVQcow2State
*s
= bs
->opaque
;
758 unsigned int l2_index
;
759 uint64_t l1_index
, l2_offset
;
760 uint64_t *l2_slice
= NULL
;
763 /* seek to the l2 offset in the l1 table */
765 l1_index
= offset_to_l1_index(s
, offset
);
766 if (l1_index
>= s
->l1_size
) {
767 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
773 assert(l1_index
< s
->l1_size
);
774 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
775 if (offset_into_cluster(s
, l2_offset
)) {
776 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
777 " unaligned (L1 index: %#" PRIx64
")",
778 l2_offset
, l1_index
);
782 if (!(s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
)) {
783 /* First allocate a new L2 table (and do COW if needed) */
784 ret
= l2_allocate(bs
, l1_index
);
789 /* Then decrease the refcount of the old table */
791 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
792 QCOW2_DISCARD_OTHER
);
795 /* Get the offset of the newly-allocated l2 table */
796 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
797 assert(offset_into_cluster(s
, l2_offset
) == 0);
800 /* load the l2 slice in memory */
801 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
806 /* find the cluster offset for the given disk offset */
808 l2_index
= offset_to_l2_slice_index(s
, offset
);
810 *new_l2_slice
= l2_slice
;
811 *new_l2_index
= l2_index
;
817 * alloc_compressed_cluster_offset
819 * For a given offset on the virtual disk, allocate a new compressed cluster
820 * and put the host offset of the cluster into *host_offset. If a cluster is
821 * already allocated at the offset, return an error.
823 * Return 0 on success and -errno in error cases
825 int qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
828 uint64_t *host_offset
)
830 BDRVQcow2State
*s
= bs
->opaque
;
833 int64_t cluster_offset
;
836 if (has_data_file(bs
)) {
840 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
845 /* Compression can't overwrite anything. Fail if the cluster was already
847 cluster_offset
= get_l2_entry(s
, l2_slice
, l2_index
);
848 if (cluster_offset
& L2E_OFFSET_MASK
) {
849 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
853 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
854 if (cluster_offset
< 0) {
855 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
856 return cluster_offset
;
860 (cluster_offset
+ compressed_size
- 1) / QCOW2_COMPRESSED_SECTOR_SIZE
-
861 (cluster_offset
/ QCOW2_COMPRESSED_SECTOR_SIZE
);
863 /* The offset and size must fit in their fields of the L2 table entry */
864 assert((cluster_offset
& s
->cluster_offset_mask
) == cluster_offset
);
865 assert((nb_csectors
& s
->csize_mask
) == nb_csectors
);
867 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
868 ((uint64_t)nb_csectors
<< s
->csize_shift
);
870 /* update L2 table */
872 /* compressed clusters never have the copied flag */
874 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
875 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
876 set_l2_entry(s
, l2_slice
, l2_index
, cluster_offset
);
877 if (has_subclusters(s
)) {
878 set_l2_bitmap(s
, l2_slice
, l2_index
, 0);
880 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
882 *host_offset
= cluster_offset
& s
->cluster_offset_mask
;
886 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
888 BDRVQcow2State
*s
= bs
->opaque
;
889 Qcow2COWRegion
*start
= &m
->cow_start
;
890 Qcow2COWRegion
*end
= &m
->cow_end
;
891 unsigned buffer_size
;
892 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
894 uint8_t *start_buffer
, *end_buffer
;
898 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
899 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
900 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
902 if ((start
->nb_bytes
== 0 && end
->nb_bytes
== 0) || m
->skip_cow
) {
906 /* If we have to read both the start and end COW regions and the
907 * middle region is not too large then perform just one read
909 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
911 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
913 /* If we have to do two reads, add some padding in the middle
914 * if necessary to make sure that the end region is optimally
916 size_t align
= bdrv_opt_mem_align(bs
);
917 assert(align
> 0 && align
<= UINT_MAX
);
918 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
919 UINT_MAX
- end
->nb_bytes
);
920 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
923 /* Reserve a buffer large enough to store all the data that we're
925 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
926 if (start_buffer
== NULL
) {
929 /* The part of the buffer where the end region is located */
930 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
932 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
?
