2 * Core code for QEMU e1000e emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 #include "sysemu/runstate.h"
44 #include "net_tx_pkt.h"
45 #include "net_rx_pkt.h"
47 #include "e1000x_common.h"
48 #include "e1000e_core.h"
52 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
53 second according to spec 10.2.4.2 */
54 #define E1000E_MAX_TX_FRAGS (64)
57 e1000e_set_interrupt_cause(E1000ECore
*core
, uint32_t val
);
60 e1000e_process_ts_option(E1000ECore
*core
, struct e1000_tx_desc
*dp
)
62 if (le32_to_cpu(dp
->upper
.data
) & E1000_TXD_EXTCMD_TSTAMP
) {
63 trace_e1000e_wrn_no_ts_support();
68 e1000e_process_snap_option(E1000ECore
*core
, uint32_t cmd_and_length
)
70 if (cmd_and_length
& E1000_TXD_CMD_SNAP
) {
71 trace_e1000e_wrn_no_snap_support();
76 e1000e_raise_legacy_irq(E1000ECore
*core
)
78 trace_e1000e_irq_legacy_notify(true);
79 e1000x_inc_reg_if_not_full(core
->mac
, IAC
);
80 pci_set_irq(core
->owner
, 1);
84 e1000e_lower_legacy_irq(E1000ECore
*core
)
86 trace_e1000e_irq_legacy_notify(false);
87 pci_set_irq(core
->owner
, 0);
91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer
*timer
)
93 int64_t delay_ns
= (int64_t) timer
->core
->mac
[timer
->delay_reg
] *
94 timer
->delay_resolution_ns
;
96 trace_e1000e_irq_rearm_timer(timer
->delay_reg
<< 2, delay_ns
);
98 timer_mod(timer
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + delay_ns
);
100 timer
->running
= true;
104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer
*timer
)
106 if (timer
->running
) {
107 e1000e_intrmgr_rearm_timer(timer
);
112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer
*timer
)
114 if (timer
->running
) {
115 timer_del(timer
->timer
);
120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer
*timer
)
122 if (timer
->running
) {
123 timer_del(timer
->timer
);
124 timer
->running
= false;
129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore
*core
)
131 trace_e1000e_irq_fire_delayed_interrupts();
132 e1000e_set_interrupt_cause(core
, 0);
136 e1000e_intrmgr_on_timer(void *opaque
)
138 E1000IntrDelayTimer
*timer
= opaque
;
140 trace_e1000e_irq_throttling_timer(timer
->delay_reg
<< 2);
142 timer
->running
= false;
143 e1000e_intrmgr_fire_delayed_interrupts(timer
->core
);
147 e1000e_intrmgr_on_throttling_timer(void *opaque
)
149 E1000IntrDelayTimer
*timer
= opaque
;
151 assert(!msix_enabled(timer
->core
->owner
));
153 timer
->running
= false;
155 if (!timer
->core
->itr_intr_pending
) {
156 trace_e1000e_irq_throttling_no_pending_interrupts();
160 if (msi_enabled(timer
->core
->owner
)) {
161 trace_e1000e_irq_msi_notify_postponed();
162 /* Clear msi_causes_pending to fire MSI eventually */
163 timer
->core
->msi_causes_pending
= 0;
164 e1000e_set_interrupt_cause(timer
->core
, 0);
166 trace_e1000e_irq_legacy_notify_postponed();
167 e1000e_set_interrupt_cause(timer
->core
, 0);
172 e1000e_intrmgr_on_msix_throttling_timer(void *opaque
)
174 E1000IntrDelayTimer
*timer
= opaque
;
175 int idx
= timer
- &timer
->core
->eitr
[0];
177 assert(msix_enabled(timer
->core
->owner
));
179 timer
->running
= false;
181 if (!timer
->core
->eitr_intr_pending
[idx
]) {
182 trace_e1000e_irq_throttling_no_pending_vec(idx
);
186 trace_e1000e_irq_msix_notify_postponed_vec(idx
);
187 msix_notify(timer
->core
->owner
, idx
);
191 e1000e_intrmgr_initialize_all_timers(E1000ECore
*core
, bool create
)
195 core
->radv
.delay_reg
= RADV
;
196 core
->rdtr
.delay_reg
= RDTR
;
197 core
->raid
.delay_reg
= RAID
;
198 core
->tadv
.delay_reg
= TADV
;
199 core
->tidv
.delay_reg
= TIDV
;
201 core
->radv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
202 core
->rdtr
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
203 core
->raid
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
204 core
->tadv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
205 core
->tidv
.delay_resolution_ns
= E1000_INTR_DELAY_NS_RES
;
207 core
->radv
.core
= core
;
208 core
->rdtr
.core
= core
;
209 core
->raid
.core
= core
;
210 core
->tadv
.core
= core
;
211 core
->tidv
.core
= core
;
213 core
->itr
.core
= core
;
214 core
->itr
.delay_reg
= ITR
;
215 core
->itr
.delay_resolution_ns
= E1000_INTR_THROTTLING_NS_RES
;
217 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
218 core
->eitr
[i
].core
= core
;
219 core
->eitr
[i
].delay_reg
= EITR
+ i
;
220 core
->eitr
[i
].delay_resolution_ns
= E1000_INTR_THROTTLING_NS_RES
;
228 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->radv
);
230 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->rdtr
);
232 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->raid
);
235 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->tadv
);
237 timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000e_intrmgr_on_timer
, &core
->tidv
);
239 core
->itr
.timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
240 e1000e_intrmgr_on_throttling_timer
,
243 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
244 core
->eitr
[i
].timer
=
245 timer_new_ns(QEMU_CLOCK_VIRTUAL
,
246 e1000e_intrmgr_on_msix_throttling_timer
,
252 e1000e_intrmgr_stop_delay_timers(E1000ECore
*core
)
254 e1000e_intrmgr_stop_timer(&core
->radv
);
255 e1000e_intrmgr_stop_timer(&core
->rdtr
);
256 e1000e_intrmgr_stop_timer(&core
->raid
);
257 e1000e_intrmgr_stop_timer(&core
->tidv
);
258 e1000e_intrmgr_stop_timer(&core
->tadv
);
262 e1000e_intrmgr_delay_rx_causes(E1000ECore
*core
, uint32_t *causes
)
264 uint32_t delayable_causes
;
265 uint32_t rdtr
= core
->mac
[RDTR
];
266 uint32_t radv
= core
->mac
[RADV
];
267 uint32_t raid
= core
->mac
[RAID
];
269 if (msix_enabled(core
->owner
)) {
273 delayable_causes
= E1000_ICR_RXQ0
|
277 if (!(core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DIS
)) {
278 delayable_causes
|= E1000_ICR_ACK
;
281 /* Clean up all causes that may be delayed */
282 core
->delayed_causes
|= *causes
& delayable_causes
;
283 *causes
&= ~delayable_causes
;
285 /* Check if delayed RX interrupts disabled by client
286 or if there are causes that cannot be delayed */
287 if ((rdtr
== 0) || (*causes
!= 0)) {
291 /* Check if delayed RX ACK interrupts disabled by client
292 and there is an ACK packet received */
293 if ((raid
== 0) && (core
->delayed_causes
& E1000_ICR_ACK
)) {
297 /* All causes delayed */
298 e1000e_intrmgr_rearm_timer(&core
->rdtr
);
300 if (!core
->radv
.running
&& (radv
!= 0)) {
301 e1000e_intrmgr_rearm_timer(&core
->radv
);
304 if (!core
->raid
.running
&& (core
->delayed_causes
& E1000_ICR_ACK
)) {
305 e1000e_intrmgr_rearm_timer(&core
->raid
);
312 e1000e_intrmgr_delay_tx_causes(E1000ECore
*core
, uint32_t *causes
)
314 static const uint32_t delayable_causes
= E1000_ICR_TXQ0
|
319 if (msix_enabled(core
->owner
)) {
323 /* Clean up all causes that may be delayed */
324 core
->delayed_causes
|= *causes
& delayable_causes
;
325 *causes
&= ~delayable_causes
;
327 /* If there are causes that cannot be delayed */
332 /* All causes delayed */
333 e1000e_intrmgr_rearm_timer(&core
->tidv
);
335 if (!core
->tadv
.running
&& (core
->mac
[TADV
] != 0)) {
336 e1000e_intrmgr_rearm_timer(&core
->tadv
);
343 e1000e_intmgr_collect_delayed_causes(E1000ECore
*core
)
347 if (msix_enabled(core
->owner
)) {
348 assert(core
->delayed_causes
== 0);
352 res
= core
->delayed_causes
;
353 core
->delayed_causes
= 0;
355 e1000e_intrmgr_stop_delay_timers(core
);
361 e1000e_intrmgr_fire_all_timers(E1000ECore
*core
)
364 uint32_t val
= e1000e_intmgr_collect_delayed_causes(core
);
366 trace_e1000e_irq_adding_delayed_causes(val
, core
->mac
[ICR
]);
367 core
->mac
[ICR
] |= val
;
369 if (core
->itr
.running
) {
370 timer_del(core
->itr
.timer
);
371 e1000e_intrmgr_on_throttling_timer(&core
->itr
);
374 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
375 if (core
->eitr
[i
].running
) {
376 timer_del(core
->eitr
[i
].timer
);
377 e1000e_intrmgr_on_msix_throttling_timer(&core
->eitr
[i
]);
383 e1000e_intrmgr_resume(E1000ECore
*core
)
387 e1000e_intmgr_timer_resume(&core
->radv
);
388 e1000e_intmgr_timer_resume(&core
->rdtr
);
389 e1000e_intmgr_timer_resume(&core
->raid
);
390 e1000e_intmgr_timer_resume(&core
->tidv
);
391 e1000e_intmgr_timer_resume(&core
->tadv
);
393 e1000e_intmgr_timer_resume(&core
->itr
);
395 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
396 e1000e_intmgr_timer_resume(&core
->eitr
[i
]);
401 e1000e_intrmgr_pause(E1000ECore
*core
)
405 e1000e_intmgr_timer_pause(&core
->radv
);
406 e1000e_intmgr_timer_pause(&core
->rdtr
);
407 e1000e_intmgr_timer_pause(&core
->raid
);
408 e1000e_intmgr_timer_pause(&core
->tidv
);
409 e1000e_intmgr_timer_pause(&core
->tadv
);
411 e1000e_intmgr_timer_pause(&core
->itr
);
413 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
414 e1000e_intmgr_timer_pause(&core
->eitr
[i
]);
419 e1000e_intrmgr_reset(E1000ECore
*core
)
423 core
->delayed_causes
= 0;
425 e1000e_intrmgr_stop_delay_timers(core
);
427 e1000e_intrmgr_stop_timer(&core
->itr
);
429 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
430 e1000e_intrmgr_stop_timer(&core
->eitr
[i
]);
435 e1000e_intrmgr_pci_unint(E1000ECore
*core
)
439 timer_free(core
->radv
.timer
);
440 timer_free(core
->rdtr
.timer
);
441 timer_free(core
->raid
.timer
);
443 timer_free(core
->tadv
.timer
);
444 timer_free(core
->tidv
.timer
);
446 timer_free(core
->itr
.timer
);
448 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
449 timer_free(core
->eitr
[i
].timer
);
454 e1000e_intrmgr_pci_realize(E1000ECore
*core
)
456 e1000e_intrmgr_initialize_all_timers(core
, true);
460 e1000e_rx_csum_enabled(E1000ECore
*core
)
462 return (core
->mac
[RXCSUM
] & E1000_RXCSUM_PCSD
) ? false : true;
466 e1000e_rx_use_legacy_descriptor(E1000ECore
*core
)
468 return (core
->mac
[RFCTL
] & E1000_RFCTL_EXTEN
) ? false : true;
472 e1000e_rx_use_ps_descriptor(E1000ECore
*core
)
474 return !e1000e_rx_use_legacy_descriptor(core
) &&
475 (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
);
479 e1000e_rss_enabled(E1000ECore
*core
)
481 return E1000_MRQC_ENABLED(core
->mac
[MRQC
]) &&
482 !e1000e_rx_csum_enabled(core
) &&
483 !e1000e_rx_use_legacy_descriptor(core
);
486 typedef struct E1000E_RSSInfo_st
{
494 e1000e_rss_get_hash_type(E1000ECore
*core
, struct NetRxPkt
*pkt
)
496 bool isip4
, isip6
, isudp
, istcp
;
498 assert(e1000e_rss_enabled(core
));
500 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
503 bool fragment
= net_rx_pkt_get_ip4_info(pkt
)->fragment
;
505 trace_e1000e_rx_rss_ip4(fragment
, istcp
, core
->mac
[MRQC
],
506 E1000_MRQC_EN_TCPIPV4(core
->mac
[MRQC
]),
507 E1000_MRQC_EN_IPV4(core
->mac
[MRQC
]));
509 if (!fragment
&& istcp
&& E1000_MRQC_EN_TCPIPV4(core
->mac
[MRQC
])) {
510 return E1000_MRQ_RSS_TYPE_IPV4TCP
;
513 if (E1000_MRQC_EN_IPV4(core
->mac
[MRQC
])) {
514 return E1000_MRQ_RSS_TYPE_IPV4
;
517 eth_ip6_hdr_info
*ip6info
= net_rx_pkt_get_ip6_info(pkt
);
519 bool ex_dis
= core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_EX_DIS
;
520 bool new_ex_dis
= core
->mac
[RFCTL
] & E1000_RFCTL_NEW_IPV6_EXT_DIS
;
523 * Following two traces must not be combined because resulting
524 * event will have 11 arguments totally and some trace backends
525 * (at least "ust") have limitation of maximum 10 arguments per
526 * event. Events with more arguments fail to compile for
527 * backends like these.
