2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState
*bs
, int min_size
, bool exact_size
)
33 BDRVQcowState
*s
= bs
->opaque
;
34 int new_l1_size
, new_l1_size2
, ret
, i
;
35 uint64_t *new_l1_table
;
36 int64_t new_l1_table_offset
;
39 if (min_size
<= s
->l1_size
)
43 new_l1_size
= min_size
;
45 /* Bump size up to reduce the number of times we have to grow */
46 new_l1_size
= s
->l1_size
;
47 if (new_l1_size
== 0) {
50 while (min_size
> new_l1_size
) {
51 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
56 printf("grow l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
59 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
60 new_l1_table
= qemu_mallocz(align_offset(new_l1_size2
, 512));
61 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
63 /* write new table (align to cluster) */
64 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
65 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
66 if (new_l1_table_offset
< 0) {
67 qemu_free(new_l1_table
);
68 return new_l1_table_offset
;
72 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
73 for(i
= 0; i
< s
->l1_size
; i
++)
74 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
75 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
78 for(i
= 0; i
< s
->l1_size
; i
++)
79 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
82 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
83 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
84 cpu_to_be64w((uint64_t*)(data
+ 4), new_l1_table_offset
);
85 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
89 qemu_free(s
->l1_table
);
90 qcow2_free_clusters(bs
, s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t));
91 s
->l1_table_offset
= new_l1_table_offset
;
92 s
->l1_table
= new_l1_table
;
93 s
->l1_size
= new_l1_size
;
96 qemu_free(new_l1_table
);
97 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
);
101 void qcow2_l2_cache_reset(BlockDriverState
*bs
)
103 BDRVQcowState
*s
= bs
->opaque
;
105 memset(s
->l2_cache
, 0, s
->l2_size
* L2_CACHE_SIZE
* sizeof(uint64_t));
106 memset(s
->l2_cache_offsets
, 0, L2_CACHE_SIZE
* sizeof(uint64_t));
107 memset(s
->l2_cache_counts
, 0, L2_CACHE_SIZE
* sizeof(uint32_t));
110 static inline int l2_cache_new_entry(BlockDriverState
*bs
)
112 BDRVQcowState
*s
= bs
->opaque
;
116 /* find a new entry in the least used one */
118 min_count
= 0xffffffff;
119 for(i
= 0; i
< L2_CACHE_SIZE
; i
++) {
120 if (s
->l2_cache_counts
[i
] < min_count
) {
121 min_count
= s
->l2_cache_counts
[i
];
131 * seek l2_offset in the l2_cache table
132 * if not found, return NULL,
134 * increments the l2 cache hit count of the entry,
135 * if counter overflow, divide by two all counters
136 * return the pointer to the l2 cache entry
140 static uint64_t *seek_l2_table(BDRVQcowState
*s
, uint64_t l2_offset
)
144 for(i
= 0; i
< L2_CACHE_SIZE
; i
++) {
145 if (l2_offset
== s
->l2_cache_offsets
[i
]) {
146 /* increment the hit count */
147 if (++s
->l2_cache_counts
[i
] == 0xffffffff) {
148 for(j
= 0; j
< L2_CACHE_SIZE
; j
++) {
149 s
->l2_cache_counts
[j
] >>= 1;
152 return s
->l2_cache
+ (i
<< s
->l2_bits
);
161 * Loads a L2 table into memory. If the table is in the cache, the cache
162 * is used; otherwise the L2 table is loaded from the image file.
164 * Returns a pointer to the L2 table on success, or NULL if the read from
165 * the image file failed.