933 qemu_iovec_subvec_niov(m
->data_qiov
,
938 qemu_co_mutex_unlock(&s
->lock
);
939 /* First we read the existing data from both COW regions. We
940 * either read the whole region in one go, or the start and end
941 * regions separately. */
943 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
944 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
946 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
947 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
952 qemu_iovec_reset(&qiov
);
953 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
954 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
960 /* Encrypt the data if necessary before writing it */
962 ret
= qcow2_co_encrypt(bs
,
963 m
->alloc_offset
+ start
->offset
,
964 m
->offset
+ start
->offset
,
965 start_buffer
, start
->nb_bytes
);
970 ret
= qcow2_co_encrypt(bs
,
971 m
->alloc_offset
+ end
->offset
,
972 m
->offset
+ end
->offset
,
973 end_buffer
, end
->nb_bytes
);
979 /* And now we can write everything. If we have the guest data we
980 * can write everything in one single operation */
982 qemu_iovec_reset(&qiov
);
983 if (start
->nb_bytes
) {
984 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
986 qemu_iovec_concat(&qiov
, m
->data_qiov
, m
->data_qiov_offset
, data_bytes
);
988 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
990 /* NOTE: we have a write_aio blkdebug event here followed by
991 * a cow_write one in do_perform_cow_write(), but there's only
992 * one single I/O operation */
993 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
994 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
996 /* If there's no guest data then write both COW regions separately */
997 qemu_iovec_reset(&qiov
);
998 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
999 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
1004 qemu_iovec_reset(&qiov
);
1005 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
1006 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
1010 qemu_co_mutex_lock(&s
->lock
);
1013 * Before we update the L2 table to actually point to the new cluster, we
1014 * need to be sure that the refcounts have been increased and COW was
1018 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1021 qemu_vfree(start_buffer
);
1022 qemu_iovec_destroy(&qiov
);
1026 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
1028 BDRVQcow2State
*s
= bs
->opaque
;
1029 int i
, j
= 0, l2_index
, ret
;
1030 uint64_t *old_cluster
, *l2_slice
;
1031 uint64_t cluster_offset
= m
->alloc_offset
;
1033 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
1034 assert(m
->nb_clusters
> 0);
1036 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
1037 if (old_cluster
== NULL
) {
1042 /* copy content of unmodified sectors */
1043 ret
= perform_cow(bs
, m
);
1048 /* Update L2 table. */
1049 if (s
->use_lazy_refcounts
) {
1050 qcow2_mark_dirty(bs
);
1052 if (qcow2_need_accurate_refcounts(s
)) {
1053 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1054 s
->refcount_block_cache
);
1057 ret
= get_cluster_table(bs
, m
->offset
, &l2_slice
, &l2_index
);
1061 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1063 assert(l2_index
+ m
->nb_clusters
<= s
->l2_slice_size
);
1064 assert(m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
<=
1065 m
->nb_clusters
<< s
->cluster_bits
);
1066 for (i
= 0; i
< m
->nb_clusters
; i
++) {
1067 uint64_t offset
= cluster_offset
+ ((uint64_t)i
<< s
->cluster_bits
);
1068 /* if two concurrent writes happen to the same unallocated cluster
1069 * each write allocates separate cluster and writes data concurrently.
1070 * The first one to complete updates l2 table with pointer to its
1071 * cluster the second one has to do RMW (which is done above by
1072 * perform_cow()), update l2 table with its cluster pointer and free
1073 * old cluster. This is what this loop does */
1074 if (get_l2_entry(s
, l2_slice
, l2_index
+ i
) != 0) {
1075 old_cluster
[j
++] = get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1078 /* The offset must fit in the offset field of the L2 table entry */
1079 assert((offset
& L2E_OFFSET_MASK
) == offset
);
1081 set_l2_entry(s
, l2_slice
, l2_index
+ i
, offset
| QCOW_OFLAG_COPIED
);
1083 /* Update bitmap with the subclusters that were just written */
1084 if (has_subclusters(s
) && !m
->prealloc
) {
1085 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1086 unsigned written_from
= m
->cow_start
.offset
;
1087 unsigned written_to
= m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
;
1088 int first_sc
, last_sc
;
1089 /* Narrow written_from and written_to down to the current cluster */
1090 written_from
= MAX(written_from
, i
<< s
->cluster_bits
);
1091 written_to
= MIN(written_to
, (i
+ 1) << s
->cluster_bits
);
1092 assert(written_from
< written_to
);
1093 first_sc
= offset_to_sc_index(s
, written_from
);
1094 last_sc
= offset_to_sc_index(s
, written_to
- 1);
1095 l2_bitmap
|= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc
, last_sc
+ 1);
1096 l2_bitmap
&= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc
, last_sc
+ 1);
1097 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, l2_bitmap
);
1102 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1105 * If this was a COW, we need to decrease the refcount of the old cluster.
1107 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1108 * clusters), the next write will reuse them anyway.
1110 if (!m
->keep_old_clusters
&& j
!= 0) {
1111 for (i
= 0; i
< j
; i
++) {
1112 qcow2_free_any_cluster(bs
, old_cluster
[i
], QCOW2_DISCARD_NEVER
);
1118 g_free(old_cluster
);
1123 * Frees the allocated clusters because the request failed and they won't
1124 * actually be linked.
1126 void qcow2_alloc_cluster_abort(BlockDriverState
*bs
, QCowL2Meta
*m
)
1128 BDRVQcow2State
*s
= bs
->opaque
;
1129 if (!has_data_file(bs
) && !m
->keep_old_clusters
) {
1130 qcow2_free_clusters(bs
, m
->alloc_offset
,
1131 m
->nb_clusters
<< s
->cluster_bits
,
1132 QCOW2_DISCARD_NEVER
);
1137 * For a given write request, create a new QCowL2Meta structure, add
1138 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1139 * request does not need copy-on-write or changes to the L2 metadata
1140 * then this function does nothing.
1142 * @host_cluster_offset points to the beginning of the first cluster.
1144 * @guest_offset and @bytes indicate the offset and length of the
1147 * @l2_slice contains the L2 entries of all clusters involved in this
1150 * If @keep_old is true it means that the clusters were already
1151 * allocated and will be overwritten. If false then the clusters are
1152 * new and we have to decrease the reference count of the old ones.
1154 * Returns 0 on success, -errno on failure.