529 trace_e1000e_rx_rss_ip6_rfctl(core
->mac
[RFCTL
]);
530 trace_e1000e_rx_rss_ip6(ex_dis
, new_ex_dis
, istcp
,
531 ip6info
->has_ext_hdrs
,
532 ip6info
->rss_ex_dst_valid
,
533 ip6info
->rss_ex_src_valid
,
535 E1000_MRQC_EN_TCPIPV6(core
->mac
[MRQC
]),
536 E1000_MRQC_EN_IPV6EX(core
->mac
[MRQC
]),
537 E1000_MRQC_EN_IPV6(core
->mac
[MRQC
]));
539 if ((!ex_dis
|| !ip6info
->has_ext_hdrs
) &&
540 (!new_ex_dis
|| !(ip6info
->rss_ex_dst_valid
||
541 ip6info
->rss_ex_src_valid
))) {
543 if (istcp
&& !ip6info
->fragment
&&
544 E1000_MRQC_EN_TCPIPV6(core
->mac
[MRQC
])) {
545 return E1000_MRQ_RSS_TYPE_IPV6TCP
;
548 if (E1000_MRQC_EN_IPV6EX(core
->mac
[MRQC
])) {
549 return E1000_MRQ_RSS_TYPE_IPV6EX
;
554 if (E1000_MRQC_EN_IPV6(core
->mac
[MRQC
])) {
555 return E1000_MRQ_RSS_TYPE_IPV6
;
560 return E1000_MRQ_RSS_TYPE_NONE
;
564 e1000e_rss_calc_hash(E1000ECore
*core
,
565 struct NetRxPkt
*pkt
,
566 E1000E_RSSInfo
*info
)
568 NetRxPktRssType type
;
570 assert(e1000e_rss_enabled(core
));
572 switch (info
->type
) {
573 case E1000_MRQ_RSS_TYPE_IPV4
:
574 type
= NetPktRssIpV4
;
576 case E1000_MRQ_RSS_TYPE_IPV4TCP
:
577 type
= NetPktRssIpV4Tcp
;
579 case E1000_MRQ_RSS_TYPE_IPV6TCP
:
580 type
= NetPktRssIpV6TcpEx
;
582 case E1000_MRQ_RSS_TYPE_IPV6
:
583 type
= NetPktRssIpV6
;
585 case E1000_MRQ_RSS_TYPE_IPV6EX
:
586 type
= NetPktRssIpV6Ex
;
593 return net_rx_pkt_calc_rss_hash(pkt
, type
, (uint8_t *) &core
->mac
[RSSRK
]);
597 e1000e_rss_parse_packet(E1000ECore
*core
,
598 struct NetRxPkt
*pkt
,
599 E1000E_RSSInfo
*info
)
601 trace_e1000e_rx_rss_started();
603 if (!e1000e_rss_enabled(core
)) {
604 info
->enabled
= false;
608 trace_e1000e_rx_rss_disabled();
612 info
->enabled
= true;
614 info
->type
= e1000e_rss_get_hash_type(core
, pkt
);
616 trace_e1000e_rx_rss_type(info
->type
);
618 if (info
->type
== E1000_MRQ_RSS_TYPE_NONE
) {
624 info
->hash
= e1000e_rss_calc_hash(core
, pkt
, info
);
625 info
->queue
= E1000_RSS_QUEUE(&core
->mac
[RETA
], info
->hash
);
629 e1000e_setup_tx_offloads(E1000ECore
*core
, struct e1000e_tx
*tx
)
631 if (tx
->props
.tse
&& tx
->cptse
) {
632 net_tx_pkt_build_vheader(tx
->tx_pkt
, true, true, tx
->props
.mss
);
633 net_tx_pkt_update_ip_checksums(tx
->tx_pkt
);
634 e1000x_inc_reg_if_not_full(core
->mac
, TSCTC
);
638 if (tx
->sum_needed
& E1000_TXD_POPTS_TXSM
) {
639 net_tx_pkt_build_vheader(tx
->tx_pkt
, false, true, 0);
642 if (tx
->sum_needed
& E1000_TXD_POPTS_IXSM
) {
643 net_tx_pkt_update_ip_hdr_checksum(tx
->tx_pkt
);
648 e1000e_tx_pkt_send(E1000ECore
*core
, struct e1000e_tx
*tx
, int queue_index
)
650 int target_queue
= MIN(core
->max_queue_num
, queue_index
);
651 NetClientState
*queue
= qemu_get_subqueue(core
->owner_nic
, target_queue
);
653 e1000e_setup_tx_offloads(core
, tx
);
655 net_tx_pkt_dump(tx
->tx_pkt
);
657 if ((core
->phy
[0][PHY_CTRL
] & MII_CR_LOOPBACK
) ||
658 ((core
->mac
[RCTL
] & E1000_RCTL_LBM_MAC
) == E1000_RCTL_LBM_MAC
)) {
659 return net_tx_pkt_send_loopback(tx
->tx_pkt
, queue
);
661 return net_tx_pkt_send(tx
->tx_pkt
, queue
);
666 e1000e_on_tx_done_update_stats(E1000ECore
*core
, struct NetTxPkt
*tx_pkt
)
668 static const int PTCregs
[6] = { PTC64
, PTC127
, PTC255
, PTC511
,
671 size_t tot_len
= net_tx_pkt_get_total_len(tx_pkt
);
673 e1000x_increase_size_stats(core
->mac
, PTCregs
, tot_len
);
674 e1000x_inc_reg_if_not_full(core
->mac
, TPT
);
675 e1000x_grow_8reg_if_not_full(core
->mac
, TOTL
, tot_len
);
677 switch (net_tx_pkt_get_packet_type(tx_pkt
)) {
679 e1000x_inc_reg_if_not_full(core
->mac
, BPTC
);
682 e1000x_inc_reg_if_not_full(core
->mac
, MPTC
);
687 g_assert_not_reached();
690 core
->mac
[GPTC
] = core
->mac
[TPT
];
691 core
->mac
[GOTCL
] = core
->mac
[TOTL
];
692 core
->mac
[GOTCH
] = core
->mac
[TOTH
];
696 e1000e_process_tx_desc(E1000ECore
*core
,
697 struct e1000e_tx
*tx
,
698 struct e1000_tx_desc
*dp
,
701 uint32_t txd_lower
= le32_to_cpu(dp
->lower
.data
);
702 uint32_t dtype
= txd_lower
& (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
);
703 unsigned int split_size
= txd_lower
& 0xffff;
705 struct e1000_context_desc
*xp
= (struct e1000_context_desc
*)dp
;
706 bool eop
= txd_lower
& E1000_TXD_CMD_EOP
;
708 if (dtype
== E1000_TXD_CMD_DEXT
) { /* context descriptor */
709 e1000x_read_tx_ctx_descr(xp
, &tx
->props
);
710 e1000e_process_snap_option(core
, le32_to_cpu(xp
->cmd_and_length
));
712 } else if (dtype
== (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
)) {
713 /* data descriptor */
714 tx
->sum_needed
= le32_to_cpu(dp
->upper
.data
) >> 8;
715 tx
->cptse
= (txd_lower
& E1000_TXD_CMD_TSE
) ? 1 : 0;
716 e1000e_process_ts_option(core
, dp
);
718 /* legacy descriptor */
719 e1000e_process_ts_option(core
, dp
);
723 addr
= le64_to_cpu(dp
->buffer_addr
);
726 if (!net_tx_pkt_add_raw_fragment(tx
->tx_pkt
, addr
, split_size
)) {
732 if (!tx
->skip_cp
&& net_tx_pkt_parse(tx
->tx_pkt
)) {
733 if (e1000x_vlan_enabled(core
->mac
) &&
734 e1000x_is_vlan_txd(txd_lower
)) {
735 net_tx_pkt_setup_vlan_header_ex(tx
->tx_pkt
,
736 le16_to_cpu(dp
->upper
.fields
.special
), core
->mac
[VET
]);
738 if (e1000e_tx_pkt_send(core
, tx
, queue_index
)) {
739 e1000e_on_tx_done_update_stats(core
, tx
->tx_pkt
);
744 net_tx_pkt_reset(tx
->tx_pkt
);
751 static inline uint32_t
752 e1000e_tx_wb_interrupt_cause(E1000ECore
*core
, int queue_idx
)
754 if (!msix_enabled(core
->owner
)) {
755 return E1000_ICR_TXDW
;
758 return (queue_idx
== 0) ? E1000_ICR_TXQ0
: E1000_ICR_TXQ1
;
761 static inline uint32_t
762 e1000e_rx_wb_interrupt_cause(E1000ECore
*core
, int queue_idx
,
763 bool min_threshold_hit
)
765 if (!msix_enabled(core
->owner
)) {
766 return E1000_ICS_RXT0
| (min_threshold_hit
? E1000_ICS_RXDMT0
: 0);
769 return (queue_idx
== 0) ? E1000_ICR_RXQ0
: E1000_ICR_RXQ1
;
773 e1000e_txdesc_writeback(E1000ECore
*core
, dma_addr_t base
,
774 struct e1000_tx_desc
*dp
, bool *ide
, int queue_idx
)
776 uint32_t txd_upper
, txd_lower
= le32_to_cpu(dp
->lower
.data
);
778 if (!(txd_lower
& E1000_TXD_CMD_RS
) &&
779 !(core
->mac
[IVAR
] & E1000_IVAR_TX_INT_EVERY_WB
)) {
783 *ide
= (txd_lower
& E1000_TXD_CMD_IDE
) ? true : false;
785 txd_upper
= le32_to_cpu(dp
->upper
.data
) | E1000_TXD_STAT_DD
;
787 dp
->upper
.data
= cpu_to_le32(txd_upper
);
788 pci_dma_write(core
->owner
, base
+ ((char *)&dp
->upper
- (char *)dp
),
789 &dp
->upper
, sizeof(dp
->upper
));
790 return e1000e_tx_wb_interrupt_cause(core
, queue_idx
);
793 typedef struct E1000E_RingInfo_st
{
803 e1000e_ring_empty(E1000ECore
*core
, const E1000E_RingInfo
*r
)
805 return core
->mac
[r
->dh
] == core
->mac
[r
->dt
] ||
806 core
->mac
[r
->dt
] >= core
->mac
[r
->dlen
] / E1000_RING_DESC_LEN
;
809 static inline uint64_t
810 e1000e_ring_base(E1000ECore
*core
, const E1000E_RingInfo
*r
)
812 uint64_t bah
= core
->mac
[r
->dbah
];
813 uint64_t bal
= core
->mac
[r
->dbal
];
815 return (bah
<< 32) + bal
;
818 static inline uint64_t
819 e1000e_ring_head_descr(E1000ECore
*core
, const E1000E_RingInfo
*r
)
821 return e1000e_ring_base(core
, r
) + E1000_RING_DESC_LEN
* core
->mac
[r
->dh
];
825 e1000e_ring_advance(E1000ECore
*core
, const E1000E_RingInfo
*r
, uint32_t count
)
827 core
->mac
[r
->dh
] += count
;
829 if (core
->mac
[r
->dh
] * E1000_RING_DESC_LEN
>= core
->mac
[r
->dlen
]) {
830 core
->mac
[r
->dh
] = 0;
834 static inline uint32_t
835 e1000e_ring_free_descr_num(E1000ECore
*core
, const E1000E_RingInfo
*r
)
837 trace_e1000e_ring_free_space(r
->idx
, core
->mac
[r
->dlen
],
838 core
->mac
[r
->dh
], core
->mac
[r
->dt
]);
840 if (core
->mac
[r
->dh
] <= core
->mac
[r
->dt
]) {
841 return core
->mac
[r
->dt
] - core
->mac
[r
->dh
];
844 if (core
->mac
[r
->dh
] > core
->mac
[r
->dt
]) {
845 return core
->mac
[r
->dlen
] / E1000_RING_DESC_LEN
+
846 core
->mac
[r
->dt
] - core
->mac
[r
->dh
];
849 g_assert_not_reached();
854 e1000e_ring_enabled(E1000ECore
*core
, const E1000E_RingInfo
*r
)
856 return core
->mac
[r
->dlen
] > 0;
859 static inline uint32_t
860 e1000e_ring_len(E1000ECore
*core
, const E1000E_RingInfo
*r
)
862 return core
->mac
[r
->dlen
];
865 typedef struct E1000E_TxRing_st
{
866 const E1000E_RingInfo
*i
;
867 struct e1000e_tx
*tx
;
871 e1000e_mq_queue_idx(int base_reg_idx
, int reg_idx
)
873 return (reg_idx
- base_reg_idx
) / (0x100 >> 2);
877 e1000e_tx_ring_init(E1000ECore
*core
, E1000E_TxRing
*txr
, int idx
)
879 static const E1000E_RingInfo i
[E1000E_NUM_QUEUES
] = {
880 { TDBAH
, TDBAL
, TDLEN
, TDH
, TDT
, 0 },
881 { TDBAH1
, TDBAL1
, TDLEN1
, TDH1
, TDT1
, 1 }
884 assert(idx
< ARRAY_SIZE(i
));
887 txr
->tx
= &core
->tx
[idx
];
890 typedef struct E1000E_RxRing_st
{
891 const E1000E_RingInfo
*i
;
895 e1000e_rx_ring_init(E1000ECore
*core
, E1000E_RxRing
*rxr
, int idx
)
897 static const E1000E_RingInfo i
[E1000E_NUM_QUEUES
] = {
898 { RDBAH0
, RDBAL0
, RDLEN0
, RDH0
, RDT0
, 0 },
899 { RDBAH1
, RDBAL1
, RDLEN1
, RDH1
, RDT1
, 1 }
902 assert(idx
< ARRAY_SIZE(i
));
908 e1000e_start_xmit(E1000ECore
*core
, const E1000E_TxRing
*txr
)
911 struct e1000_tx_desc desc
;
913 const E1000E_RingInfo
*txi
= txr
->i
;
914 uint32_t cause
= E1000_ICS_TXQE
;
916 if (!(core
->mac
[TCTL
] & E1000_TCTL_EN
)) {
917 trace_e1000e_tx_disabled();
921 while (!e1000e_ring_empty(core
, txi
)) {
922 base
= e1000e_ring_head_descr(core
, txi
);
924 pci_dma_read(core
->owner
, base
, &desc
, sizeof(desc
));
926 trace_e1000e_tx_descr((void *)(intptr_t)desc
.buffer_addr
,
927 desc
.lower
.data
, desc
.upper
.data
);
929 e1000e_process_tx_desc(core
, txr
->tx
, &desc
, txi
->idx
);
930 cause
|= e1000e_txdesc_writeback(core
, base
, &desc
, &ide
, txi
->idx
);
932 e1000e_ring_advance(core
, txi
, 1);
935 if (!ide
|| !e1000e_intrmgr_delay_tx_causes(core
, &cause
)) {
936 e1000e_set_interrupt_cause(core
, cause
);
941 e1000e_has_rxbufs(E1000ECore
*core
, const E1000E_RingInfo
*r
,
944 uint32_t bufs
= e1000e_ring_free_descr_num(core
, r
);
946 trace_e1000e_rx_has_buffers(r
->idx
, bufs
, total_size
,
947 core
->rx_desc_buf_size
);
949 return total_size
<= bufs
/ (core
->rx_desc_len
/ E1000_MIN_RX_DESC_LEN
) *
950 core
->rx_desc_buf_size
;
954 e1000e_start_recv(E1000ECore
*core
)
958 trace_e1000e_rx_start_recv();
960 for (i
= 0; i
<= core
->max_queue_num
; i
++) {
961 qemu_flush_queued_packets(qemu_get_subqueue(core
->owner_nic
, i
));
966 e1000e_can_receive(E1000ECore
*core
)
970 if (!e1000x_rx_ready(core
->owner
, core
->mac
)) {
974 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
977 e1000e_rx_ring_init(core
, &rxr
, i
);
978 if (e1000e_ring_enabled(core
, rxr
.i
) &&
979 e1000e_has_rxbufs(core
, rxr
.i
, 1)) {
980 trace_e1000e_rx_can_recv();
985 trace_e1000e_rx_can_recv_rings_full();
990 e1000e_receive(E1000ECore
*core
, const uint8_t *buf
, size_t size
)
992 const struct iovec iov
= {
993 .iov_base
= (uint8_t *)buf
,
997 return e1000e_receive_iov(core
, &iov
, 1);
1001 e1000e_rx_l3_cso_enabled(E1000ECore
*core
)
1003 return !!(core
->mac
[RXCSUM
] & E1000_RXCSUM_IPOFLD
);
1007 e1000e_rx_l4_cso_enabled(E1000ECore
*core
)
1009 return !!(core
->mac
[RXCSUM
] & E1000_RXCSUM_TUOFLD
);
1013 e1000e_receive_filter(E1000ECore
*core
, const uint8_t *buf
, int size
)
1015 uint32_t rctl
= core
->mac
[RCTL
];
1017 if (e1000x_is_vlan_packet(buf
, core
->mac
[VET
]) &&
1018 e1000x_vlan_rx_filter_enabled(core
->mac
)) {
1019 uint16_t vid
= lduw_be_p(buf
+ 14);
1020 uint32_t vfta
= ldl_le_p((uint32_t *)(core
->mac
+ VFTA
) +
1021 ((vid
>> 5) & 0x7f));
1022 if ((vfta
& (1 << (vid
& 0x1f))) == 0) {
1023 trace_e1000e_rx_flt_vlan_mismatch(vid
);
1026 trace_e1000e_rx_flt_vlan_match(vid
);
1030 switch (net_rx_pkt_get_packet_type(core
->rx_pkt
)) {
1032 if (rctl
& E1000_RCTL_UPE
) {
1033 return true; /* promiscuous ucast */
1038 if (rctl
& E1000_RCTL_BAM
) {
1039 return true; /* broadcast enabled */
1044 if (rctl
& E1000_RCTL_MPE
) {
1045 return true; /* promiscuous mcast */
1050 g_assert_not_reached();
1053 return e1000x_rx_group_filter(core
->mac
, buf
);
1057 e1000e_read_lgcy_rx_descr(E1000ECore
*core
, uint8_t *desc
, hwaddr
*buff_addr
)
1059 struct e1000_rx_desc
*d
= (struct e1000_rx_desc
*) desc
;
1060 *buff_addr
= le64_to_cpu(d
->buffer_addr
);
1064 e1000e_read_ext_rx_descr(E1000ECore
*core
, uint8_t *desc
, hwaddr
*buff_addr
)
1066 union e1000_rx_desc_extended
*d