168 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
171 BDRVQcowState
*s
= bs
->opaque
;
175 /* seek if the table for the given offset is in the cache */
177 *l2_table
= seek_l2_table(s
, l2_offset
);
178 if (*l2_table
!= NULL
) {
182 /* not found: load a new entry in the least used one */
184 min_index
= l2_cache_new_entry(bs
);
185 *l2_table
= s
->l2_cache
+ (min_index
<< s
->l2_bits
);
187 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_LOAD
);
188 ret
= bdrv_pread(bs
->file
, l2_offset
, *l2_table
,
189 s
->l2_size
* sizeof(uint64_t));
191 qcow2_l2_cache_reset(bs
);
195 s
->l2_cache_offsets
[min_index
] = l2_offset
;
196 s
->l2_cache_counts
[min_index
] = 1;
202 * Writes one sector of the L1 table to the disk (can't update single entries
203 * and we really don't want bdrv_pread to perform a read-modify-write)
205 #define L1_ENTRIES_PER_SECTOR (512 / 8)
206 static int write_l1_entry(BlockDriverState
*bs
, int l1_index
)
208 BDRVQcowState
*s
= bs
->opaque
;
209 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
213 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
214 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
215 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
218 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
219 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
231 * Allocate a new l2 entry in the file. If l1_index points to an already
232 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
233 * table) copy the contents of the old L2 table into the newly allocated one.
234 * Otherwise the new table is initialized with zeros.
238 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
240 BDRVQcowState
*s
= bs
->opaque
;
242 uint64_t old_l2_offset
;
247 old_l2_offset
= s
->l1_table
[l1_index
];
249 /* allocate a new l2 entry */
251 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
255 bdrv_flush(bs
->file
);
257 /* allocate a new entry in the l2 cache */
259 min_index
= l2_cache_new_entry(bs
);
260 l2_table
= s
->l2_cache
+ (min_index
<< s
->l2_bits
);
262 if (old_l2_offset
== 0) {
263 /* if there was no old l2 table, clear the new table */
264 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
266 /* if there was an old l2 table, read it from the disk */
267 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
268 ret
= bdrv_pread(bs
->file
, old_l2_offset
, l2_table
,
269 s
->l2_size
* sizeof(uint64_t));
274 /* write the l2 table to the file */
275 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
276 ret
= bdrv_pwrite_sync(bs
->file
, l2_offset
, l2_table
,
277 s
->l2_size
* sizeof(uint64_t));
282 /* update the L1 entry */
283 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
284 ret
= write_l1_entry(bs
, l1_index
);
289 /* update the l2 cache entry */
291 s
->l2_cache_offsets
[min_index
] = l2_offset
;
292 s
->l2_cache_counts
[min_index
] = 1;
298 s
->l1_table
[l1_index
] = old_l2_offset
;
299 qcow2_l2_cache_reset(bs
);
303 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
304 uint64_t *l2_table
, uint64_t start
, uint64_t mask
)
307 uint64_t offset
= be64_to_cpu(l2_table
[0]) & ~mask
;
312 for (i
= start
; i
< start
+ nb_clusters
; i
++)
313 if (offset
+ (uint64_t) i
* cluster_size
!= (be64_to_cpu(l2_table
[i
]) & ~mask
))
319 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
323 while(nb_clusters
-- && l2_table
[i
] == 0)
329 /* The crypt function is compatible with the linux cryptoloop
330 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
332 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
333 uint8_t *out_buf
, const uint8_t *in_buf
,
334 int nb_sectors
, int enc
,
343 for(i
= 0; i
< nb_sectors
; i
++) {
344 ivec
.ll
[0] = cpu_to_le64(sector_num
);
346 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
355 static int qcow2_read(BlockDriverState
*bs
, int64_t sector_num
,
356 uint8_t *buf
, int nb_sectors
)
358 BDRVQcowState
*s
= bs
->opaque
;
359 int ret
, index_in_cluster
, n
, n1
;