1156 static int calculate_l2_meta(BlockDriverState
*bs
, uint64_t host_cluster_offset
,
1157 uint64_t guest_offset
, unsigned bytes
,
1158 uint64_t *l2_slice
, QCowL2Meta
**m
, bool keep_old
)
1160 BDRVQcow2State
*s
= bs
->opaque
;
1161 int sc_index
, l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1162 uint64_t l2_entry
, l2_bitmap
;
1163 unsigned cow_start_from
, cow_end_to
;
1164 unsigned cow_start_to
= offset_into_cluster(s
, guest_offset
);
1165 unsigned cow_end_from
= cow_start_to
+ bytes
;
1166 unsigned nb_clusters
= size_to_clusters(s
, cow_end_from
);
1167 QCowL2Meta
*old_m
= *m
;
1168 QCow2SubclusterType type
;
1170 bool skip_cow
= keep_old
;
1172 assert(nb_clusters
<= s
->l2_slice_size
- l2_index
);
1174 /* Check the type of all affected subclusters */
1175 for (i
= 0; i
< nb_clusters
; i
++) {
1176 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1177 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1179 unsigned write_from
= MAX(cow_start_to
, i
<< s
->cluster_bits
);
1180 unsigned write_to
= MIN(cow_end_from
, (i
+ 1) << s
->cluster_bits
);
1181 int first_sc
= offset_to_sc_index(s
, write_from
);
1182 int last_sc
= offset_to_sc_index(s
, write_to
- 1);
1183 int cnt
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
1185 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1186 if (type
!= QCOW2_SUBCLUSTER_NORMAL
|| first_sc
+ cnt
<= last_sc
) {
1190 /* If we can't skip the cow we can still look for invalid entries */
1191 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, 0);
1193 if (type
== QCOW2_SUBCLUSTER_INVALID
) {
1194 int l1_index
= offset_to_l1_index(s
, guest_offset
);
1195 uint64_t l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
1196 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster "
1197 "entry found (L2 offset: %#" PRIx64
1199 l2_offset
, l2_index
+ i
);
1208 /* Get the L2 entry of the first cluster */
1209 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1210 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1211 sc_index
= offset_to_sc_index(s
, guest_offset
);
1212 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1216 case QCOW2_SUBCLUSTER_COMPRESSED
:
1219 case QCOW2_SUBCLUSTER_NORMAL
:
1220 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1221 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1222 if (has_subclusters(s
)) {
1223 /* Skip all leading zero and unallocated subclusters */
1224 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1226 MIN(sc_index
, ctz32(alloc_bitmap
)) << s
->subcluster_bits
;
1231 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1232 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1233 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1236 g_assert_not_reached();
1240 case QCOW2_SUBCLUSTER_NORMAL
:
1241 cow_start_from
= cow_start_to
;
1243 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1244 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1245 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1248 g_assert_not_reached();
1252 /* Get the L2 entry of the last cluster */
1253 l2_index
+= nb_clusters
- 1;
1254 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1255 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1256 sc_index
= offset_to_sc_index(s
, guest_offset
+ bytes
- 1);
1257 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1261 case QCOW2_SUBCLUSTER_COMPRESSED
:
1262 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1264 case QCOW2_SUBCLUSTER_NORMAL
:
1265 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1266 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1267 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1268 if (has_subclusters(s
)) {
1269 /* Skip all trailing zero and unallocated subclusters */
1270 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1272 MIN(s
->subclusters_per_cluster
- sc_index
- 1,
1273 clz32(alloc_bitmap
)) << s
->subcluster_bits
;
1276 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1277 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1278 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1281 g_assert_not_reached();
1285 case QCOW2_SUBCLUSTER_NORMAL
:
1286 cow_end_to
= cow_end_from
;
1288 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1289 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1290 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1293 g_assert_not_reached();
1297 *m
= g_malloc0(sizeof(**m
));
1298 **m
= (QCowL2Meta
) {
1301 .alloc_offset
= host_cluster_offset
,
1302 .offset
= start_of_cluster(s
, guest_offset
),
1303 .nb_clusters
= nb_clusters
,
1305 .keep_old_clusters
= keep_old
,
1308 .offset
= cow_start_from
,
1309 .nb_bytes
= cow_start_to
- cow_start_from
,
1312 .offset
= cow_end_from
,
1313 .nb_bytes
= cow_end_to
- cow_end_from
,
1317 qemu_co_queue_init(&(*m
)->dependent_requests
);
1318 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1324 * Returns true if writing to the cluster pointed to by @l2_entry
1325 * requires a new allocation (that is, if the cluster is unallocated
1326 * or has refcount > 1 and therefore cannot be written in-place).
1328 static bool cluster_needs_new_alloc(BlockDriverState
*bs
, uint64_t l2_entry
)
1330 switch (qcow2_get_cluster_type(bs
, l2_entry
)) {
1331 case QCOW2_CLUSTER_NORMAL
:
1332 case QCOW2_CLUSTER_ZERO_ALLOC
:
1333 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1337 case QCOW2_CLUSTER_UNALLOCATED
:
1338 case QCOW2_CLUSTER_COMPRESSED
:
1339 case QCOW2_CLUSTER_ZERO_PLAIN
:
1347 * Returns the number of contiguous clusters that can be written to
1348 * using one single write request, starting from @l2_index.
1349 * At most @nb_clusters are checked.
1351 * If @new_alloc is true this counts clusters that are either
1352 * unallocated, or allocated but with refcount > 1 (so they need to be
1353 * newly allocated and COWed).
1355 * If @new_alloc is false this counts clusters that are already
1356 * allocated and can be overwritten in-place (this includes clusters
1357 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1359 static int count_single_write_clusters(BlockDriverState
*bs
, int nb_clusters
,
1360 uint64_t *l2_slice
, int l2_index
,
1363 BDRVQcow2State
*s
= bs
->opaque
;
1364 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1365 uint64_t expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
1368 for (i
= 0; i
< nb_clusters
; i
++) {
1369 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1370 if (cluster_needs_new_alloc(bs
, l2_entry
) != new_alloc
) {
1374 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
1377 expected_offset
+= s
->cluster_size
;
1381 assert(i
<= nb_clusters
);
1386 * Check if there already is an AIO write request in flight which allocates
1387 * the same cluster. In this case we need to wait until the previous
1388 * request has completed and updated the L2 table accordingly.