= (union e1000_rx_desc_extended
*) desc
;
1067 *buff_addr
= le64_to_cpu(d
->read
.buffer_addr
);
1071 e1000e_read_ps_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1072 hwaddr (*buff_addr
)[MAX_PS_BUFFERS
])
1075 union e1000_rx_desc_packet_split
*d
=
1076 (union e1000_rx_desc_packet_split
*) desc
;
1078 for (i
= 0; i
< MAX_PS_BUFFERS
; i
++) {
1079 (*buff_addr
)[i
] = le64_to_cpu(d
->read
.buffer_addr
[i
]);
1082 trace_e1000e_rx_desc_ps_read((*buff_addr
)[0], (*buff_addr
)[1],
1083 (*buff_addr
)[2], (*buff_addr
)[3]);
1087 e1000e_read_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1088 hwaddr (*buff_addr
)[MAX_PS_BUFFERS
])
1090 if (e1000e_rx_use_legacy_descriptor(core
)) {
1091 e1000e_read_lgcy_rx_descr(core
, desc
, &(*buff_addr
)[0]);
1092 (*buff_addr
)[1] = (*buff_addr
)[2] = (*buff_addr
)[3] = 0;
1094 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1095 e1000e_read_ps_rx_descr(core
, desc
, buff_addr
);
1097 e1000e_read_ext_rx_descr(core
, desc
, &(*buff_addr
)[0]);
1098 (*buff_addr
)[1] = (*buff_addr
)[2] = (*buff_addr
)[3] = 0;
1104 e1000e_verify_csum_in_sw(E1000ECore
*core
,
1105 struct NetRxPkt
*pkt
,
1106 uint32_t *status_flags
,
1107 bool istcp
, bool isudp
)
1110 uint32_t csum_error
;
1112 if (e1000e_rx_l3_cso_enabled(core
)) {
1113 if (!net_rx_pkt_validate_l3_csum(pkt
, &csum_valid
)) {
1114 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1116 csum_error
= csum_valid
? 0 : E1000_RXDEXT_STATERR_IPE
;
1117 *status_flags
|= E1000_RXD_STAT_IPCS
| csum_error
;
1120 trace_e1000e_rx_metadata_l3_cso_disabled();
1123 if (!e1000e_rx_l4_cso_enabled(core
)) {
1124 trace_e1000e_rx_metadata_l4_cso_disabled();
1128 if (!net_rx_pkt_validate_l4_csum(pkt
, &csum_valid
)) {
1129 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1133 csum_error
= csum_valid
? 0 : E1000_RXDEXT_STATERR_TCPE
;
1136 *status_flags
|= E1000_RXD_STAT_TCPCS
|
1139 *status_flags
|= E1000_RXD_STAT_TCPCS
|
1140 E1000_RXD_STAT_UDPCS
|
1146 e1000e_is_tcp_ack(E1000ECore
*core
, struct NetRxPkt
*rx_pkt
)
1148 if (!net_rx_pkt_is_tcp_ack(rx_pkt
)) {
1152 if (core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DATA_DIS
) {
1153 return !net_rx_pkt_has_tcp_data(rx_pkt
);
1160 e1000e_build_rx_metadata(E1000ECore
*core
,
1161 struct NetRxPkt
*pkt
,
1163 const E1000E_RSSInfo
*rss_info
,
1164 uint32_t *rss
, uint32_t *mrq
,
1165 uint32_t *status_flags
,
1169 struct virtio_net_hdr
*vhdr
;
1170 bool isip4
, isip6
, istcp
, isudp
;
1173 *status_flags
= E1000_RXD_STAT_DD
;
1175 /* No additional metadata needed for non-EOP descriptors */
1180 *status_flags
|= E1000_RXD_STAT_EOP
;
1182 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
1183 trace_e1000e_rx_metadata_protocols(isip4
, isip6
, isudp
, istcp
);
1186 if (net_rx_pkt_is_vlan_stripped(pkt
)) {
1187 *status_flags
|= E1000_RXD_STAT_VP
;
1188 *vlan_tag
= cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt
));
1189 trace_e1000e_rx_metadata_vlan(*vlan_tag
);
1192 /* Packet parsing results */
1193 if ((core
->mac
[RXCSUM
] & E1000_RXCSUM_PCSD
) != 0) {
1194 if (rss_info
->enabled
) {
1195 *rss
= cpu_to_le32(rss_info
->hash
);
1196 *mrq
= cpu_to_le32(rss_info
->type
| (rss_info
->queue
<< 8));
1197 trace_e1000e_rx_metadata_rss(*rss
, *mrq
);
1200 *status_flags
|= E1000_RXD_STAT_IPIDV
;
1201 *ip_id
= cpu_to_le16(net_rx_pkt_get_ip_id(pkt
));
1202 trace_e1000e_rx_metadata_ip_id(*ip_id
);
1205 if (istcp
&& e1000e_is_tcp_ack(core
, pkt
)) {
1206 *status_flags
|= E1000_RXD_STAT_ACK
;
1207 trace_e1000e_rx_metadata_ack();
1210 if (isip6
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_DIS
)) {
1211 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1212 pkt_type
= E1000_RXD_PKT_MAC
;
1213 } else if (istcp
|| isudp
) {
1214 pkt_type
= isip4
? E1000_RXD_PKT_IP4_XDP
: E1000_RXD_PKT_IP6_XDP
;
1215 } else if (isip4
|| isip6
) {
1216 pkt_type
= isip4
? E1000_RXD_PKT_IP4
: E1000_RXD_PKT_IP6
;
1218 pkt_type
= E1000_RXD_PKT_MAC
;
1221 *status_flags
|= E1000_RXD_PKT_TYPE(pkt_type
);
1222 trace_e1000e_rx_metadata_pkt_type(pkt_type
);
1224 /* RX CSO information */
1225 if (isip6
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPV6_XSUM_DIS
)) {
1226 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1230 if (!net_rx_pkt_has_virt_hdr(pkt
)) {
1231 trace_e1000e_rx_metadata_no_virthdr();
1232 e1000e_verify_csum_in_sw(core
, pkt
, status_flags
, istcp
, isudp
);
1236 vhdr
= net_rx_pkt_get_vhdr(pkt
);
1238 if (!(vhdr
->flags
& VIRTIO_NET_HDR_F_DATA_VALID
) &&
1239 !(vhdr
->flags
& VIRTIO_NET_HDR_F_NEEDS_CSUM
)) {
1240 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1241 e1000e_verify_csum_in_sw(core
, pkt
, status_flags
, istcp
, isudp
);
1245 if (e1000e_rx_l3_cso_enabled(core
)) {
1246 *status_flags
|= isip4
? E1000_RXD_STAT_IPCS
: 0;
1248 trace_e1000e_rx_metadata_l3_cso_disabled();
1251 if (e1000e_rx_l4_cso_enabled(core
)) {
1253 *status_flags
|= E1000_RXD_STAT_TCPCS
;
1255 *status_flags
|= E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
;
1258 trace_e1000e_rx_metadata_l4_cso_disabled();
1261 trace_e1000e_rx_metadata_status_flags(*status_flags
);
1264 *status_flags
= cpu_to_le32(*status_flags
);
1268 e1000e_write_lgcy_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1269 struct NetRxPkt
*pkt
,
1270 const E1000E_RSSInfo
*rss_info
,
1273 uint32_t status_flags
, rss
, mrq
;
1276 struct e1000_rx_desc
*d
= (struct e1000_rx_desc
*) desc
;
1278 assert(!rss_info
->enabled
);
1280 d
->length
= cpu_to_le16(length
);
1283 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1286 &status_flags
, &ip_id
,
1288 d
->errors
= (uint8_t) (le32_to_cpu(status_flags
) >> 24);
1289 d
->status
= (uint8_t) le32_to_cpu(status_flags
);
1293 e1000e_write_ext_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1294 struct NetRxPkt
*pkt
,
1295 const E1000E_RSSInfo
*rss_info
,
1298 union e1000_rx_desc_extended
*d
= (union e1000_rx_desc_extended
*) desc
;
1300 memset(&d
->wb
, 0, sizeof(d
->wb
));
1302 d
->wb
.upper
.length
= cpu_to_le16(length
);
1304 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1306 &d
->wb
.lower
.hi_dword
.rss
,
1308 &d
->wb
.upper
.status_error
,
1309 &d
->wb
.lower
.hi_dword
.csum_ip
.ip_id
,
1314 e1000e_write_ps_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1315 struct NetRxPkt
*pkt
,
1316 const E1000E_RSSInfo
*rss_info
,
1318 uint16_t(*written
)[MAX_PS_BUFFERS
])
1321 union e1000_rx_desc_packet_split
*d
=
1322 (union e1000_rx_desc_packet_split
*) desc
;
1324 memset(&d
->wb
, 0, sizeof(d
->wb
));
1326 d
->wb
.middle
.length0
= cpu_to_le16((*written
)[0]);
1328 for (i
= 0; i
< PS_PAGE_BUFFERS
; i
++) {
1329 d
->wb
.upper
.length
[i
] = cpu_to_le16((*written
)[i
+ 1]);
1332 e1000e_build_rx_metadata(core
, pkt
, pkt
!= NULL
,
1334 &d
->wb
.lower
.hi_dword
.rss
,
1336 &d
->wb
.middle
.status_error
,
1337 &d
->wb
.lower
.hi_dword
.csum_ip
.ip_id
,
1338 &d
->wb
.middle
.vlan
);
1340 d
->wb
.upper
.header_status
=
1341 cpu_to_le16(ps_hdr_len
| (ps_hdr_len
? E1000_RXDPS_HDRSTAT_HDRSP
: 0));
1343 trace_e1000e_rx_desc_ps_write((*written
)[0], (*written
)[1],
1344 (*written
)[2], (*written
)[3]);
1348 e1000e_write_rx_descr(E1000ECore
*core
, uint8_t *desc
,
1349 struct NetRxPkt
*pkt
, const E1000E_RSSInfo
*rss_info
,
1350 size_t ps_hdr_len
, uint16_t(*written
)[MAX_PS_BUFFERS
])
1352 if (e1000e_rx_use_legacy_descriptor(core
)) {
1353 assert(ps_hdr_len
== 0);
1354 e1000e_write_lgcy_rx_descr(core
, desc
, pkt
, rss_info
, (*written
)[0]);
1356 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1357 e1000e_write_ps_rx_descr(core
, desc
, pkt
, rss_info
,
1358 ps_hdr_len
, written
);
1360 assert(ps_hdr_len
== 0);
1361 e1000e_write_ext_rx_descr(core
, desc
, pkt
, rss_info
,
1368 e1000e_pci_dma_write_rx_desc(E1000ECore
*core
, dma_addr_t addr
,
1369 uint8_t *desc
, dma_addr_t len
)
1371 PCIDevice
*dev
= core
->owner
;
1373 if (e1000e_rx_use_legacy_descriptor(core
)) {
1374 struct e1000_rx_desc
*d
= (struct e1000_rx_desc
*) desc
;
1375 size_t offset
= offsetof(struct e1000_rx_desc
, status
);
1376 uint8_t status
= d
->status
;
1378 d
->status
&= ~E1000_RXD_STAT_DD
;
1379 pci_dma_write(dev
, addr
, desc
, len
);
1381 if (status
& E1000_RXD_STAT_DD
) {
1383 pci_dma_write(dev
, addr
+ offset
, &status
, sizeof(status
));
1386 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1387 union e1000_rx_desc_packet_split
*d
=
1388 (union e1000_rx_desc_packet_split
*) desc
;
1389 size_t offset
= offsetof(union e1000_rx_desc_packet_split
,
1390 wb
.middle
.status_error
);
1391 uint32_t status
= d
->wb
.middle
.status_error
;
1393 d
->wb
.middle
.status_error
&= ~E1000_RXD_STAT_DD
;
1394 pci_dma_write(dev
, addr
, desc
, len
);
1396 if (status
& E1000_RXD_STAT_DD
) {
1397 d
->wb
.middle
.status_error
= status
;
1398 pci_dma_write(dev
, addr
+ offset
, &status
, sizeof(status
));
1401 union e1000_rx_desc_extended
*d
=
1402 (union e1000_rx_desc_extended
*) desc
;
1403 size_t offset
= offsetof(union e1000_rx_desc_extended
,
1404 wb
.upper
.status_error
);
1405 uint32_t status
= d
->wb
.upper
.status_error
;
1407 d
->wb
.upper
.status_error
&= ~E1000_RXD_STAT_DD
;
1408 pci_dma_write(dev
, addr
, desc
, len
);
1410 if (status
& E1000_RXD_STAT_DD
) {
1411 d
->wb
.upper
.status_error
= status
;
1412 pci_dma_write(dev
, addr
+ offset
, &status
, sizeof(status
));
1418 typedef struct e1000e_ba_state_st
{
1419 uint16_t written
[MAX_PS_BUFFERS
];
1424 e1000e_write_hdr_to_rx_buffers(E1000ECore
*core
,
1425 hwaddr (*ba
)[MAX_PS_BUFFERS
],
1426 e1000e_ba_state
*bastate
,
1428 dma_addr_t data_len
)
1430 assert(data_len
<= core
->rxbuf_sizes
[0] - bastate
->written
[0]);
1432 pci_dma_write(core
->owner
, (*ba
)[0] + bastate
->written
[0], data
, data_len
);
1433 bastate
->written
[0] += data_len
;
1435 bastate
->cur_idx
= 1;
1439 e1000e_write_to_rx_buffers(E1000ECore
*core
,
1440 hwaddr (*ba
)[MAX_PS_BUFFERS
],
1441 e1000e_ba_state
*bastate
,
1443 dma_addr_t data_len
)
1445 while (data_len
> 0) {
1446 uint32_t cur_buf_len
= core
->rxbuf_sizes
[bastate
->cur_idx
];
1447 uint32_t cur_buf_bytes_left
= cur_buf_len
-
1448 bastate
->written
[bastate
->cur_idx
];
1449 uint32_t bytes_to_write
= MIN(data_len
, cur_buf_bytes_left
);
1451 trace_e1000e_rx_desc_buff_write(bastate
->cur_idx
,
1452 (*ba
)[bastate
->cur_idx
],
1453 bastate
->written
[bastate
->cur_idx
],
1457 pci_dma_write(core
->owner
,
1458 (*ba
)[bastate
->cur_idx
] + bastate
->written
[bastate
->cur_idx
],
1459 data
, bytes_to_write
);
1461 bastate
->written
[bastate
->cur_idx
] += bytes_to_write
;
1462 data
+= bytes_to_write
;
1463 data_len
-= bytes_to_write
;
1465 if (bastate
->written
[bastate
->cur_idx
] == cur_buf_len
) {
1469 assert(bastate
->cur_idx
< MAX_PS_BUFFERS
);
1474 e1000e_update_rx_stats(E1000ECore
*core
,
1476 size_t data_fcs_size
)
1478 e1000x_update_rx_total_stats(core
->mac
, data_size
, data_fcs_size
);
1480 switch (net_rx_pkt_get_packet_type(core
->rx_pkt
)) {
1482 e1000x_inc_reg_if_not_full(core
->mac
, BPRC
);
1486 e1000x_inc_reg_if_not_full(core
->mac
, MPRC
);
1495 e1000e_rx_descr_threshold_hit(E1000ECore
*core
, const E1000E_RingInfo
*rxi
)
1497 return e1000e_ring_free_descr_num(core
, rxi
) ==
1498 e1000e_ring_len(core
, rxi
) >> core
->rxbuf_min_shift
;
1502 e1000e_do_ps(E1000ECore
*core
, struct NetRxPkt
*pkt
, size_t *hdr_len
)
1504 bool isip4
, isip6
, isudp
, istcp
;
1507 if (!e1000e_rx_use_ps_descriptor(core
)) {
1511 net_rx_pkt_get_protocols(pkt
, &isip4
, &isip6
, &isudp
, &istcp
);
1514 fragment
= net_rx_pkt_get_ip4_info(pkt
)->fragment
;
1516 fragment
= net_rx_pkt_get_ip6_info(pkt
)->fragment
;
1521 if (fragment
&& (core
->mac
[RFCTL
] & E1000_RFCTL_IPFRSP_DIS
)) {
1525 if (!fragment
&& (isudp
|| istcp
)) {
1526 *hdr_len
= net_rx_pkt_get_l5_hdr_offset(pkt
);
1528 *hdr_len
= net_rx_pkt_get_l4_hdr_offset(pkt
);
1531 if ((*hdr_len
> core
->rxbuf_sizes
[0]) ||
1532 (*hdr_len
> net_rx_pkt_get_total_len(pkt
))) {
1540 e1000e_write_packet_to_guest(E1000ECore
*core
, struct NetRxPkt
*pkt
,
1541 const E1000E_RxRing
*rxr
,
1542 const E1000E_RSSInfo
*rss_info
)
1544 PCIDevice
*d
= core
->owner
;
1546 uint8_t desc
[E1000_MAX_RX_DESC_LEN
];
1548 size_t desc_offset
= 0;
1551 struct iovec
*iov
= net_rx_pkt_get_iovec(pkt
);
1552 size_t size
= net_rx_pkt_get_total_len(pkt
);