360 uint64_t cluster_offset
;
364 while (nb_sectors
> 0) {
367 ret
= qcow2_get_cluster_offset(bs
, sector_num
<< 9, &n
,
373 index_in_cluster
= sector_num
& (s
->cluster_sectors
- 1);
374 if (!cluster_offset
) {
375 if (bs
->backing_hd
) {
376 /* read from the base image */
378 iov
.iov_len
= n
* 512;
379 qemu_iovec_init_external(&qiov
, &iov
, 1);
381 n1
= qcow2_backing_read1(bs
->backing_hd
, &qiov
, sector_num
, n
);
383 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_BACKING
);
384 ret
= bdrv_read(bs
->backing_hd
, sector_num
, buf
, n1
);
389 memset(buf
, 0, 512 * n
);
391 } else if (cluster_offset
& QCOW_OFLAG_COMPRESSED
) {
392 if (qcow2_decompress_cluster(bs
, cluster_offset
) < 0)
394 memcpy(buf
, s
->cluster_cache
+ index_in_cluster
* 512, 512 * n
);
396 BLKDBG_EVENT(bs
->file
, BLKDBG_READ
);
397 ret
= bdrv_pread(bs
->file
, cluster_offset
+ index_in_cluster
* 512, buf
, n
* 512);
400 if (s
->crypt_method
) {
401 qcow2_encrypt_sectors(s
, sector_num
, buf
, buf
, n
, 0,
402 &s
->aes_decrypt_key
);
412 static int copy_sectors(BlockDriverState
*bs
, uint64_t start_sect
,
413 uint64_t cluster_offset
, int n_start
, int n_end
)
415 BDRVQcowState
*s
= bs
->opaque
;
421 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
422 ret
= qcow2_read(bs
, start_sect
+ n_start
, s
->cluster_data
, n
);
425 if (s
->crypt_method
) {
426 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
428 s
->cluster_data
, n
, 1,
429 &s
->aes_encrypt_key
);
431 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
432 ret
= bdrv_write(bs
->file
, (cluster_offset
>> 9) + n_start
,
443 * For a given offset of the disk image, find the cluster offset in
444 * qcow2 file. The offset is stored in *cluster_offset.
446 * on entry, *num is the number of contiguous clusters we'd like to
447 * access following offset.
449 * on exit, *num is the number of contiguous clusters we can read.
451 * Return 0, if the offset is found
452 * Return -errno, otherwise.
456 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
457 int *num
, uint64_t *cluster_offset
)
459 BDRVQcowState
*s
= bs
->opaque
;
460 unsigned int l1_index
, l2_index
;
461 uint64_t l2_offset
, *l2_table
;
463 unsigned int index_in_cluster
, nb_clusters
;
464 uint64_t nb_available
, nb_needed
;
467 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
468 nb_needed
= *num
+ index_in_cluster
;
470 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
472 /* compute how many bytes there are between the offset and
473 * the end of the l1 entry
476 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
478 /* compute the number of available sectors */
480 nb_available
= (nb_available
>> 9) + index_in_cluster
;
482 if (nb_needed
> nb_available
) {
483 nb_needed
= nb_available
;
488 /* seek the the l2 offset in the l1 table */
490 l1_index
= offset
>> l1_bits
;
491 if (l1_index
>= s
->l1_size
)
494 l2_offset
= s
->l1_table
[l1_index
];
496 /* seek the l2 table of the given l2 offset */
501 /* load the l2 table in memory */
503 l2_offset
&= ~QCOW_OFLAG_COPIED
;
504 ret
= l2_load(bs
, l2_offset
, &l2_table
);
509 /* find the cluster offset for the given disk offset */
511 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
512 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
513 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
515 if (!*cluster_offset
) {
516 /* how many empty clusters ? */
517 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
519 /* how many allocated clusters ? */
520 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
521 &l2_table
[l2_index
], 0, QCOW_OFLAG_COPIED
);
524 nb_available
= (c
* s
->cluster_sectors
);
526 if (nb_available
> nb_needed
)
527 nb_available
= nb_needed
;
529 *num
= nb_available
- index_in_cluster
;
531 *cluster_offset
&=~QCOW_OFLAG_COPIED
;
538 * for a given disk offset, load (and allocate if needed)
541 * the l2 table offset in the qcow2 file and the cluster index
542 * in the l2 table are given to the caller.