1391 * 0 if there was no dependency. *cur_bytes indicates the number of
1392 * bytes from guest_offset that can be read before the next
1393 * dependency must be processed (or the request is complete)
1395 * -EAGAIN if we had to wait for another request, previously gathered
1396 * information on cluster allocation may be invalid now. The caller
1397 * must start over anyway, so consider *cur_bytes undefined.
1399 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
1400 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1402 BDRVQcow2State
*s
= bs
->opaque
;
1403 QCowL2Meta
*old_alloc
;
1404 uint64_t bytes
= *cur_bytes
;
1406 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1408 uint64_t start
= guest_offset
;
1409 uint64_t end
= start
+ bytes
;
1410 uint64_t old_start
= start_of_cluster(s
, l2meta_cow_start(old_alloc
));
1411 uint64_t old_end
= ROUND_UP(l2meta_cow_end(old_alloc
), s
->cluster_size
);
1413 if (end
<= old_start
|| start
>= old_end
) {
1414 /* No intersection */
1418 if (old_alloc
->keep_old_clusters
&&
1419 (end
<= l2meta_cow_start(old_alloc
) ||
1420 start
>= l2meta_cow_end(old_alloc
)))
1423 * Clusters intersect but COW areas don't. And cluster itself is
1424 * already allocated. So, there is no actual conflict.
1431 if (start
< old_start
) {
1432 /* Stop at the start of a running allocation */
1433 bytes
= old_start
- start
;
1439 * Stop if an l2meta already exists. After yielding, it wouldn't
1440 * be valid any more, so we'd have to clean up the old L2Metas
1441 * and deal with requests depending on them before starting to
1442 * gather new ones. Not worth the trouble.
1444 if (bytes
== 0 && *m
) {
1451 * Wait for the dependency to complete. We need to recheck
1452 * the free/allocated clusters when we continue.
1454 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1459 /* Make sure that existing clusters and new allocations are only used up to
1460 * the next dependency if we shortened the request above */
1467 * Checks how many already allocated clusters that don't require a new
1468 * allocation there are at the given guest_offset (up to *bytes).
1469 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1470 * beginning at this host offset are counted.
1472 * Note that guest_offset may not be cluster aligned. In this case, the
1473 * returned *host_offset points to exact byte referenced by guest_offset and
1474 * therefore isn't cluster aligned as well.
1477 * 0: if no allocated clusters are available at the given offset.
1478 * *bytes is normally unchanged. It is set to 0 if the cluster
1479 * is allocated and can be overwritten in-place but doesn't have
1480 * the right physical offset.
1482 * 1: if allocated clusters that can be overwritten in place are
1483 * available at the requested offset. *bytes may have decreased
1484 * and describes the length of the area that can be written to.
1486 * -errno: in error cases
1488 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1489 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1491 BDRVQcow2State
*s
= bs
->opaque
;
1493 uint64_t l2_entry
, cluster_offset
;
1495 uint64_t nb_clusters
;
1496 unsigned int keep_clusters
;
1499 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1502 assert(*host_offset
== INV_OFFSET
|| offset_into_cluster(s
, guest_offset
)
1503 == offset_into_cluster(s
, *host_offset
));
1506 * Calculate the number of clusters to look for. We stop at L2 slice
1507 * boundaries to keep things simple.
1510 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1512 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1513 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1514 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1515 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1517 /* Find L2 entry for the first involved cluster */
1518 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1523 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1524 cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
1526 if (!cluster_needs_new_alloc(bs
, l2_entry
)) {
1527 if (offset_into_cluster(s
, cluster_offset
)) {
1528 qcow2_signal_corruption(bs
, true, -1, -1, "%s cluster offset "
1529 "%#" PRIx64
" unaligned (guest offset: %#"
1530 PRIx64
")", l2_entry
& QCOW_OFLAG_ZERO
?
1531 "Preallocated zero" : "Data",
1532 cluster_offset
, guest_offset
);
1537 /* If a specific host_offset is required, check it */
1538 if (*host_offset
!= INV_OFFSET
&& cluster_offset
!= *host_offset
) {
1544 /* We keep all QCOW_OFLAG_COPIED clusters */
1545 keep_clusters
= count_single_write_clusters(bs
, nb_clusters
, l2_slice
,
1547 assert(keep_clusters
<= nb_clusters
);
1549 *bytes
= MIN(*bytes
,
1550 keep_clusters
* s
->cluster_size
1551 - offset_into_cluster(s
, guest_offset
));
1552 assert(*bytes
!= 0);
1554 ret
= calculate_l2_meta(bs
, cluster_offset
, guest_offset
,
1555 *bytes
, l2_slice
, m
, true);
1567 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1569 /* Only return a host offset if we actually made progress. Otherwise we
1570 * would make requirements for handle_alloc() that it can't fulfill */
1572 *host_offset
= cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1579 * Allocates new clusters for the given guest_offset.
1581 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1582 * contain the number of clusters that have been allocated and are contiguous
1583 * in the image file.
1585 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1586 * at which the new clusters must start. *nb_clusters can be 0 on return in
1587 * this case if the cluster at host_offset is already in use. If *host_offset
1588 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1590 * *host_offset is updated to contain the offset into the image file at which
1591 * the first allocated cluster starts.
1593 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1594 * function has been waiting for another request and the allocation must be
1595 * restarted, but the whole request should not be failed.