1553 size_t total_size
= size
+ e1000x_fcs_len(core
->mac
);
1554 const E1000E_RingInfo
*rxi
;
1555 size_t ps_hdr_len
= 0;
1556 bool do_ps
= e1000e_do_ps(core
, pkt
, &ps_hdr_len
);
1557 bool is_first
= true;
1562 hwaddr ba
[MAX_PS_BUFFERS
];
1563 e1000e_ba_state bastate
= { { 0 } };
1564 bool is_last
= false;
1566 desc_size
= total_size
- desc_offset
;
1568 if (desc_size
> core
->rx_desc_buf_size
) {
1569 desc_size
= core
->rx_desc_buf_size
;
1572 if (e1000e_ring_empty(core
, rxi
)) {
1576 base
= e1000e_ring_head_descr(core
, rxi
);
1578 pci_dma_read(d
, base
, &desc
, core
->rx_desc_len
);
1580 trace_e1000e_rx_descr(rxi
->idx
, base
, core
->rx_desc_len
);
1582 e1000e_read_rx_descr(core
, desc
, &ba
);
1585 if (desc_offset
< size
) {
1586 static const uint32_t fcs_pad
;
1588 size_t copy_size
= size
- desc_offset
;
1589 if (copy_size
> core
->rx_desc_buf_size
) {
1590 copy_size
= core
->rx_desc_buf_size
;
1593 /* For PS mode copy the packet header first */
1596 size_t ps_hdr_copied
= 0;
1598 iov_copy
= MIN(ps_hdr_len
- ps_hdr_copied
,
1599 iov
->iov_len
- iov_ofs
);
1601 e1000e_write_hdr_to_rx_buffers(core
, &ba
, &bastate
,
1602 iov
->iov_base
, iov_copy
);
1604 copy_size
-= iov_copy
;
1605 ps_hdr_copied
+= iov_copy
;
1607 iov_ofs
+= iov_copy
;
1608 if (iov_ofs
== iov
->iov_len
) {
1612 } while (ps_hdr_copied
< ps_hdr_len
);
1616 /* Leave buffer 0 of each descriptor except first */
1617 /* empty as per spec 7.1.5.1 */
1618 e1000e_write_hdr_to_rx_buffers(core
, &ba
, &bastate
,
1623 /* Copy packet payload */
1625 iov_copy
= MIN(copy_size
, iov
->iov_len
- iov_ofs
);
1627 e1000e_write_to_rx_buffers(core
, &ba
, &bastate
,
1628 iov
->iov_base
+ iov_ofs
, iov_copy
);
1630 copy_size
-= iov_copy
;
1631 iov_ofs
+= iov_copy
;
1632 if (iov_ofs
== iov
->iov_len
) {
1638 if (desc_offset
+ desc_size
>= total_size
) {
1639 /* Simulate FCS checksum presence in the last descriptor */
1640 e1000e_write_to_rx_buffers(core
, &ba
, &bastate
,
1641 (const char *) &fcs_pad
, e1000x_fcs_len(core
->mac
));
1644 } else { /* as per intel docs; skip descriptors with null buf addr */
1645 trace_e1000e_rx_null_descriptor();
1647 desc_offset
+= desc_size
;
1648 if (desc_offset
>= total_size
) {
1652 e1000e_write_rx_descr(core
, desc
, is_last
? core
->rx_pkt
: NULL
,
1653 rss_info
, do_ps
? ps_hdr_len
: 0, &bastate
.written
);
1654 e1000e_pci_dma_write_rx_desc(core
, base
, desc
, core
->rx_desc_len
);
1656 e1000e_ring_advance(core
, rxi
,
1657 core
->rx_desc_len
/ E1000_MIN_RX_DESC_LEN
);
1659 } while (desc_offset
< total_size
);
1661 e1000e_update_rx_stats(core
, size
, total_size
);
1665 e1000e_rx_fix_l4_csum(E1000ECore
*core
, struct NetRxPkt
*pkt
)
1667 if (net_rx_pkt_has_virt_hdr(pkt
)) {
1668 struct virtio_net_hdr
*vhdr
= net_rx_pkt_get_vhdr(pkt
);
1670 if (vhdr
->flags
& VIRTIO_NET_HDR_F_NEEDS_CSUM
) {
1671 net_rx_pkt_fix_l4_csum(pkt
);
1676 /* Min. octets in an ethernet frame sans FCS */
1677 #define MIN_BUF_SIZE 60
1680 e1000e_receive_iov(E1000ECore
*core
, const struct iovec
*iov
, int iovcnt
)
1682 static const int maximum_ethernet_hdr_len
= (14 + 4);
1685 uint8_t min_buf
[MIN_BUF_SIZE
];
1686 struct iovec min_iov
;
1687 uint8_t *filter_buf
;
1688 size_t size
, orig_size
;
1691 E1000E_RSSInfo rss_info
;
1696 trace_e1000e_rx_receive_iov(iovcnt
);
1698 if (!e1000x_hw_rx_enabled(core
->mac
)) {
1702 /* Pull virtio header in */
1703 if (core
->has_vnet
) {
1704 net_rx_pkt_set_vhdr_iovec(core
->rx_pkt
, iov
, iovcnt
);
1705 iov_ofs
= sizeof(struct virtio_net_hdr
);
1708 filter_buf
= iov
->iov_base
+ iov_ofs
;
1709 orig_size
= iov_size(iov
, iovcnt
);
1710 size
= orig_size
- iov_ofs
;
1712 /* Pad to minimum Ethernet frame length */
1713 if (size
< sizeof(min_buf
)) {
1714 iov_to_buf(iov
, iovcnt
, iov_ofs
, min_buf
, size
);
1715 memset(&min_buf
[size
], 0, sizeof(min_buf
) - size
);
1716 e1000x_inc_reg_if_not_full(core
->mac
, RUC
);
1717 min_iov
.iov_base
= filter_buf
= min_buf
;
1718 min_iov
.iov_len
= size
= sizeof(min_buf
);
1722 } else if (iov
->iov_len
< maximum_ethernet_hdr_len
) {
1723 /* This is very unlikely, but may happen. */
1724 iov_to_buf(iov
, iovcnt
, iov_ofs
, min_buf
, maximum_ethernet_hdr_len
);
1725 filter_buf
= min_buf
;
1728 /* Discard oversized packets if !LPE and !SBP. */
1729 if (e1000x_is_oversized(core
->mac
, size
)) {
1733 net_rx_pkt_set_packet_type(core
->rx_pkt
,
1734 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf
)));
1736 if (!e1000e_receive_filter(core
, filter_buf
, size
)) {
1737 trace_e1000e_rx_flt_dropped();
1741 net_rx_pkt_attach_iovec_ex(core
->rx_pkt
, iov
, iovcnt
, iov_ofs
,
1742 e1000x_vlan_enabled(core
->mac
), core
->mac
[VET
]);
1744 e1000e_rss_parse_packet(core
, core
->rx_pkt
, &rss_info
);
1745 e1000e_rx_ring_init(core
, &rxr
, rss_info
.queue
);
1747 trace_e1000e_rx_rss_dispatched_to_queue(rxr
.i
->idx
);
1749 total_size
= net_rx_pkt_get_total_len(core
->rx_pkt
) +
1750 e1000x_fcs_len(core
->mac
);
1752 if (e1000e_has_rxbufs(core
, rxr
.i
, total_size
)) {
1753 e1000e_rx_fix_l4_csum(core
, core
->rx_pkt
);
1755 e1000e_write_packet_to_guest(core
, core
->rx_pkt
, &rxr
, &rss_info
);
1759 /* Perform small receive detection (RSRPD) */
1760 if (total_size
< core
->mac
[RSRPD
]) {
1761 n
|= E1000_ICS_SRPD
;
1764 /* Perform ACK receive detection */
1765 if (!(core
->mac
[RFCTL
] & E1000_RFCTL_ACK_DIS
) &&
1766 (e1000e_is_tcp_ack(core
, core
->rx_pkt
))) {
1770 /* Check if receive descriptor minimum threshold hit */
1771 rdmts_hit
= e1000e_rx_descr_threshold_hit(core
, rxr
.i
);
1772 n
|= e1000e_rx_wb_interrupt_cause(core
, rxr
.i
->idx
, rdmts_hit
);
1774 trace_e1000e_rx_written_to_guest(n
);
1779 trace_e1000e_rx_not_written_to_guest(n
);
1782 if (!e1000e_intrmgr_delay_rx_causes(core
, &n
)) {
1783 trace_e1000e_rx_interrupt_set(n
);
1784 e1000e_set_interrupt_cause(core
, n
);
1786 trace_e1000e_rx_interrupt_delayed(n
);
1793 e1000e_have_autoneg(E1000ECore
*core
)
1795 return core
->phy
[0][PHY_CTRL
] & MII_CR_AUTO_NEG_EN
;
1798 static void e1000e_update_flowctl_status(E1000ECore
*core
)
1800 if (e1000e_have_autoneg(core
) &&
1801 core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
) {
1802 trace_e1000e_link_autoneg_flowctl(true);
1803 core
->mac
[CTRL
] |= E1000_CTRL_TFCE
| E1000_CTRL_RFCE
;
1805 trace_e1000e_link_autoneg_flowctl(false);
1810 e1000e_link_down(E1000ECore
*core
)
1812 e1000x_update_regs_on_link_down(core
->mac
, core
->phy
[0]);
1813 e1000e_update_flowctl_status(core
);
1817 e1000e_set_phy_ctrl(E1000ECore
*core
, int index
, uint16_t val
)
1819 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1820 core
->phy
[0][PHY_CTRL
] = val
& ~(0x3f |
1822 MII_CR_RESTART_AUTO_NEG
);
1824 if ((val
& MII_CR_RESTART_AUTO_NEG
) &&
1825 e1000e_have_autoneg(core
)) {
1826 e1000x_restart_autoneg(core
->mac
, core
->phy
[0], core
->autoneg_timer
);
1831 e1000e_set_phy_oem_bits(E1000ECore
*core
, int index
, uint16_t val
)
1833 core
->phy
[0][PHY_OEM_BITS
] = val
& ~BIT(10);
1835 if (val
& BIT(10)) {
1836 e1000x_restart_autoneg(core
->mac
, core
->phy
[0], core
->autoneg_timer
);
1841 e1000e_set_phy_page(E1000ECore
*core
, int index
, uint16_t val
)
1843 core
->phy
[0][PHY_PAGE
] = val
& PHY_PAGE_RW_MASK
;
1847 e1000e_core_set_link_status(E1000ECore
*core
)
1849 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
1850 uint32_t old_status
= core
->mac
[STATUS
];
1852 trace_e1000e_link_status_changed(nc
->link_down
? false : true);
1854 if (nc
->link_down
) {
1855 e1000x_update_regs_on_link_down(core
->mac
, core
->phy
[0]);
1857 if (e1000e_have_autoneg(core
) &&
1858 !(core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
)) {
1859 e1000x_restart_autoneg(core
->mac
, core
->phy
[0],
1860 core
->autoneg_timer
);
1862 e1000x_update_regs_on_link_up(core
->mac
, core
->phy
[0]);
1863 e1000e_start_recv(core
);
1867 if (core
->mac
[STATUS
] != old_status
) {
1868 e1000e_set_interrupt_cause(core
, E1000_ICR_LSC
);
1873 e1000e_set_ctrl(E1000ECore
*core
, int index
, uint32_t val
)
1875 trace_e1000e_core_ctrl_write(index
, val
);
1877 /* RST is self clearing */
1878 core
->mac
[CTRL
] = val
& ~E1000_CTRL_RST
;
1879 core
->mac
[CTRL_DUP
] = core
->mac
[CTRL
];
1881 trace_e1000e_link_set_params(
1882 !!(val
& E1000_CTRL_ASDE
),
1883 (val
& E1000_CTRL_SPD_SEL
) >> E1000_CTRL_SPD_SHIFT
,
1884 !!(val
& E1000_CTRL_FRCSPD
),
1885 !!(val
& E1000_CTRL_FRCDPX
),
1886 !!(val
& E1000_CTRL_RFCE
),
1887 !!(val
& E1000_CTRL_TFCE
));
1889 if (val
& E1000_CTRL_RST
) {
1890 trace_e1000e_core_ctrl_sw_reset();
1891 e1000x_reset_mac_addr(core
->owner_nic
, core
->mac
, core
->permanent_mac
);
1894 if (val
& E1000_CTRL_PHY_RST
) {
1895 trace_e1000e_core_ctrl_phy_reset();
1896 core
->mac
[STATUS
] |= E1000_STATUS_PHYRA
;
1901 e1000e_set_rfctl(E1000ECore
*core
, int index
, uint32_t val
)
1903 trace_e1000e_rx_set_rfctl(val
);
1905 if (!(val
& E1000_RFCTL_ISCSI_DIS
)) {
1906 trace_e1000e_wrn_iscsi_filtering_not_supported();
1909 if (!(val
& E1000_RFCTL_NFSW_DIS
)) {
1910 trace_e1000e_wrn_nfsw_filtering_not_supported();
1913 if (!(val
& E1000_RFCTL_NFSR_DIS
)) {
1914 trace_e1000e_wrn_nfsr_filtering_not_supported();
1917 core
->mac
[RFCTL
] = val
;
1921 e1000e_calc_per_desc_buf_size(E1000ECore
*core
)
1924 core
->rx_desc_buf_size
= 0;
1926 for (i
= 0; i
< ARRAY_SIZE(core
->rxbuf_sizes
); i
++) {
1927 core
->rx_desc_buf_size
+= core
->rxbuf_sizes
[i
];
1932 e1000e_parse_rxbufsize(E1000ECore
*core
)
1934 uint32_t rctl
= core
->mac
[RCTL
];
1936 memset(core
->rxbuf_sizes
, 0, sizeof(core
->rxbuf_sizes
));
1938 if (rctl
& E1000_RCTL_DTYP_MASK
) {
1941 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE0_MASK
;
1942 core
->rxbuf_sizes
[0] = (bsize
>> E1000_PSRCTL_BSIZE0_SHIFT
) * 128;
1944 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE1_MASK
;
1945 core
->rxbuf_sizes
[1] = (bsize
>> E1000_PSRCTL_BSIZE1_SHIFT
) * 1024;
1947 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE2_MASK
;
1948 core
->rxbuf_sizes
[2] = (bsize
>> E1000_PSRCTL_BSIZE2_SHIFT
) * 1024;
1950 bsize
= core
->mac
[PSRCTL
] & E1000_PSRCTL_BSIZE3_MASK
;
1951 core
->rxbuf_sizes
[3] = (bsize
>> E1000_PSRCTL_BSIZE3_SHIFT
) * 1024;
1952 } else if (rctl
& E1000_RCTL_FLXBUF_MASK
) {
1953 int flxbuf
= rctl
& E1000_RCTL_FLXBUF_MASK
;
1954 core
->rxbuf_sizes
[0] = (flxbuf
>> E1000_RCTL_FLXBUF_SHIFT
) * 1024;
1956 core
->rxbuf_sizes
[0] = e1000x_rxbufsize(rctl
);
1959 trace_e1000e_rx_desc_buff_sizes(core
->rxbuf_sizes
[0], core
->rxbuf_sizes
[1],
1960 core
->rxbuf_sizes
[2], core
->rxbuf_sizes
[3]);
1962 e1000e_calc_per_desc_buf_size(core
);
1966 e1000e_calc_rxdesclen(E1000ECore
*core
)
1968 if (e1000e_rx_use_legacy_descriptor(core
)) {
1969 core
->rx_desc_len
= sizeof(struct e1000_rx_desc
);
1971 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_PS
) {
1972 core
->rx_desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1974 core
->rx_desc_len
= sizeof(union e1000_rx_desc_extended
);
1977 trace_e1000e_rx_desc_len(core
->rx_desc_len
);
1981 e1000e_set_rx_control(E1000ECore
*core
, int index
, uint32_t val
)
1983 core
->mac
[RCTL
] = val
;
1984 trace_e1000e_rx_set_rctl(core
->mac
[RCTL
]);
1986 if (val
& E1000_RCTL_EN
) {
1987 e1000e_parse_rxbufsize(core
);
1988 e1000e_calc_rxdesclen(core
);
1989 core
->rxbuf_min_shift
= ((val
/ E1000_RCTL_RDMTS_QUAT
) & 3) + 1 +
1990 E1000_RING_DESC_LEN_SHIFT
;
1992 e1000e_start_recv(core
);
1997 void(*e1000e_phyreg_writeops
[E1000E_PHY_PAGES
][E1000E_PHY_PAGE_SIZE
])
1998 (E1000ECore
*, int, uint16_t) = {
2000 [PHY_CTRL
] = e1000e_set_phy_ctrl
,
2001 [PHY_PAGE
] = e1000e_set_phy_page
,
2002 [PHY_OEM_BITS
] = e1000e_set_phy_oem_bits
2007 e1000e_clear_ims_bits(E1000ECore
*core
, uint32_t bits
)
2009 trace_e1000e_irq_clear_ims(bits
, core
->mac
[IMS
], core
->mac
[IMS
] & ~bits
);
2010 core
->mac
[IMS
] &= ~bits
;
2014 e1000e_postpone_interrupt(bool *interrupt_pending
,
2015 E1000IntrDelayTimer
*timer
)
2017 if (timer
->running
) {
2018 trace_e1000e_irq_postponed_by_xitr(timer
->delay_reg
<< 2);
2020 *interrupt_pending
= true;
2024 if (timer
->core
->mac
[timer
->delay_reg
] != 0) {
2025 e1000e_intrmgr_rearm_timer(timer
);
2032 e1000e_itr_should_postpone(E1000ECore
*core
)
2034 return e1000e_postpone_interrupt(&core
->itr_intr_pending
, &core
->itr
);