1597 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1598 uint64_t *host_offset
, uint64_t *nb_clusters
)
1600 BDRVQcow2State
*s
= bs
->opaque
;
1602 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1603 *host_offset
, *nb_clusters
);
1605 if (has_data_file(bs
)) {
1606 assert(*host_offset
== INV_OFFSET
||
1607 *host_offset
== start_of_cluster(s
, guest_offset
));
1608 *host_offset
= start_of_cluster(s
, guest_offset
);
1612 /* Allocate new clusters */
1613 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1614 if (*host_offset
== INV_OFFSET
) {
1615 int64_t cluster_offset
=
1616 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1617 if (cluster_offset
< 0) {
1618 return cluster_offset
;
1620 *host_offset
= cluster_offset
;
1623 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1633 * Allocates new clusters for an area that is either still unallocated or
1634 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1635 * clusters are only allocated if the new allocation can match the specified
1638 * Note that guest_offset may not be cluster aligned. In this case, the
1639 * returned *host_offset points to exact byte referenced by guest_offset and
1640 * therefore isn't cluster aligned as well.
1643 * 0: if no clusters could be allocated. *bytes is set to 0,
1644 * *host_offset is left unchanged.
1646 * 1: if new clusters were allocated. *bytes may be decreased if the
1647 * new allocation doesn't cover all of the requested area.
1648 * *host_offset is updated to contain the host offset of the first
1649 * newly allocated cluster.
1651 * -errno: in error cases
1653 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1654 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1656 BDRVQcow2State
*s
= bs
->opaque
;
1659 uint64_t nb_clusters
;
1662 uint64_t alloc_cluster_offset
;
1664 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1669 * Calculate the number of clusters to look for. We stop at L2 slice
1670 * boundaries to keep things simple.
1673 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1675 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1676 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1677 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1678 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1680 /* Find L2 entry for the first involved cluster */
1681 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1686 nb_clusters
= count_single_write_clusters(bs
, nb_clusters
,
1687 l2_slice
, l2_index
, true);
1689 /* This function is only called when there were no non-COW clusters, so if
1690 * we can't find any unallocated or COW clusters either, something is
1691 * wrong with our code. */
1692 assert(nb_clusters
> 0);
1694 /* Allocate at a given offset in the image file */
1695 alloc_cluster_offset
= *host_offset
== INV_OFFSET
? INV_OFFSET
:
1696 start_of_cluster(s
, *host_offset
);
1697 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1703 /* Can't extend contiguous allocation */
1704 if (nb_clusters
== 0) {
1710 assert(alloc_cluster_offset
!= INV_OFFSET
);
1713 * Save info needed for meta data update.
1715 * requested_bytes: Number of bytes from the start of the first
1716 * newly allocated cluster to the end of the (possibly shortened
1717 * before) write request.
1719 * avail_bytes: Number of bytes from the start of the first
1720 * newly allocated to the end of the last newly allocated cluster.
1722 * nb_bytes: The number of bytes from the start of the first
1723 * newly allocated cluster to the end of the area that the write
1724 * request actually writes to (excluding COW at the end)
1726 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1727 int avail_bytes
= nb_clusters
<< s
->cluster_bits
;
1728 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1730 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1731 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1732 assert(*bytes
!= 0);
1734 ret
= calculate_l2_meta(bs
, alloc_cluster_offset
, guest_offset
, *bytes
,
1735 l2_slice
, m
, false);
1743 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1748 * For a given area on the virtual disk defined by @offset and @bytes,
1749 * find the corresponding area on the qcow2 image, allocating new
1750 * clusters (or subclusters) if necessary. The result can span a
1751 * combination of allocated and previously unallocated clusters.
1753 * Note that offset may not be cluster aligned. In this case, the returned
1754 * *host_offset points to exact byte referenced by offset and therefore
1755 * isn't cluster aligned as well.
1757 * On return, @host_offset is set to the beginning of the requested
1758 * area. This area is guaranteed to be contiguous on the qcow2 file
1759 * but it can be smaller than initially requested. In this case @bytes
1760 * is updated with the actual size.
1762 * If any clusters or subclusters were allocated then @m contains a
1763 * list with the information of all the affected regions. Note that
1764 * this can happen regardless of whether this function succeeds or
1765 * not. The caller is responsible for updating the L2 metadata of the
1766 * allocated clusters (on success) or freeing them (on failure), and
1767 * for clearing the contents of @m afterwards in both cases.
1769 * If the request conflicts with another write request in flight, the coroutine
1770 * is queued and will be reentered when the dependency has completed.
1772 * Return 0 on success and -errno in error cases
1774 int qcow2_alloc_host_offset(BlockDriverState
*bs
, uint64_t offset
,
1775 unsigned int *bytes
, uint64_t *host_offset
,
1778 BDRVQcow2State
*s
= bs
->opaque
;
1779 uint64_t start
, remaining
;
1780 uint64_t cluster_offset
;
1784 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1789 cluster_offset
= INV_OFFSET
;
1790 *host_offset
= INV_OFFSET
;
1796 if (*host_offset
== INV_OFFSET
&& cluster_offset
!= INV_OFFSET
) {
1797 *host_offset
= cluster_offset
;
1800 assert(remaining
>= cur_bytes
);
1803 remaining
-= cur_bytes
;
1805 if (cluster_offset
!= INV_OFFSET
) {
1806 cluster_offset
+= cur_bytes
;
1809 if (remaining
== 0) {
1813 cur_bytes
= remaining
;
1816 * Now start gathering as many contiguous clusters as possible:
1818 * 1. Check for overlaps with in-flight allocations
1820 * a) Overlap not in the first cluster -> shorten this request and
1821 * let the caller handle the rest in its next loop iteration.
1823 * b) Real overlaps of two requests. Yield and restart the search
1824 * for contiguous clusters (the situation could have changed
1825 * while we were sleeping)
1827 * c) TODO: Request starts in the same cluster as the in-flight
1828 * allocation ends. Shorten the COW of the in-fight allocation,
1829 * set cluster_offset to write to the same cluster and set up
1830 * the right synchronisation between the in-flight request and
1833 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1834 if (ret
== -EAGAIN
) {
1835 /* Currently handle_dependencies() doesn't yield if we already had
1836 * an allocation. If it did, we would have to clean up the L2Meta
1837 * structs before starting over. */
1840 } else if (ret
< 0) {
1842 } else if (cur_bytes
== 0) {
1845 /* handle_dependencies() may have decreased cur_bytes (shortened
1846 * the allocations below) so that the next dependency is processed
1847 * correctly during the next loop iteration. */
1851 * 2. Count contiguous COPIED clusters.
1853 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1858 } else if (cur_bytes
== 0) {
1863 * 3. If the request still hasn't completed, allocate new clusters,
1864 * considering any cluster_offset of steps 1c or 2.
1866 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1872 assert(cur_bytes
== 0);
1877 *bytes
-= remaining
;
1879 assert(*host_offset
!= INV_OFFSET
);
1880 assert(offset_into_cluster(s
, *host_offset
) ==
1881 offset_into_cluster(s
, offset
));
1887 * This discards as many clusters of nb_clusters as possible at once (i.e.
1888 * all clusters in the same L2 slice) and returns the number of discarded
1891 static int discard_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1892 uint64_t nb_clusters
,
1893 enum qcow2_discard_type type
, bool full_discard
)
1895 BDRVQcow2State
*s
= bs
->opaque
;
1901 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1906 /* Limit nb_clusters to one L2 slice */
1907 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1908 assert(nb_clusters
<= INT_MAX
);
1910 for (i
= 0; i
< nb_clusters
; i
++) {
1911 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1912 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1913 uint64_t new_l2_entry
= old_l2_entry
;
1914 uint64_t new_l2_bitmap
= old_l2_bitmap
;
1915 QCow2ClusterType cluster_type
=
1916 qcow2_get_cluster_type(bs
, old_l2_entry
);
1919 * If full_discard is true, the cluster should not read back as zeroes,
1920 * but rather fall through to the backing file.
1922 * If full_discard is false, make sure that a discarded area reads back
1923 * as zeroes for v3 images (we cannot do it for v2 without actually
1924 * writing a zero-filled buffer). We can skip the operation if the
1925 * cluster is already marked as zero, or if it's unallocated and we
1926 * don't have a backing file.
1928 * TODO We might want to use bdrv_block_status(bs) here, but we're
1929 * holding s->lock, so that doesn't work today.
1932 new_l2_entry
= new_l2_bitmap
= 0;
1933 } else if (bs
->backing
|| qcow2_cluster_is_allocated(cluster_type
)) {
1934 if (has_subclusters(s
)) {
1936 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
1938 new_l2_entry
= s
->qcow_version
>= 3 ? QCOW_OFLAG_ZERO
: 0;
1942 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
1946 /* First remove L2 entries */
1947 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1948 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
1949 if (has_subclusters(s
)) {
1950 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
1952 /* Then decrease the refcount */
1953 qcow2_free_any_cluster(bs
, old_l2_entry
, type
);
1956 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1961 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1962 uint64_t bytes
, enum qcow2_discard_type type
,
1965 BDRVQcow2State
*s
= bs
->opaque
;
1966 uint64_t end_offset
= offset
+ bytes
;
1967 uint64_t nb_clusters
;
1971 /* Caller must pass aligned values, except at image end */
1972 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1973 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1974 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1976 nb_clusters
= size_to_clusters(s
, bytes
);
1978 s
->cache_discards
= true;
1980 /* Each L2 slice is handled by its own loop iteration */
1981 while (nb_clusters
> 0) {
1982 cleared
= discard_in_l2_slice(bs
, offset
, nb_clusters
, type
,
1989 nb_clusters
-= cleared
;
1990 offset
+= (cleared
* s
->cluster_size
);
1995 s
->cache_discards
= false;
1996 qcow2_process_discards(bs
, ret
);
2002 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2003 * all clusters in the same L2 slice) and returns the number of zeroed
2006 static int zero_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
2007 uint64_t nb_clusters
, int flags
)
2009 BDRVQcow2State
*s
= bs
->opaque
;
2015 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2020 /* Limit nb_clusters to one L2 slice */
2021 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
2022 assert(nb_clusters
<= INT_MAX
);
2024 for (i
= 0; i
< nb_clusters
; i
++) {
2025 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
2026 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
2027 QCow2ClusterType type
= qcow2_get_cluster_type(bs
, old_l2_entry
);
2028 bool unmap
= (type
== QCOW2_CLUSTER_COMPRESSED
) ||
2029 ((flags
& BDRV_REQ_MAY_UNMAP
) && qcow2_cluster_is_allocated(type
));
2030 uint64_t new_l2_entry
= unmap
? 0 : old_l2_entry
;
2031 uint64_t new_l2_bitmap
= old_l2_bitmap
;
2033 if (has_subclusters(s
)) {
2034 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
2036 new_l2_entry
|= QCOW_OFLAG_ZERO
;
2039 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
2043 /* First update L2 entries */
2044 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2045 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
2046 if (has_subclusters(s
)) {