2038 e1000e_eitr_should_postpone(E1000ECore
*core
, int idx
)
2040 return e1000e_postpone_interrupt(&core
->eitr_intr_pending
[idx
],
2045 e1000e_msix_notify_one(E1000ECore
*core
, uint32_t cause
, uint32_t int_cfg
)
2047 uint32_t effective_eiac
;
2049 if (E1000_IVAR_ENTRY_VALID(int_cfg
)) {
2050 uint32_t vec
= E1000_IVAR_ENTRY_VEC(int_cfg
);
2051 if (vec
< E1000E_MSIX_VEC_NUM
) {
2052 if (!e1000e_eitr_should_postpone(core
, vec
)) {
2053 trace_e1000e_irq_msix_notify_vec(vec
);
2054 msix_notify(core
->owner
, vec
);
2057 trace_e1000e_wrn_msix_vec_wrong(cause
, int_cfg
);
2060 trace_e1000e_wrn_msix_invalid(cause
, int_cfg
);
2063 if (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_EIAME
) {
2064 trace_e1000e_irq_iam_clear_eiame(core
->mac
[IAM
], cause
);
2065 core
->mac
[IAM
] &= ~cause
;
2068 trace_e1000e_irq_icr_clear_eiac(core
->mac
[ICR
], core
->mac
[EIAC
]);
2070 effective_eiac
= core
->mac
[EIAC
] & cause
;
2072 core
->mac
[ICR
] &= ~effective_eiac
;
2073 core
->msi_causes_pending
&= ~effective_eiac
;
2075 if (!(core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2076 core
->mac
[IMS
] &= ~effective_eiac
;
2081 e1000e_msix_notify(E1000ECore
*core
, uint32_t causes
)
2083 if (causes
& E1000_ICR_RXQ0
) {
2084 e1000e_msix_notify_one(core
, E1000_ICR_RXQ0
,
2085 E1000_IVAR_RXQ0(core
->mac
[IVAR
]));
2088 if (causes
& E1000_ICR_RXQ1
) {
2089 e1000e_msix_notify_one(core
, E1000_ICR_RXQ1
,
2090 E1000_IVAR_RXQ1(core
->mac
[IVAR
]));
2093 if (causes
& E1000_ICR_TXQ0
) {
2094 e1000e_msix_notify_one(core
, E1000_ICR_TXQ0
,
2095 E1000_IVAR_TXQ0(core
->mac
[IVAR
]));
2098 if (causes
& E1000_ICR_TXQ1
) {
2099 e1000e_msix_notify_one(core
, E1000_ICR_TXQ1
,
2100 E1000_IVAR_TXQ1(core
->mac
[IVAR
]));
2103 if (causes
& E1000_ICR_OTHER
) {
2104 e1000e_msix_notify_one(core
, E1000_ICR_OTHER
,
2105 E1000_IVAR_OTHER(core
->mac
[IVAR
]));
2110 e1000e_msix_clear_one(E1000ECore
*core
, uint32_t cause
, uint32_t int_cfg
)
2112 if (E1000_IVAR_ENTRY_VALID(int_cfg
)) {
2113 uint32_t vec
= E1000_IVAR_ENTRY_VEC(int_cfg
);
2114 if (vec
< E1000E_MSIX_VEC_NUM
) {
2115 trace_e1000e_irq_msix_pending_clearing(cause
, int_cfg
, vec
);
2116 msix_clr_pending(core
->owner
, vec
);
2118 trace_e1000e_wrn_msix_vec_wrong(cause
, int_cfg
);
2121 trace_e1000e_wrn_msix_invalid(cause
, int_cfg
);
2126 e1000e_msix_clear(E1000ECore
*core
, uint32_t causes
)
2128 if (causes
& E1000_ICR_RXQ0
) {
2129 e1000e_msix_clear_one(core
, E1000_ICR_RXQ0
,
2130 E1000_IVAR_RXQ0(core
->mac
[IVAR
]));
2133 if (causes
& E1000_ICR_RXQ1
) {
2134 e1000e_msix_clear_one(core
, E1000_ICR_RXQ1
,
2135 E1000_IVAR_RXQ1(core
->mac
[IVAR
]));
2138 if (causes
& E1000_ICR_TXQ0
) {
2139 e1000e_msix_clear_one(core
, E1000_ICR_TXQ0
,
2140 E1000_IVAR_TXQ0(core
->mac
[IVAR
]));
2143 if (causes
& E1000_ICR_TXQ1
) {
2144 e1000e_msix_clear_one(core
, E1000_ICR_TXQ1
,
2145 E1000_IVAR_TXQ1(core
->mac
[IVAR
]));
2148 if (causes
& E1000_ICR_OTHER
) {
2149 e1000e_msix_clear_one(core
, E1000_ICR_OTHER
,
2150 E1000_IVAR_OTHER(core
->mac
[IVAR
]));
2155 e1000e_fix_icr_asserted(E1000ECore
*core
)
2157 core
->mac
[ICR
] &= ~E1000_ICR_ASSERTED
;
2158 if (core
->mac
[ICR
]) {
2159 core
->mac
[ICR
] |= E1000_ICR_ASSERTED
;
2162 trace_e1000e_irq_fix_icr_asserted(core
->mac
[ICR
]);
2166 e1000e_send_msi(E1000ECore
*core
, bool msix
)
2168 uint32_t causes
= core
->mac
[ICR
] & core
->mac
[IMS
] & ~E1000_ICR_ASSERTED
;
2170 core
->msi_causes_pending
&= causes
;
2171 causes
^= core
->msi_causes_pending
;
2175 core
->msi_causes_pending
|= causes
;
2178 e1000e_msix_notify(core
, causes
);
2180 if (!e1000e_itr_should_postpone(core
)) {
2181 trace_e1000e_irq_msi_notify(causes
);
2182 msi_notify(core
->owner
, 0);
2188 e1000e_update_interrupt_state(E1000ECore
*core
)
2190 bool interrupts_pending
;
2191 bool is_msix
= msix_enabled(core
->owner
);
2193 /* Set ICR[OTHER] for MSI-X */
2195 if (core
->mac
[ICR
] & E1000_ICR_OTHER_CAUSES
) {
2196 core
->mac
[ICR
] |= E1000_ICR_OTHER
;
2197 trace_e1000e_irq_add_msi_other(core
->mac
[ICR
]);
2201 e1000e_fix_icr_asserted(core
);
2204 * Make sure ICR and ICS registers have the same value.
2205 * The spec says that the ICS register is write-only. However in practice,
2206 * on real hardware ICS is readable, and for reads it has the same value as
2207 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2209 * The VxWorks PRO/1000 driver uses this behaviour.
2211 core
->mac
[ICS
] = core
->mac
[ICR
];
2213 interrupts_pending
= (core
->mac
[IMS
] & core
->mac
[ICR
]) ? true : false;
2214 if (!interrupts_pending
) {
2215 core
->msi_causes_pending
= 0;
2218 trace_e1000e_irq_pending_interrupts(core
->mac
[ICR
] & core
->mac
[IMS
],
2219 core
->mac
[ICR
], core
->mac
[IMS
]);
2221 if (is_msix
|| msi_enabled(core
->owner
)) {
2222 if (interrupts_pending
) {
2223 e1000e_send_msi(core
, is_msix
);
2226 if (interrupts_pending
) {
2227 if (!e1000e_itr_should_postpone(core
)) {
2228 e1000e_raise_legacy_irq(core
);
2231 e1000e_lower_legacy_irq(core
);
2237 e1000e_set_interrupt_cause(E1000ECore
*core
, uint32_t val
)
2239 trace_e1000e_irq_set_cause_entry(val
, core
->mac
[ICR
]);
2241 val
|= e1000e_intmgr_collect_delayed_causes(core
);
2242 core
->mac
[ICR
] |= val
;
2244 trace_e1000e_irq_set_cause_exit(val
, core
->mac
[ICR
]);
2246 e1000e_update_interrupt_state(core
);
2250 e1000e_autoneg_timer(void *opaque
)
2252 E1000ECore
*core
= opaque
;
2253 if (!qemu_get_queue(core
->owner_nic
)->link_down
) {
2254 e1000x_update_regs_on_autoneg_done(core
->mac
, core
->phy
[0]);
2255 e1000e_start_recv(core
);
2257 e1000e_update_flowctl_status(core
);
2258 /* signal link status change to the guest */
2259 e1000e_set_interrupt_cause(core
, E1000_ICR_LSC
);
2263 static inline uint16_t
2264 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access
, hwaddr addr
)
2266 uint16_t index
= (addr
& 0x1ffff) >> 2;
2267 return index
+ (mac_reg_access
[index
] & 0xfffe);
2270 static const char e1000e_phy_regcap
[E1000E_PHY_PAGES
][0x20] = {
2272 [PHY_CTRL
] = PHY_ANYPAGE
| PHY_RW
,
2273 [PHY_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2274 [PHY_ID1
] = PHY_ANYPAGE
| PHY_R
,
2275 [PHY_ID2
] = PHY_ANYPAGE
| PHY_R
,
2276 [PHY_AUTONEG_ADV
] = PHY_ANYPAGE
| PHY_RW
,
2277 [PHY_LP_ABILITY
] = PHY_ANYPAGE
| PHY_R
,
2278 [PHY_AUTONEG_EXP
] = PHY_ANYPAGE
| PHY_R
,
2279 [PHY_NEXT_PAGE_TX
] = PHY_ANYPAGE
| PHY_RW
,
2280 [PHY_LP_NEXT_PAGE
] = PHY_ANYPAGE
| PHY_R
,
2281 [PHY_1000T_CTRL
] = PHY_ANYPAGE
| PHY_RW
,
2282 [PHY_1000T_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2283 [PHY_EXT_STATUS
] = PHY_ANYPAGE
| PHY_R
,
2284 [PHY_PAGE
] = PHY_ANYPAGE
| PHY_RW
,
2286 [PHY_COPPER_CTRL1
] = PHY_RW
,
2287 [PHY_COPPER_STAT1
] = PHY_R
,
2288 [PHY_COPPER_CTRL3
] = PHY_RW
,
2289 [PHY_RX_ERR_CNTR
] = PHY_R
,
2290 [PHY_OEM_BITS
] = PHY_RW
,
2291 [PHY_BIAS_1
] = PHY_RW
,
2292 [PHY_BIAS_2
] = PHY_RW
,
2293 [PHY_COPPER_INT_ENABLE
] = PHY_RW
,
2294 [PHY_COPPER_STAT2
] = PHY_R
,
2295 [PHY_COPPER_CTRL2
] = PHY_RW
2298 [PHY_MAC_CTRL1
] = PHY_RW
,
2299 [PHY_MAC_INT_ENABLE
] = PHY_RW
,
2300 [PHY_MAC_STAT
] = PHY_R
,
2301 [PHY_MAC_CTRL2
] = PHY_RW
2304 [PHY_LED_03_FUNC_CTRL1
] = PHY_RW
,
2305 [PHY_LED_03_POL_CTRL
] = PHY_RW
,
2306 [PHY_LED_TIMER_CTRL
] = PHY_RW
,
2307 [PHY_LED_45_CTRL
] = PHY_RW
2310 [PHY_1000T_SKEW
] = PHY_R
,
2311 [PHY_1000T_SWAP
] = PHY_R
2314 [PHY_CRC_COUNTERS
] = PHY_R
2319 e1000e_phy_reg_check_cap(E1000ECore
*core
, uint32_t addr
,
2320 char cap
, uint8_t *page
)
2323 (e1000e_phy_regcap
[0][addr
] & PHY_ANYPAGE
) ? 0
2324 : core
->phy
[0][PHY_PAGE
];
2326 if (*page
>= E1000E_PHY_PAGES
) {
2330 return e1000e_phy_regcap
[*page
][addr
] & cap
;
2334 e1000e_phy_reg_write(E1000ECore
*core
, uint8_t page
,
2335 uint32_t addr
, uint16_t data
)
2337 assert(page
< E1000E_PHY_PAGES
);
2338 assert(addr
< E1000E_PHY_PAGE_SIZE
);
2340 if (e1000e_phyreg_writeops
[page
][addr
]) {
2341 e1000e_phyreg_writeops
[page
][addr
](core
, addr
, data
);
2343 core
->phy
[page
][addr
] = data
;
2348 e1000e_set_mdic(E1000ECore
*core
, int index
, uint32_t val
)
2350 uint32_t data
= val
& E1000_MDIC_DATA_MASK
;
2351 uint32_t addr
= ((val
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
2354 if ((val
& E1000_MDIC_PHY_MASK
) >> E1000_MDIC_PHY_SHIFT
!= 1) { /* phy # */
2355 val
= core
->mac
[MDIC
] | E1000_MDIC_ERROR
;
2356 } else if (val
& E1000_MDIC_OP_READ
) {
2357 if (!e1000e_phy_reg_check_cap(core
, addr
, PHY_R
, &page
)) {
2358 trace_e1000e_core_mdic_read_unhandled(page
, addr
);
2359 val
|= E1000_MDIC_ERROR
;
2361 val
= (val
^ data
) | core
->phy
[page
][addr
];
2362 trace_e1000e_core_mdic_read(page
, addr
, val
);
2364 } else if (val
& E1000_MDIC_OP_WRITE
) {
2365 if (!e1000e_phy_reg_check_cap(core
, addr
, PHY_W
, &page
)) {
2366 trace_e1000e_core_mdic_write_unhandled(page
, addr
);
2367 val
|= E1000_MDIC_ERROR
;
2369 trace_e1000e_core_mdic_write(page
, addr
, data
);
2370 e1000e_phy_reg_write(core
, page
, addr
, data
);
2373 core
->mac
[MDIC
] = val
| E1000_MDIC_READY
;
2375 if (val
& E1000_MDIC_INT_EN
) {
2376 e1000e_set_interrupt_cause(core
, E1000_ICR_MDAC
);
2381 e1000e_set_rdt(E1000ECore
*core
, int index
, uint32_t val
)
2383 core
->mac
[index
] = val
& 0xffff;
2384 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0
, index
), val
);
2385 e1000e_start_recv(core
);
2389 e1000e_set_status(E1000ECore
*core
, int index
, uint32_t val
)
2391 if ((val
& E1000_STATUS_PHYRA
) == 0) {
2392 core
->mac
[index
] &= ~E1000_STATUS_PHYRA
;
2397 e1000e_set_ctrlext(E1000ECore
*core
, int index
, uint32_t val
)
2399 trace_e1000e_link_set_ext_params(!!(val
& E1000_CTRL_EXT_ASDCHK
),
2400 !!(val
& E1000_CTRL_EXT_SPD_BYPS
));
2402 /* Zero self-clearing bits */
2403 val
&= ~(E1000_CTRL_EXT_ASDCHK
| E1000_CTRL_EXT_EE_RST
);
2404 core
->mac
[CTRL_EXT
] = val
;
2408 e1000e_set_pbaclr(E1000ECore
*core
, int index
, uint32_t val
)
2412 core
->mac
[PBACLR
] = val
& E1000_PBACLR_VALID_MASK
;
2414 if (!msix_enabled(core
->owner
)) {
2418 for (i
= 0; i
< E1000E_MSIX_VEC_NUM
; i
++) {
2419 if (core
->mac
[PBACLR
] & BIT(i
)) {
2420 msix_clr_pending(core
->owner
, i
);
2426 e1000e_set_fcrth(E1000ECore
*core
, int index
, uint32_t val
)
2428 core
->mac
[FCRTH
] = val
& 0xFFF8;
2432 e1000e_set_fcrtl(E1000ECore
*core
, int index
, uint32_t val
)
2434 core
->mac
[FCRTL
] = val
& 0x8000FFF8;
2438 e1000e_set_16bit(E1000ECore
*core
, int index
, uint32_t val
)
2440 core
->mac
[index
] = val
& 0xffff;
2444 e1000e_set_12bit(E1000ECore
*core
, int index
, uint32_t val
)
2446 core
->mac
[index
] = val
& 0xfff;
2450 e1000e_set_vet(E1000ECore
*core
, int index
, uint32_t val
)
2452 core
->mac
[VET
] = val
& 0xffff;
2453 trace_e1000e_vlan_vet(core
->mac
[VET
]);
2457 e1000e_set_dlen(E1000ECore
*core
, int index
, uint32_t val
)
2459 core
->mac
[index
] = val
& E1000_XDLEN_MASK
;
2463 e1000e_set_dbal(E1000ECore
*core
, int index
, uint32_t val
)
2465 core
->mac
[index
] = val
& E1000_XDBAL_MASK
;
2469 e1000e_set_tctl(E1000ECore
*core
, int index
, uint32_t val
)
2472 core
->mac
[index
] = val
;
2474 if (core
->mac
[TARC0
] & E1000_TARC_ENABLE
) {
2475 e1000e_tx_ring_init(core
, &txr
, 0);
2476 e1000e_start_xmit(core
, &txr
);
2479 if (core
->mac
[TARC1
] & E1000_TARC_ENABLE
) {
2480 e1000e_tx_ring_init(core
, &txr
, 1);
2481 e1000e_start_xmit(core
, &txr
);
2486 e1000e_set_tdt(E1000ECore
*core
, int index
, uint32_t val
)
2489 int qidx
= e1000e_mq_queue_idx(TDT
, index
);
2490 uint32_t tarc_reg
= (qidx
== 0) ? TARC0
: TARC1
;
2492 core
->mac
[index
] = val
& 0xffff;
2494 if (core
->mac
[tarc_reg
] & E1000_TARC_ENABLE
) {
2495 e1000e_tx_ring_init(core
, &txr
, qidx
);
2496 e1000e_start_xmit(core
, &txr
);
2501 e1000e_set_ics(E1000ECore
*core
, int index
, uint32_t val
)
2503 trace_e1000e_irq_write_ics(val
);
2504 e1000e_set_interrupt_cause(core
, val
);
2508 e1000e_set_icr(E1000ECore
*core
, int index
, uint32_t val
)
2511 if ((core
->mac
[ICR
] & E1000_ICR_ASSERTED
) &&
2512 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2513 trace_e1000e_irq_icr_process_iame();
2514 e1000e_clear_ims_bits(core
, core
->mac
[IAM
]);
2517 icr
= core
->mac
[ICR
] & ~val
;
2518 /* Windows driver expects that the "receive overrun" bit and other
2519 * ones to be cleared when the "Other" bit (#24) is cleared.
2521 icr
= (val
& E1000_ICR_OTHER
) ? (icr
& ~E1000_ICR_OTHER_CAUSES
) : icr
;
2522 trace_e1000e_irq_icr_write(val
, core
->mac
[ICR
], icr
);
2523 core
->mac
[ICR
] = icr
;
2524 e1000e_update_interrupt_state(core
);
2528 e1000e_set_imc(E1000ECore
*core
, int index
, uint32_t val
)
2530 trace_e1000e_irq_ims_clear_set_imc(val
);
2531 e1000e_clear_ims_bits(core
, val
);
2532 e1000e_update_interrupt_state(core
);
2536 e1000e_set_ims(E1000ECore
*core
, int index
, uint32_t val
)
2538 static const uint32_t ims_ext_mask
=
2539 E1000_IMS_RXQ0
| E1000_IMS_RXQ1
|
2540 E1000_IMS_TXQ0
| E1000_IMS_TXQ1
|
2543 static const uint32_t ims_valid_mask
=
2544 E1000_IMS_TXDW
| E1000_IMS_TXQE
| E1000_IMS_LSC
|
2545 E1000_IMS_RXDMT0
| E1000_IMS_RXO
| E1000_IMS_RXT0
|
2546 E1000_IMS_MDAC
| E1000_IMS_TXD_LOW
| E1000_IMS_SRPD
|
2547 E1000_IMS_ACK
| E1000_IMS_MNG
| E1000_IMS_RXQ0
|
2548 E1000_IMS_RXQ1
| E1000_IMS_TXQ0
| E1000_IMS_TXQ1
|
2551 uint32_t valid_val
= val
& ims_valid_mask
;
2553 trace_e1000e_irq_set_ims(val
, core
->mac
[IMS
], core
->mac
[IMS
] | valid_val
);
2554 core
->mac
[IMS
] |= valid_val
;
2556 if ((valid_val
& ims_ext_mask
) &&
2557 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_PBA_CLR
) &&
2558 msix_enabled(core
->owner
)) {
2559 e1000e_msix_clear(core
, valid_val
);
2562 if ((valid_val
== ims_valid_mask
) &&
2563 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA
)) {
2564 trace_e1000e_irq_fire_all_timers(val
);
2565 e1000e_intrmgr_fire_all_timers(core
);
2568 e1000e_update_interrupt_state(core
);
2572 e1000e_set_rdtr(E1000ECore
*core
, int index
, uint32_t val
)
2574 e1000e_set_16bit(core
, index
, val
);
2576 if ((val
& E1000_RDTR_FPD
) && (core
->rdtr
.running
)) {
2577 trace_e1000e_irq_rdtr_fpd_running();
2578 e1000e_intrmgr_fire_delayed_interrupts(core
);
2580 trace_e1000e_irq_rdtr_fpd_not_running();
2585 e1000e_set_tidv(E1000ECore
*core
, int index
, uint32_t val
)
2587 e1000e_set_16bit(core
, index
, val
);
2589 if ((val
& E1000_TIDV_FPD
) && (core
->tidv
.running
)) {
2590 trace_e1000e_irq_tidv_fpd_running();
2591 e1000e_intrmgr_fire_delayed_interrupts(core
);
2593 trace_e1000e_irq_tidv_fpd_not_running();
2598 e1000e_mac_readreg(E1000ECore
*core
, int index
)
2600 return core
->mac
[index
];
2604 e1000e_mac_ics_read(E1000ECore
*core
, int index
)
2606 trace_e1000e_irq_read_ics(core
->mac
[ICS
]);
2607 return core
->mac
[ICS
];
2611 e1000e_mac_ims_read(E1000ECore
*core
, int index
)
2613 trace_e1000e_irq_read_ims(core
->mac
[IMS
]);
2614 return core
->mac
[IMS
];
2617 #define E1000E_LOW_BITS_READ_FUNC(num) \
2619 e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2621 return core->mac[index] & (BIT(num) - 1); \
2624 #define E1000E_LOW_BITS_READ(num) \
2625 e1000e_mac_low##num##_read
2627 E1000E_LOW_BITS_READ_FUNC(4);
2628 E1000E_LOW_BITS_READ_FUNC(6);
2629 E1000E_LOW_BITS_READ_FUNC(11);
2630 E1000E_LOW_BITS_READ_FUNC(13);
2631 E1000E_LOW_BITS_READ_FUNC(16);
2634 e1000e_mac_swsm_read(E1000ECore
*core
, int index
)
2636 uint32_t val
= core
->mac
[SWSM
];
2637 core
->mac
[SWSM
] = val
| 1;
2642 e1000e_mac_itr_read(E1000ECore
*core
, int index
)
2644 return core
->itr_guest_value
;
2648 e1000e_mac_eitr_read(E1000ECore
*core
, int index
)
2650 return core
->eitr_guest_value
[index
- EITR
];
2654 e1000e_mac_icr_read(E1000ECore
*core
, int index
)
2656 uint32_t ret
= core
->mac
[ICR
];
2657 trace_e1000e_irq_icr_read_entry(ret
);
2659 if (core
->mac
[IMS
] == 0) {
2660 trace_e1000e_irq_icr_clear_zero_ims();
2664 if (!msix_enabled(core
->owner
)) {
2665 trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2669 if ((core
->mac
[ICR
] & E1000_ICR_ASSERTED
) &&
2670 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_IAME
)) {
2671 trace_e1000e_irq_icr_clear_iame();
2673 trace_e1000e_irq_icr_process_iame();
2674 e1000e_clear_ims_bits(core
, core
->mac
[IAM
]);
2677 trace_e1000e_irq_icr_read_exit(core
->mac
[ICR
]);
2678 e1000e_update_interrupt_state(core
);
2683 e1000e_mac_read_clr4(E1000ECore
*core
, int index
)
2685 uint32_t ret
= core
->mac
[index
];
2687 core
->mac
[index
] = 0;
2692 e1000e_mac_read_clr8(E1000ECore
*core
, int index
)
2694 uint32_t ret
= core
->mac
[index
];
2696 core
->mac
[index
] = 0;
2697 core
->mac
[index
- 1] = 0;
2702 e1000e_get_ctrl(E1000ECore
*core
, int index
)
2704 uint32_t val
= core
->mac
[CTRL
];
2706 trace_e1000e_link_read_params(
2707 !!(val
& E1000_CTRL_ASDE
),
2708 (val
& E1000_CTRL_SPD_SEL
) >> E1000_CTRL_SPD_SHIFT
,
2709 !!(val
& E1000_CTRL_FRCSPD
),
2710 !!(val
& E1000_CTRL_FRCDPX
),
2711 !!(val
& E1000_CTRL_RFCE
),
2712 !!(val
& E1000_CTRL_TFCE
));
2718 e1000e_get_status(E1000ECore
*core
, int index
)
2720 uint32_t res
= core
->mac
[STATUS
];
2722 if (!(core
->mac
[CTRL
] & E1000_CTRL_GIO_MASTER_DISABLE
)) {
2723 res
|= E1000_STATUS_GIO_MASTER_ENABLE
;
2726 if (core
->mac
[CTRL
] & E1000_CTRL_FRCDPX
) {
2727 res
|= (core
->mac
[CTRL
] & E1000_CTRL_FD
) ? E1000_STATUS_FD
: 0;
2729 res
|= E1000_STATUS_FD
;
2732 if ((core
->mac
[CTRL
] & E1000_CTRL_FRCSPD
) ||
2733 (core
->mac
[CTRL_EXT
] & E1000_CTRL_EXT_SPD_BYPS
)) {
2734 switch (core
->mac
[CTRL
] & E1000_CTRL_SPD_SEL
) {
2735 case E1000_CTRL_SPD_10
:
2736 res
|= E1000_STATUS_SPEED_10
;
2738 case E1000_CTRL_SPD_100
:
2739 res
|= E1000_STATUS_SPEED_100
;
2741 case E1000_CTRL_SPD_1000
:
2743 res
|= E1000_STATUS_SPEED_1000
;
2747 res
|= E1000_STATUS_SPEED_1000
;
2750 trace_e1000e_link_status(
2751 !!(res
& E1000_STATUS_LU
),
2752 !!(res
& E1000_STATUS_FD
),
2753 (res
& E1000_STATUS_SPEED_MASK
) >> E1000_STATUS_SPEED_SHIFT
,
2754 (res
& E1000_STATUS_ASDV
) >> E1000_STATUS_ASDV_SHIFT
);
2760 e1000e_get_tarc(E1000ECore
*core
, int index
)
2762 return core
->mac
[index
] & ((BIT(11) - 1) |
2770 e1000e_mac_writereg(E1000ECore
*core
, int index
, uint32_t val
)
2772 core
->mac
[index
] = val
;
2776 e1000e_mac_setmacaddr(E1000ECore
*core
, int index
, uint32_t val
)
2778 uint32_t macaddr
[2];
2780 core
->mac
[index
] = val
;
2782 macaddr
[0] = cpu_to_le32(core
->mac
[RA
]);
2783 macaddr
[1] = cpu_to_le32(core
->mac
[RA
+ 1]);
2784 qemu_format_nic_info_str(qemu_get_queue(core
->owner_nic
),
2785 (uint8_t *) macaddr
);
2787 trace_e1000e_mac_set_sw(MAC_ARG(macaddr
));
2791 e1000e_set_eecd(E1000ECore
*core
, int index
, uint32_t val
)
2793 static const uint32_t ro_bits
= E1000_EECD_PRES
|
2794 E1000_EECD_AUTO_RD
|
2795 E1000_EECD_SIZE_EX_MASK
;
2797 core
->mac
[EECD
] = (core
->mac
[EECD
] & ro_bits
) | (val
& ~ro_bits
);
2801 e1000e_set_eerd(E1000ECore
*core
, int index
, uint32_t val
)
2803 uint32_t addr
= (val
>> E1000_EERW_ADDR_SHIFT
) & E1000_EERW_ADDR_MASK
;
2807 if ((addr
< E1000E_EEPROM_SIZE
) && (val
& E1000_EERW_START
)) {
2808 data
= core
->eeprom
[addr
];
2809 flags
= E1000_EERW_DONE
;
2812 core
->mac
[EERD
] = flags
|
2813 (addr
<< E1000_EERW_ADDR_SHIFT
) |
2814 (data
<< E1000_EERW_DATA_SHIFT
);
2818 e1000e_set_eewr(E1000ECore
*core
, int index
, uint32_t val
)
2820 uint32_t addr
= (val
>> E1000_EERW_ADDR_SHIFT
) & E1000_EERW_ADDR_MASK
;
2821 uint32_t data
= (val
>> E1000_EERW_DATA_SHIFT
) & E1000_EERW_DATA_MASK
;
2824 if ((addr
< E1000E_EEPROM_SIZE
) && (val
& E1000_EERW_START
)) {
2825 core
->eeprom
[addr
] = data
;
2826 flags
= E1000_EERW_DONE
;
2829 core
->mac
[EERD
] = flags
|
2830 (addr
<< E1000_EERW_ADDR_SHIFT
) |
2831 (data
<< E1000_EERW_DATA_SHIFT
);
2835 e1000e_set_rxdctl(E1000ECore
*core
, int index
, uint32_t val
)
2837 core
->mac
[RXDCTL
] = core
->mac
[RXDCTL1
] = val
;
2841 e1000e_set_itr(E1000ECore
*core
, int index
, uint32_t val
)
2843 uint32_t interval
= val
& 0xffff;
2845 trace_e1000e_irq_itr_set(val
);
2847 core
->itr_guest_value
= interval
;
2848 core
->mac
[index
] = MAX(interval
, E1000E_MIN_XITR
);
2852 e1000e_set_eitr(E1000ECore
*core
, int index
, uint32_t val
)
2854 uint32_t interval
= val
& 0xffff;
2855 uint32_t eitr_num
= index
- EITR
;
2857 trace_e1000e_irq_eitr_set(eitr_num
, val
);
2859 core
->eitr_guest_value
[eitr_num
] = interval
;
2860 core
->mac
[index
] = MAX(interval
, E1000E_MIN_XITR
);
2864 e1000e_set_psrctl(E1000ECore
*core
, int index
, uint32_t val
)
2866 if (core
->mac
[RCTL
] & E1000_RCTL_DTYP_MASK
) {
2868 if ((val
& E1000_PSRCTL_BSIZE0_MASK
) == 0) {
2869 qemu_log_mask(LOG_GUEST_ERROR
,
2870 "e1000e: PSRCTL.BSIZE0 cannot be zero");
2874 if ((val
& E1000_PSRCTL_BSIZE1_MASK
) == 0) {
2875 qemu_log_mask(LOG_GUEST_ERROR
,
2876 "e1000e: PSRCTL.BSIZE1 cannot be zero");
2881 core
->mac
[PSRCTL
] = val
;
2885 e1000e_update_rx_offloads(E1000ECore
*core
)
2887 int cso_state
= e1000e_rx_l4_cso_enabled(core
);
2889 trace_e1000e_rx_set_cso(cso_state
);
2891 if (core
->has_vnet
) {
2892 qemu_set_offload(qemu_get_queue(core
->owner_nic
)->peer
,
2893 cso_state
, 0, 0, 0, 0);
2898 e1000e_set_rxcsum(E1000ECore
*core
, int index
, uint32_t val
)
2900 core
->mac
[RXCSUM
] = val
;
2901 e1000e_update_rx_offloads(core
);
2905 e1000e_set_gcr(E1000ECore
*core
, int index
, uint32_t val
)
2907 uint32_t ro_bits
= core
->mac
[GCR
] & E1000_GCR_RO_BITS
;
2908 core
->mac
[GCR
] = (val
& ~E1000_GCR_RO_BITS
) | ro_bits
;
2911 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2912 typedef uint32_t (*readops
)(E1000ECore
*, int);
2913 static const readops e1000e_macreg_readops
[] = {
2915 e1000e_getreg(WUFC
),
2916 e1000e_getreg(MANC
),
2917 e1000e_getreg(TOTL
),
2918 e1000e_getreg(RDT0
),
2919 e1000e_getreg(RDBAH0
),
2920 e1000e_getreg(TDBAL1
),
2921 e1000e_getreg(RDLEN0
),
2922 e1000e_getreg(RDH1
),
2923 e1000e_getreg(LATECOL
),
2924 e1000e_getreg(SEQEC
),
2925 e1000e_getreg(XONTXC
),
2927 e1000e_getreg(GORCL
),
2928 e1000e_getreg(MGTPRC
),
2929 e1000e_getreg(EERD
),
2930 e1000e_getreg(EIAC
),
2931 e1000e_getreg(PSRCTL