2047 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
2050 /* Then decrease the refcount */
2052 qcow2_free_any_cluster(bs
, old_l2_entry
, QCOW2_DISCARD_REQUEST
);
2056 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2061 static int zero_l2_subclusters(BlockDriverState
*bs
, uint64_t offset
,
2062 unsigned nb_subclusters
)
2064 BDRVQcow2State
*s
= bs
->opaque
;
2066 uint64_t old_l2_bitmap
, l2_bitmap
;
2067 int l2_index
, ret
, sc
= offset_to_sc_index(s
, offset
);
2069 /* For full clusters use zero_in_l2_slice() instead */
2070 assert(nb_subclusters
> 0 && nb_subclusters
< s
->subclusters_per_cluster
);
2071 assert(sc
+ nb_subclusters
<= s
->subclusters_per_cluster
);
2072 assert(offset_into_subcluster(s
, offset
) == 0);
2074 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2079 switch (qcow2_get_cluster_type(bs
, get_l2_entry(s
, l2_slice
, l2_index
))) {
2080 case QCOW2_CLUSTER_COMPRESSED
:
2081 ret
= -ENOTSUP
; /* We cannot partially zeroize compressed clusters */
2083 case QCOW2_CLUSTER_NORMAL
:
2084 case QCOW2_CLUSTER_UNALLOCATED
:
2087 g_assert_not_reached();
2090 old_l2_bitmap
= l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
2092 l2_bitmap
|= QCOW_OFLAG_SUB_ZERO_RANGE(sc
, sc
+ nb_subclusters
);
2093 l2_bitmap
&= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc
, sc
+ nb_subclusters
);
2095 if (old_l2_bitmap
!= l2_bitmap
) {
2096 set_l2_bitmap(s
, l2_slice
, l2_index
, l2_bitmap
);
2097 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2102 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2107 int qcow2_subcluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
2108 uint64_t bytes
, int flags
)
2110 BDRVQcow2State
*s
= bs
->opaque
;
2111 uint64_t end_offset
= offset
+ bytes
;
2112 uint64_t nb_clusters
;
2113 unsigned head
, tail
;
2117 /* If we have to stay in sync with an external data file, zero out
2118 * s->data_file first. */
2119 if (data_file_is_raw(bs
)) {
2120 assert(has_data_file(bs
));
2121 ret
= bdrv_co_pwrite_zeroes(s
->data_file
, offset
, bytes
, flags
);
2127 /* Caller must pass aligned values, except at image end */
2128 assert(offset_into_subcluster(s
, offset
) == 0);
2129 assert(offset_into_subcluster(s
, end_offset
) == 0 ||
2130 end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
);
2133 * The zero flag is only supported by version 3 and newer. However, if we
2134 * have no backing file, we can resort to discard in version 2.
2136 if (s
->qcow_version
< 3) {
2138 return qcow2_cluster_discard(bs
, offset
, bytes
,
2139 QCOW2_DISCARD_REQUEST
, false);
2144 head
= MIN(end_offset
, ROUND_UP(offset
, s
->cluster_size
)) - offset
;
2147 tail
= (end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
) ? 0 :
2148 end_offset
- MAX(offset
, start_of_cluster(s
, end_offset
));
2151 s
->cache_discards
= true;
2154 ret
= zero_l2_subclusters(bs
, offset
- head
,
2155 size_to_subclusters(s
, head
));
2161 /* Each L2 slice is handled by its own loop iteration */
2162 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
2164 while (nb_clusters
> 0) {
2165 cleared
= zero_in_l2_slice(bs
, offset
, nb_clusters
, flags
);
2171 nb_clusters
-= cleared
;
2172 offset
+= (cleared
* s
->cluster_size
);
2176 ret
= zero_l2_subclusters(bs
, end_offset
, size_to_subclusters(s
, tail
));
2184 s
->cache_discards
= false;
2185 qcow2_process_discards(bs
, ret
);
2191 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2192 * non-backed non-pre-allocated zero clusters).
2194 * l1_entries and *visited_l1_entries are used to keep track of progress for
2195 * status_cb(). l1_entries contains the total number of L1 entries and
2196 * *visited_l1_entries counts all visited L1 entries.
2198 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
2199 int l1_size
, int64_t *visited_l1_entries
,
2201 BlockDriverAmendStatusCB
*status_cb
,
2204 BDRVQcow2State
*s
= bs
->opaque
;
2205 bool is_active_l1
= (l1_table
== s
->l1_table
);
2206 uint64_t *l2_slice
= NULL
;
2207 unsigned slice
, slice_size2
, n_slices
;
2211 /* qcow2_downgrade() is not allowed in images with subclusters */
2212 assert(!has_subclusters(s
));
2214 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
2215 n_slices
= s
->cluster_size
/ slice_size2
;
2217 if (!is_active_l1
) {
2218 /* inactive L2 tables require a buffer to be stored in when loading
2220 l2_slice
= qemu_try_blockalign(bs
->file
->bs
, slice_size2
);
2221 if (l2_slice
== NULL
) {
2226 for (i
= 0; i
< l1_size
; i
++) {
2227 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
2228 uint64_t l2_refcount
;
2232 (*visited_l1_entries
)++;
2234 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2239 if (offset_into_cluster(s
, l2_offset
)) {
2240 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
2241 PRIx64
" unaligned (L1 index: %#x)",
2247 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
2253 for (slice
= 0; slice
< n_slices
; slice
++) {
2254 uint64_t slice_offset
= l2_offset
+ slice
* slice_size2
;
2255 bool l2_dirty
= false;
2257 /* get active L2 tables from cache */
2258 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, slice_offset
,
2259 (void **)&l2_slice
);
2261 /* load inactive L2 tables from disk */
2262 ret
= bdrv_pread(bs
->file
, slice_offset
, l2_slice
, slice_size2
);
2268 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
2269 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, j
);
2270 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
2271 QCow2ClusterType cluster_type
=
2272 qcow2_get_cluster_type(bs
, l2_entry
);
2274 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
2275 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
2279 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2282 * not backed; therefore we can simply deallocate the
2283 * cluster. No need to call set_l2_bitmap(), this
2284 * function doesn't support images with subclusters.
2286 set_l2_entry(s
, l2_slice
, j
, 0);
2291 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2297 /* The offset must fit in the offset field */
2298 assert((offset
& L2E_OFFSET_MASK
) == offset
);
2300 if (l2_refcount
> 1) {
2301 /* For shared L2 tables, set the refcount accordingly
2302 * (it is already 1 and needs to be l2_refcount) */
2303 ret
= qcow2_update_cluster_refcount(
2304 bs
, offset
>> s
->cluster_bits
,
2305 refcount_diff(1, l2_refcount
), false,
2306 QCOW2_DISCARD_OTHER
);
2308 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2309 QCOW2_DISCARD_OTHER
);
2315 if (offset_into_cluster(s
, offset
)) {
2316 int l2_index
= slice
* s
->l2_slice_size
+ j
;
2317 qcow2_signal_corruption(
2319 "Cluster allocation offset "
2320 "%#" PRIx64
" unaligned (L2 offset: %#"
2321 PRIx64
", L2 index: %#x)", offset
,
2322 l2_offset
, l2_index
);
2323 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2324 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2325 QCOW2_DISCARD_ALWAYS
);
2331 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
,
2332 s
->cluster_size
, true);
2334 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2335 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2336 QCOW2_DISCARD_ALWAYS
);
2341 ret
= bdrv_pwrite_zeroes(s
->data_file
, offset
,
2342 s
->cluster_size
, 0);
2344 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2345 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2346 QCOW2_DISCARD_ALWAYS
);
2351 if (l2_refcount
== 1) {
2352 set_l2_entry(s
, l2_slice
, j
, offset
| QCOW_OFLAG_COPIED
);
2354 set_l2_entry(s
, l2_slice
, j
, offset
);
2357 * No need to call set_l2_bitmap() after set_l2_entry() because
2358 * this function doesn't support images with subclusters.
2365 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2366 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
2368 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2371 ret
= qcow2_pre_write_overlap_check(
2372 bs
, QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
,
2373 slice_offset
, slice_size2
, false);
2378 ret
= bdrv_pwrite(bs
->file
, slice_offset
,
2379 l2_slice
, slice_size2
);
2387 (*visited_l1_entries
)++;
2389 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2397 if (!is_active_l1
) {
2398 qemu_vfree(l2_slice
);
2400 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2407 * For backed images, expands all zero clusters on the image. For non-backed
2408 * images, deallocates all non-pre-allocated zero clusters (and claims the
2409 * allocation for pre-allocated ones). This is important for downgrading to a
2410 * qcow2 version which doesn't yet support metadata zero clusters.
2412 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2413 BlockDriverAmendStatusCB
*status_cb
,
2416 BDRVQcow2State
*s
= bs
->opaque
;
2417 uint64_t *l1_table
= NULL
;
2418 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2423 l1_entries
= s
->l1_size
;
2424 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2425 l1_entries
+= s
->snapshots
[i
].l1_size
;
2429 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2430 &visited_l1_entries
, l1_entries
,
2431 status_cb
, cb_opaque
);
2436 /* Inactive L1 tables may point to active L2 tables - therefore it is
2437 * necessary to flush the L2 table cache before trying to access the L2
2438 * tables pointed to by inactive L1 entries (else we might try to expand
2439 * zero clusters that have already been expanded); furthermore, it is also
2440 * necessary to empty the L2 table cache, since it may contain tables which
2441 * are now going to be modified directly on disk, bypassing the cache.
2442 * qcow2_cache_empty() does both for us. */
2443 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2448 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2450 uint64_t *new_l1_table
;
2451 Error
*local_err
= NULL
;
2453 ret
= qcow2_validate_table(bs
, s
->snapshots
[i
].l1_table_offset
,
2454 s
->snapshots
[i
].l1_size
, L1E_SIZE
,
2455 QCOW_MAX_L1_SIZE
, "Snapshot L1 table",
2458 error_report_err(local_err
);
2462 l1_size2
= s
->snapshots
[i
].l1_size
* L1E_SIZE
;
2463 new_l1_table
= g_try_realloc(l1_table
, l1_size2
);
2465 if (!new_l1_table
) {
2470 l1_table
= new_l1_table
;
2472 ret
= bdrv_pread(bs
->file
, s
->snapshots
[i
].l1_table_offset
,
2473 l1_table
, l1_size2
);
2478 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2479 be64_to_cpus(&l1_table
[j
]);
2482 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2483 &visited_l1_entries
, l1_entries
,
2484 status_cb
, cb_opaque
);
2497 void qcow2_parse_compressed_l2_entry(BlockDriverState
*bs
, uint64_t l2_entry
,
2498 uint64_t *coffset
, int *csize
)
2500 BDRVQcow2State
*s
= bs
->opaque
;
2503 assert(qcow2_get_cluster_type(bs
, l2_entry
) == QCOW2_CLUSTER_COMPRESSED
);
2505 *coffset
= l2_entry
& s
->cluster_offset_mask
;
2507 nb_csectors
= ((l2_entry
>> s
->csize_shift
) & s
->csize_mask
) + 1;
2508 *csize
= nb_csectors
* QCOW2_COMPRESSED_SECTOR_SIZE
-
2509 (*coffset
& (QCOW2_COMPRESSED_SECTOR_SIZE
- 1));