),
2932 e1000e_getreg(MANC2H
),
2933 e1000e_getreg(RXCSUM
),
2934 e1000e_getreg(GSCL_3
),
2935 e1000e_getreg(GSCN_2
),
2936 e1000e_getreg(RSRPD
),
2937 e1000e_getreg(RDBAL1
),
2938 e1000e_getreg(FCAH
),
2939 e1000e_getreg(FCRTH
),
2940 e1000e_getreg(FLOP
),
2941 e1000e_getreg(FLASHT
),
2942 e1000e_getreg(RXSTMPH
),
2943 e1000e_getreg(TXSTMPL
),
2944 e1000e_getreg(TIMADJL
),
2945 e1000e_getreg(TXDCTL
),
2946 e1000e_getreg(RDH0
),
2947 e1000e_getreg(TDT1
),
2948 e1000e_getreg(TNCRS
),
2951 e1000e_getreg(GSCL_2
),
2952 e1000e_getreg(RDBAH1
),
2953 e1000e_getreg(FLSWDATA
),
2954 e1000e_getreg(RXSATRH
),
2955 e1000e_getreg(TIPG
),
2956 e1000e_getreg(FLMNGCTL
),
2957 e1000e_getreg(FLMNGCNT
),
2958 e1000e_getreg(TSYNCTXCTL
),
2959 e1000e_getreg(EXTCNF_SIZE
),
2960 e1000e_getreg(EXTCNF_CTRL
),
2961 e1000e_getreg(EEMNGDATA
),
2962 e1000e_getreg(CTRL_EXT
),
2963 e1000e_getreg(SYSTIMH
),
2964 e1000e_getreg(EEMNGCTL
),
2965 e1000e_getreg(FLMNGDATA
),
2966 e1000e_getreg(TSYNCRXCTL
),
2968 e1000e_getreg(LEDCTL
),
2969 e1000e_getreg(TCTL
),
2970 e1000e_getreg(TDBAL
),
2971 e1000e_getreg(TDLEN
),
2972 e1000e_getreg(TDH1
),
2973 e1000e_getreg(RADV
),
2974 e1000e_getreg(ECOL
),
2976 e1000e_getreg(RLEC
),
2977 e1000e_getreg(XOFFTXC
),
2979 e1000e_getreg(RNBC
),
2980 e1000e_getreg(MGTPTC
),
2981 e1000e_getreg(TIMINCA
),
2982 e1000e_getreg(RXCFGL
),
2983 e1000e_getreg(MFUTP01
),
2984 e1000e_getreg(FACTPS
),
2985 e1000e_getreg(GSCL_1
),
2986 e1000e_getreg(GSCN_0
),
2987 e1000e_getreg(GCR2
),
2988 e1000e_getreg(RDT1
),
2989 e1000e_getreg(PBACLR
),
2990 e1000e_getreg(FCTTV
),
2991 e1000e_getreg(EEWR
),
2992 e1000e_getreg(FLSWCTL
),
2993 e1000e_getreg(RXDCTL1
),
2994 e1000e_getreg(RXSATRL
),
2995 e1000e_getreg(SYSTIML
),
2996 e1000e_getreg(RXUDP
),
2997 e1000e_getreg(TORL
),
2998 e1000e_getreg(TDLEN1
),
3001 e1000e_getreg(EECD
),
3002 e1000e_getreg(MFUTP23
),
3003 e1000e_getreg(RAID
),
3004 e1000e_getreg(FCRTV
),
3005 e1000e_getreg(TXDCTL1
),
3006 e1000e_getreg(RCTL
),
3008 e1000e_getreg(MDIC
),
3009 e1000e_getreg(FCRUC
),
3011 e1000e_getreg(RDBAL0
),
3012 e1000e_getreg(TDBAH1
),
3013 e1000e_getreg(RDTR
),
3015 e1000e_getreg(COLC
),
3016 e1000e_getreg(CEXTERR
),
3017 e1000e_getreg(XOFFRXC
),
3018 e1000e_getreg(IPAV
),
3019 e1000e_getreg(GOTCL
),
3020 e1000e_getreg(MGTPDC
),
3022 e1000e_getreg(IVAR
),
3023 e1000e_getreg(POEMB
),
3024 e1000e_getreg(MFVAL
),
3025 e1000e_getreg(FUNCTAG
),
3026 e1000e_getreg(GSCL_4
),
3027 e1000e_getreg(GSCN_3
),
3028 e1000e_getreg(MRQC
),
3029 e1000e_getreg(RDLEN1
),
3032 e1000e_getreg(FLOL
),
3033 e1000e_getreg(RXDCTL
),
3034 e1000e_getreg(RXSTMPL
),
3035 e1000e_getreg(TXSTMPH
),
3036 e1000e_getreg(TIMADJH
),
3037 e1000e_getreg(FCRTL
),
3038 e1000e_getreg(TDBAH
),
3039 e1000e_getreg(TADV
),
3040 e1000e_getreg(XONRXC
),
3041 e1000e_getreg(TSCTFC
),
3042 e1000e_getreg(RFCTL
),
3043 e1000e_getreg(GSCN_1
),
3044 e1000e_getreg(FCAL
),
3045 e1000e_getreg(FLSWCNT
),
3047 [TOTH
] = e1000e_mac_read_clr8
,
3048 [GOTCH
] = e1000e_mac_read_clr8
,
3049 [PRC64
] = e1000e_mac_read_clr4
,
3050 [PRC255
] = e1000e_mac_read_clr4
,
3051 [PRC1023
] = e1000e_mac_read_clr4
,
3052 [PTC64
] = e1000e_mac_read_clr4
,
3053 [PTC255
] = e1000e_mac_read_clr4
,
3054 [PTC1023
] = e1000e_mac_read_clr4
,
3055 [GPRC
] = e1000e_mac_read_clr4
,
3056 [TPT
] = e1000e_mac_read_clr4
,
3057 [RUC
] = e1000e_mac_read_clr4
,
3058 [BPRC
] = e1000e_mac_read_clr4
,
3059 [MPTC
] = e1000e_mac_read_clr4
,
3060 [IAC
] = e1000e_mac_read_clr4
,
3061 [ICR
] = e1000e_mac_icr_read
,
3062 [RDFH
] = E1000E_LOW_BITS_READ(13),
3063 [RDFHS
] = E1000E_LOW_BITS_READ(13),
3064 [RDFPC
] = E1000E_LOW_BITS_READ(13),
3065 [TDFH
] = E1000E_LOW_BITS_READ(13),
3066 [TDFHS
] = E1000E_LOW_BITS_READ(13),
3067 [STATUS
] = e1000e_get_status
,
3068 [TARC0
] = e1000e_get_tarc
,
3069 [PBS
] = E1000E_LOW_BITS_READ(6),
3070 [ICS
] = e1000e_mac_ics_read
,
3071 [AIT
] = E1000E_LOW_BITS_READ(16),
3072 [TORH
] = e1000e_mac_read_clr8
,
3073 [GORCH
] = e1000e_mac_read_clr8
,
3074 [PRC127
] = e1000e_mac_read_clr4
,
3075 [PRC511
] = e1000e_mac_read_clr4
,
3076 [PRC1522
] = e1000e_mac_read_clr4
,
3077 [PTC127
] = e1000e_mac_read_clr4
,
3078 [PTC511
] = e1000e_mac_read_clr4
,
3079 [PTC1522
] = e1000e_mac_read_clr4
,
3080 [GPTC
] = e1000e_mac_read_clr4
,
3081 [TPR
] = e1000e_mac_read_clr4
,
3082 [ROC
] = e1000e_mac_read_clr4
,
3083 [MPRC
] = e1000e_mac_read_clr4
,
3084 [BPTC
] = e1000e_mac_read_clr4
,
3085 [TSCTC
] = e1000e_mac_read_clr4
,
3086 [ITR
] = e1000e_mac_itr_read
,
3087 [RDFT
] = E1000E_LOW_BITS_READ(13),
3088 [RDFTS
] = E1000E_LOW_BITS_READ(13),
3089 [TDFPC
] = E1000E_LOW_BITS_READ(13),
3090 [TDFT
] = E1000E_LOW_BITS_READ(13),
3091 [TDFTS
] = E1000E_LOW_BITS_READ(13),
3092 [CTRL
] = e1000e_get_ctrl
,
3093 [TARC1
] = e1000e_get_tarc
,
3094 [SWSM
] = e1000e_mac_swsm_read
,
3095 [IMS
] = e1000e_mac_ims_read
,
3097 [CRCERRS
... MPC
] = e1000e_mac_readreg
,
3098 [IP6AT
... IP6AT
+ 3] = e1000e_mac_readreg
,
3099 [IP4AT
... IP4AT
+ 6] = e1000e_mac_readreg
,
3100 [RA
... RA
+ 31] = e1000e_mac_readreg
,
3101 [WUPM
... WUPM
+ 31] = e1000e_mac_readreg
,
3102 [MTA
... MTA
+ 127] = e1000e_mac_readreg
,
3103 [VFTA
... VFTA
+ 127] = e1000e_mac_readreg
,
3104 [FFMT
... FFMT
+ 254] = E1000E_LOW_BITS_READ(4),
3105 [FFVT
... FFVT
+ 254] = e1000e_mac_readreg
,
3106 [MDEF
... MDEF
+ 7] = e1000e_mac_readreg
,
3107 [FFLT
... FFLT
+ 10] = E1000E_LOW_BITS_READ(11),
3108 [FTFT
... FTFT
+ 254] = e1000e_mac_readreg
,
3109 [PBM
... PBM
+ 10239] = e1000e_mac_readreg
,
3110 [RETA
... RETA
+ 31] = e1000e_mac_readreg
,
3111 [RSSRK
... RSSRK
+ 31] = e1000e_mac_readreg
,
3112 [MAVTV0
... MAVTV3
] = e1000e_mac_readreg
,
3113 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = e1000e_mac_eitr_read
3115 enum { E1000E_NREADOPS
= ARRAY_SIZE(e1000e_macreg_readops
) };
3117 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3118 typedef void (*writeops
)(E1000ECore
*, int, uint32_t);
3119 static const writeops e1000e_macreg_writeops
[] = {
3121 e1000e_putreg(SWSM
),
3122 e1000e_putreg(WUFC
),
3123 e1000e_putreg(RDBAH1
),
3124 e1000e_putreg(TDBAH
),
3125 e1000e_putreg(TXDCTL
),
3126 e1000e_putreg(RDBAH0
),
3127 e1000e_putreg(LEDCTL
),
3128 e1000e_putreg(FCAL
),
3129 e1000e_putreg(FCRUC
),
3131 e1000e_putreg(TDFH
),
3132 e1000e_putreg(TDFT
),
3133 e1000e_putreg(TDFHS
),
3134 e1000e_putreg(TDFTS
),
3135 e1000e_putreg(TDFPC
),
3138 e1000e_putreg(RDFH
),
3139 e1000e_putreg(RDFT
),
3140 e1000e_putreg(RDFHS
),
3141 e1000e_putreg(RDFTS
),
3142 e1000e_putreg(RDFPC
),
3143 e1000e_putreg(IPAV
),
3144 e1000e_putreg(TDBAH1
),
3145 e1000e_putreg(TIMINCA
),
3147 e1000e_putreg(EIAC
),
3148 e1000e_putreg(IVAR
),
3149 e1000e_putreg(TARC0
),
3150 e1000e_putreg(TARC1
),
3151 e1000e_putreg(FLSWDATA
),
3152 e1000e_putreg(POEMB
),
3154 e1000e_putreg(MFUTP01
),
3155 e1000e_putreg(MFUTP23
),
3156 e1000e_putreg(MANC
),
3157 e1000e_putreg(MANC2H
),
3158 e1000e_putreg(MFVAL
),
3159 e1000e_putreg(EXTCNF_CTRL
),
3160 e1000e_putreg(FACTPS
),
3161 e1000e_putreg(FUNCTAG
),
3162 e1000e_putreg(GSCL_1
),
3163 e1000e_putreg(GSCL_2
),
3164 e1000e_putreg(GSCL_3
),
3165 e1000e_putreg(GSCL_4
),
3166 e1000e_putreg(GSCN_0
),
3167 e1000e_putreg(GSCN_1
),
3168 e1000e_putreg(GSCN_2
),
3169 e1000e_putreg(GSCN_3
),
3170 e1000e_putreg(GCR2
),
3171 e1000e_putreg(MRQC
),
3172 e1000e_putreg(FLOP
),
3173 e1000e_putreg(FLOL
),
3174 e1000e_putreg(FLSWCTL
),
3175 e1000e_putreg(FLSWCNT
),
3177 e1000e_putreg(RXDCTL1
),
3178 e1000e_putreg(TXDCTL1
),
3179 e1000e_putreg(TIPG
),
3180 e1000e_putreg(RXSTMPH
),
3181 e1000e_putreg(RXSTMPL
),
3182 e1000e_putreg(RXSATRL
),
3183 e1000e_putreg(RXSATRH
),
3184 e1000e_putreg(TXSTMPL
),
3185 e1000e_putreg(TXSTMPH
),
3186 e1000e_putreg(SYSTIML
),
3187 e1000e_putreg(SYSTIMH
),
3188 e1000e_putreg(TIMADJL
),
3189 e1000e_putreg(TIMADJH
),
3190 e1000e_putreg(RXUDP
),
3191 e1000e_putreg(RXCFGL
),
3192 e1000e_putreg(TSYNCRXCTL
),
3193 e1000e_putreg(TSYNCTXCTL
),
3194 e1000e_putreg(EXTCNF_SIZE
),
3195 e1000e_putreg(EEMNGCTL
),
3198 [TDH1
] = e1000e_set_16bit
,
3199 [TDT1
] = e1000e_set_tdt
,
3200 [TCTL
] = e1000e_set_tctl
,
3201 [TDT
] = e1000e_set_tdt
,
3202 [MDIC
] = e1000e_set_mdic
,
3203 [ICS
] = e1000e_set_ics
,
3204 [TDH
] = e1000e_set_16bit
,
3205 [RDH0
] = e1000e_set_16bit
,
3206 [RDT0
] = e1000e_set_rdt
,
3207 [IMC
] = e1000e_set_imc
,
3208 [IMS
] = e1000e_set_ims
,
3209 [ICR
] = e1000e_set_icr
,
3210 [EECD
] = e1000e_set_eecd
,
3211 [RCTL
] = e1000e_set_rx_control
,
3212 [CTRL
] = e1000e_set_ctrl
,
3213 [RDTR
] = e1000e_set_rdtr
,
3214 [RADV
] = e1000e_set_16bit
,
3215 [TADV
] = e1000e_set_16bit
,
3216 [ITR
] = e1000e_set_itr
,
3217 [EERD
] = e1000e_set_eerd
,
3218 [GCR
] = e1000e_set_gcr
,
3219 [PSRCTL
] = e1000e_set_psrctl
,
3220 [RXCSUM
] = e1000e_set_rxcsum
,
3221 [RAID
] = e1000e_set_16bit
,
3222 [RSRPD
] = e1000e_set_12bit
,
3223 [TIDV
] = e1000e_set_tidv
,
3224 [TDLEN1
] = e1000e_set_dlen
,
3225 [TDLEN
] = e1000e_set_dlen
,
3226 [RDLEN0
] = e1000e_set_dlen
,
3227 [RDLEN1
] = e1000e_set_dlen
,
3228 [TDBAL
] = e1000e_set_dbal
,
3229 [TDBAL1
] = e1000e_set_dbal
,
3230 [RDBAL0
] = e1000e_set_dbal
,
3231 [RDBAL1
] = e1000e_set_dbal
,
3232 [RDH1
] = e1000e_set_16bit
,
3233 [RDT1
] = e1000e_set_rdt
,
3234 [STATUS
] = e1000e_set_status
,
3235 [PBACLR
] = e1000e_set_pbaclr
,
3236 [CTRL_EXT
] = e1000e_set_ctrlext
,
3237 [FCAH
] = e1000e_set_16bit
,
3238 [FCT
] = e1000e_set_16bit
,
3239 [FCTTV
] = e1000e_set_16bit
,
3240 [FCRTV
] = e1000e_set_16bit
,
3241 [FCRTH
] = e1000e_set_fcrth
,
3242 [FCRTL
] = e1000e_set_fcrtl
,
3243 [VET
] = e1000e_set_vet
,
3244 [RXDCTL
] = e1000e_set_rxdctl
,
3245 [FLASHT
] = e1000e_set_16bit
,
3246 [EEWR
] = e1000e_set_eewr
,
3247 [CTRL_DUP
] = e1000e_set_ctrl
,
3248 [RFCTL
] = e1000e_set_rfctl
,
3249 [RA
+ 1] = e1000e_mac_setmacaddr
,
3251 [IP6AT
... IP6AT
+ 3] = e1000e_mac_writereg
,
3252 [IP4AT
... IP4AT
+ 6] = e1000e_mac_writereg
,
3253 [RA
+ 2 ... RA
+ 31] = e1000e_mac_writereg
,
3254 [WUPM
... WUPM
+ 31] = e1000e_mac_writereg
,
3255 [MTA
... MTA
+ 127] = e1000e_mac_writereg
,
3256 [VFTA
... VFTA
+ 127] = e1000e_mac_writereg
,
3257 [FFMT
... FFMT
+ 254] = e1000e_mac_writereg
,
3258 [FFVT
... FFVT
+ 254] = e1000e_mac_writereg
,
3259 [PBM
... PBM
+ 10239] = e1000e_mac_writereg
,
3260 [MDEF
... MDEF
+ 7] = e1000e_mac_writereg
,
3261 [FFLT
... FFLT
+ 10] = e1000e_mac_writereg
,
3262 [FTFT
... FTFT
+ 254] = e1000e_mac_writereg
,
3263 [RETA
... RETA
+ 31] = e1000e_mac_writereg
,
3264 [RSSRK
... RSSRK
+ 31] = e1000e_mac_writereg
,
3265 [MAVTV0
... MAVTV3
] = e1000e_mac_writereg
,
3266 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = e1000e_set_eitr
3268 enum { E1000E_NWRITEOPS
= ARRAY_SIZE(e1000e_macreg_writeops
) };
3270 enum { MAC_ACCESS_PARTIAL
= 1 };
3272 /* The array below combines alias offsets of the index values for the
3273 * MAC registers that have aliases, with the indication of not fully
3274 * implemented registers (lowest bit). This combination is possible
3275 * because all of the offsets are even. */
3276 static const uint16_t mac_reg_access
[E1000E_MAC_SIZE
] = {
3277 /* Alias index offsets */
3278 [FCRTL_A
] = 0x07fe, [FCRTH_A
] = 0x0802,
3279 [RDH0_A
] = 0x09bc, [RDT0_A
] = 0x09bc, [RDTR_A
] = 0x09c6,
3280 [RDFH_A
] = 0xe904, [RDFT_A
] = 0xe904,
3281 [TDH_A
] = 0x0cf8, [TDT_A
] = 0x0cf8, [TIDV_A
] = 0x0cf8,
3282 [TDFH_A
] = 0xed00, [TDFT_A
] = 0xed00,
3283 [RA_A
... RA_A
+ 31] = 0x14f0,
3284 [VFTA_A
... VFTA_A
+ 127] = 0x1400,
3285 [RDBAL0_A
... RDLEN0_A
] = 0x09bc,
3286 [TDBAL_A
... TDLEN_A
] = 0x0cf8,
3287 /* Access options */
3288 [RDFH
] = MAC_ACCESS_PARTIAL
, [RDFT
] = MAC_ACCESS_PARTIAL
,
3289 [RDFHS
] = MAC_ACCESS_PARTIAL
, [RDFTS
] = MAC_ACCESS_PARTIAL
,
3290 [RDFPC
] = MAC_ACCESS_PARTIAL
,
3291 [TDFH
] = MAC_ACCESS_PARTIAL
, [TDFT
] = MAC_ACCESS_PARTIAL
,
3292 [TDFHS
] = MAC_ACCESS_PARTIAL
, [TDFTS
] = MAC_ACCESS_PARTIAL
,
3293 [TDFPC
] = MAC_ACCESS_PARTIAL
, [EECD
] = MAC_ACCESS_PARTIAL
,
3294 [PBM
] = MAC_ACCESS_PARTIAL
, [FLA
] = MAC_ACCESS_PARTIAL
,
3295 [FCAL
] = MAC_ACCESS_PARTIAL
, [FCAH
] = MAC_ACCESS_PARTIAL
,
3296 [FCT
] = MAC_ACCESS_PARTIAL
, [FCTTV
] = MAC_ACCESS_PARTIAL
,
3297 [FCRTV
] = MAC_ACCESS_PARTIAL
, [FCRTL
] = MAC_ACCESS_PARTIAL
,
3298 [FCRTH
] = MAC_ACCESS_PARTIAL
, [TXDCTL
] = MAC_ACCESS_PARTIAL
,
3299 [TXDCTL1
] = MAC_ACCESS_PARTIAL
,
3300 [MAVTV0
... MAVTV3
] = MAC_ACCESS_PARTIAL
3304 e1000e_core_write(E1000ECore
*core
, hwaddr addr
, uint64_t val
, unsigned size
)
3306 uint16_t index
= e1000e_get_reg_index_with_offset(mac_reg_access
, addr
);
3308 if (index
< E1000E_NWRITEOPS
&& e1000e_macreg_writeops
[index
]) {
3309 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
3310 trace_e1000e_wrn_regs_write_trivial(index
<< 2);
3312 trace_e1000e_core_write(index
<< 2, size
, val
);
3313 e1000e_macreg_writeops
[index
](core
, index
, val
);
3314 } else if (index
< E1000E_NREADOPS
&& e1000e_macreg_readops
[index
]) {
3315 trace_e1000e_wrn_regs_write_ro(index
<< 2, size
, val
);
3317 trace_e1000e_wrn_regs_write_unknown(index
<< 2, size
, val
);
3322 e1000e_core_read(E1000ECore
*core
, hwaddr addr
, unsigned size
)
3325 uint16_t index
= e1000e_get_reg_index_with_offset(mac_reg_access
, addr
);
3327 if (index
< E1000E_NREADOPS
&& e1000e_macreg_readops
[index
]) {
3328 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
3329 trace_e1000e_wrn_regs_read_trivial(index
<< 2);
3331 val
= e1000e_macreg_readops
[index
](core
, index
);
3332 trace_e1000e_core_read(index
<< 2, size
, val
);
3335 trace_e1000e_wrn_regs_read_unknown(index
<< 2, size
);
3341 e1000e_autoneg_pause(E1000ECore
*core
)
3343 timer_del(core
->autoneg_timer
);
3347 e1000e_autoneg_resume(E1000ECore
*core
)
3349 if (e1000e_have_autoneg(core
) &&
3350 !(core
->phy
[0][PHY_STATUS
] & MII_SR_AUTONEG_COMPLETE
)) {
3351 qemu_get_queue(core
->owner_nic
)->link_down
= false;
3352 timer_mod(core
->autoneg_timer
,
3353 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
) + 500);
3358 e1000e_vm_state_change(void *opaque
, bool running
, RunState state
)
3360 E1000ECore
*core
= opaque
;
3363 trace_e1000e_vm_state_running();
3364 e1000e_intrmgr_resume(core
);
3365 e1000e_autoneg_resume(core
);
3367 trace_e1000e_vm_state_stopped();
3368 e1000e_autoneg_pause(core
);
3369 e1000e_intrmgr_pause(core
);
3374 e1000e_core_pci_realize(E1000ECore
*core
,
3375 const uint16_t *eeprom_templ
,
3376 uint32_t eeprom_size
,
3377 const uint8_t *macaddr
)
3381 core
->autoneg_timer
= timer_new_ms(QEMU_CLOCK_VIRTUAL
,
3382 e1000e_autoneg_timer
, core
);
3383 e1000e_intrmgr_pci_realize(core
);
3386 qemu_add_vm_change_state_handler(e1000e_vm_state_change
, core
);
3388 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
3389 net_tx_pkt_init(&core
->tx
[i
].tx_pkt
, core
->owner
,
3390 E1000E_MAX_TX_FRAGS
, core
->has_vnet
);
3393 net_rx_pkt_init(&core
->rx_pkt
, core
->has_vnet
);
3395 e1000x_core_prepare_eeprom(core
->eeprom
,
3398 PCI_DEVICE_GET_CLASS(core
->owner
)->device_id
,
3400 e1000e_update_rx_offloads(core
);
3404 e1000e_core_pci_uninit(E1000ECore
*core
)
3408 timer_free(core
->autoneg_timer
);
3410 e1000e_intrmgr_pci_unint(core
);
3412 qemu_del_vm_change_state_handler(core
->vmstate
);
3414 for (i
= 0; i
< E1000E_NUM_QUEUES
; i
++) {
3415 net_tx_pkt_reset(core
->tx
[i
].tx_pkt
);
3416 net_tx_pkt_uninit(core
->tx
[i
].tx_pkt
);
3419 net_rx_pkt_uninit(core
->rx_pkt
);
3422 static const uint16_t
3423 e1000e_phy_reg_init
[E1000E_PHY_PAGES
][E1000E_PHY_PAGE_SIZE
] = {
3425 [PHY_CTRL
] = MII_CR_SPEED_SELECT_MSB
|
3426 MII_CR_FULL_DUPLEX
|
3429 [PHY_STATUS
] = MII_SR_EXTENDED_CAPS
|
3430 MII_SR_LINK_STATUS
|
3431 MII_SR_AUTONEG_CAPS
|
3432 MII_SR_PREAMBLE_SUPPRESS
|
3433 MII_SR_EXTENDED_STATUS
|
3434 MII_SR_10T_HD_CAPS
|
3435 MII_SR_10T_FD_CAPS
|
3436 MII_SR_100X_HD_CAPS
|
3437 MII_SR_100X_FD_CAPS
,
3440 [PHY_ID2
] = E1000_PHY_ID2_82574x
,
3441 [PHY_AUTONEG_ADV
] = 0xde1,
3442 [PHY_LP_ABILITY
] = 0x7e0,
3443 [PHY_AUTONEG_EXP
] = BIT(2),
3444 [PHY_NEXT_PAGE_TX
] = BIT(0) | BIT(13),
3445 [PHY_1000T_CTRL
] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3446 [PHY_1000T_STATUS
] = 0x3c00,
3447 [PHY_EXT_STATUS
] = BIT(12) | BIT(13),
3449 [PHY_COPPER_CTRL1
] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3451 [PHY_COPPER_STAT1
] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3454 [PHY_MAC_CTRL1
] = BIT(3) | BIT(7),
3455 [PHY_MAC_CTRL2
] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3458 [PHY_LED_TIMER_CTRL
] = BIT(0) | BIT(2) | BIT(14)
3462 static const uint32_t e1000e_mac_reg_init
[] = {
3464 [LEDCTL
] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3465 [EXTCNF_CTRL
] = BIT(3),
3466 [EEMNGCTL
] = BIT(31),
3468 [FLSWCTL
] = BIT(30) | BIT(31),
3471 [RXDCTL1
] = BIT(16),
3472 [TIPG
] = 0x8 | (0x8 << 10) | (0x6 << 20),
3475 [CTRL
] = E1000_CTRL_FD
| E1000_CTRL_SWDPIN2
| E1000_CTRL_SWDPIN0
|
3476 E1000_CTRL_SPD_1000
| E1000_CTRL_SLU
|
3477 E1000_CTRL_ADVD3WUC
,
3478 [STATUS
] = E1000_STATUS_ASDV_1000
| E1000_STATUS_LU
,
3479 [PSRCTL
] = (2 << E1000_PSRCTL_BSIZE0_SHIFT
) |
3480 (4 << E1000_PSRCTL_BSIZE1_SHIFT
) |
3481 (4 << E1000_PSRCTL_BSIZE2_SHIFT
),
3482 [TARC0
] = 0x3 | E1000_TARC_ENABLE
,
3483 [TARC1
] = 0x3 | E1000_TARC_ENABLE
,
3484 [EECD
] = E1000_EECD_AUTO_RD
| E1000_EECD_PRES
,
3485 [EERD
] = E1000_EERW_DONE
,
3486 [EEWR
] = E1000_EERW_DONE
,
3487 [GCR
] = E1000_L0S_ADJUST
|
3488 E1000_L1_ENTRY_LATENCY_MSB
|
3489 E1000_L1_ENTRY_LATENCY_LSB
,
3496 [MANC
] = E1000_MANC_DIS_IP_CHK_ARP
,
3497 [FACTPS
] = E1000_FACTPS_LAN0_ON
| 0x20000000,
3499 [RXCSUM
] = E1000_RXCSUM_IPOFLD
| E1000_RXCSUM_TUOFLD
,
3500 [ITR
] = E1000E_MIN_XITR
,
3501 [EITR
...EITR
+ E1000E_MSIX_VEC_NUM
- 1] = E1000E_MIN_XITR
,
3505 e1000e_core_reset(E1000ECore
*core
)
3509 timer_del(core
->autoneg_timer
);
3511 e1000e_intrmgr_reset(core
);
3513 memset(core
->phy
, 0, sizeof core
->phy
);
3514 memmove(core
->phy
, e1000e_phy_reg_init
, sizeof e1000e_phy_reg_init
);
3515 memset(core
->mac
, 0, sizeof core
->mac
);
3516 memmove(core
->mac
, e1000e_mac_reg_init
, sizeof e1000e_mac_reg_init
);
3518 core
->rxbuf_min_shift
= 1 + E1000_RING_DESC_LEN_SHIFT
;
3520 if (qemu_get_queue(core
->owner_nic
)->link_down
) {
3521 e1000e_link_down(core
);
3524 e1000x_reset_mac_addr(core
->owner_nic
, core
->mac
, core
->permanent_mac
);
3526 for (i
= 0; i
< ARRAY_SIZE(core
->tx
); i
++) {
3527 net_tx_pkt_reset(core
->tx
[i
].tx_pkt
);
3528 memset(&core
->tx
[i
].props
, 0, sizeof(core
->tx
[i
].props
));
3529 core
->tx
[i
].skip_cp
= false;
3533 void e1000e_core_pre_save(E1000ECore
*core
)
3536 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
3539 * If link is down and auto-negotiation is supported and ongoing,
3540 * complete auto-negotiation immediately. This allows us to look
3541 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3543 if (nc
->link_down
&& e1000e_have_autoneg(core
)) {
3544 core
->phy
[0][PHY_STATUS
] |= MII_SR_AUTONEG_COMPLETE
;
3545 e1000e_update_flowctl_status(core
);
3548 for (i
= 0; i
< ARRAY_SIZE(core
->tx
); i
++) {
3549 if (net_tx_pkt_has_fragments(core
->tx
[i
].tx_pkt
)) {
3550 core
->tx
[i
].skip_cp
= true;
3556 e1000e_core_post_load(E1000ECore
*core
)
3558 NetClientState
*nc
= qemu_get_queue(core
->owner_nic
);
3560 /* nc.link_down can't be migrated, so infer link_down according
3561 * to link status bit in core.mac[STATUS].
3563 nc
->link_down
= (core
->mac
[STATUS
] & E1000_STATUS_LU
) == 0;