544 * Returns 0 on success, -errno in failure case
546 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
547 uint64_t **new_l2_table
,
548 uint64_t *new_l2_offset
,
551 BDRVQcowState
*s
= bs
->opaque
;
552 unsigned int l1_index
, l2_index
;
554 uint64_t *l2_table
= NULL
;
557 /* seek the the l2 offset in the l1 table */
559 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
560 if (l1_index
>= s
->l1_size
) {
561 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
566 l2_offset
= s
->l1_table
[l1_index
];
568 /* seek the l2 table of the given l2 offset */
570 if (l2_offset
& QCOW_OFLAG_COPIED
) {
571 /* load the l2 table in memory */
572 l2_offset
&= ~QCOW_OFLAG_COPIED
;
573 ret
= l2_load(bs
, l2_offset
, &l2_table
);
579 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t));
580 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
584 l2_offset
= s
->l1_table
[l1_index
] & ~QCOW_OFLAG_COPIED
;
587 /* find the cluster offset for the given disk offset */
589 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
591 *new_l2_table
= l2_table
;
592 *new_l2_offset
= l2_offset
;
593 *new_l2_index
= l2_index
;
599 * alloc_compressed_cluster_offset
601 * For a given offset of the disk image, return cluster offset in
604 * If the offset is not found, allocate a new compressed cluster.
606 * Return the cluster offset if successful,
607 * Return 0, otherwise.
611 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
615 BDRVQcowState
*s
= bs
->opaque
;
617 uint64_t l2_offset
, *l2_table
;
618 int64_t cluster_offset
;
621 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
626 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
627 if (cluster_offset
& QCOW_OFLAG_COPIED
)
628 return cluster_offset
& ~QCOW_OFLAG_COPIED
;
631 qcow2_free_any_clusters(bs
, cluster_offset
, 1);
633 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
634 if (cluster_offset
< 0) {
638 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
639 (cluster_offset
>> 9);
641 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
642 ((uint64_t)nb_csectors
<< s
->csize_shift
);
644 /* update L2 table */
646 /* compressed clusters never have the copied flag */
648 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
649 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
650 if (bdrv_pwrite_sync(bs
->file
,
651 l2_offset
+ l2_index
* sizeof(uint64_t),
653 sizeof(uint64_t)) < 0)
656 return cluster_offset
;
660 * Write L2 table updates to disk, writing whole sectors to avoid a
661 * read-modify-write in bdrv_pwrite
663 #define L2_ENTRIES_PER_SECTOR (512 / 8)
664 static int write_l2_entries(BlockDriverState
*bs
, uint64_t *l2_table
,
665 uint64_t l2_offset
, int l2_index
, int num
)
667 int l2_start_index
= l2_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
668 int start_offset
= (8 * l2_index
) & ~511;
669 int end_offset
= (8 * (l2_index
+ num
) + 511) & ~511;
670 size_t len
= end_offset
- start_offset
;
673 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE
);
674 ret
= bdrv_pwrite(bs
->file
, l2_offset
+ start_offset
,
675 &l2_table
[l2_start_index
], len
);
683 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
685 BDRVQcowState
*s
= bs
->opaque
;
686 int i
, j
= 0, l2_index
, ret
;
687 uint64_t *old_cluster
, start_sect
, l2_offset
, *l2_table
;
688 uint64_t cluster_offset
= m
->cluster_offset
;
690 if (m
->nb_clusters
== 0)
693 old_cluster
= qemu_malloc(m
->nb_clusters
* sizeof(uint64_t));
695 /* copy content of unmodified sectors */
696 start_sect
= (m
->offset
& ~(s
->cluster_size
- 1)) >> 9;
698 ret
= copy_sectors(bs
, start_sect
, cluster_offset
, 0, m
->n_start
);
703 if (m
->nb_available
& (s
->cluster_sectors
- 1)) {
704 uint64_t end
= m
->nb_available
& ~(uint64_t)(s
->cluster_sectors
- 1);
705 ret
= copy_sectors(bs
, start_sect
+ end
, cluster_offset
+ (end
<< 9),
706 m
->nb_available
- end
, s
->cluster_sectors
);
711 /* update L2 table */
712 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_offset
, &l2_index
);
717 for (i
= 0; i
< m
->nb_clusters
; i
++) {
718 /* if two concurrent writes happen to the same unallocated cluster
719 * each write allocates separate cluster and writes data concurrently.
720 * The first one to complete updates l2 table with pointer to its
721 * cluster the second one has to do RMW (which is done above by
722 * copy_sectors()), update l2 table with its cluster pointer and free
723 * old cluster. This is what this loop does */
724 if(l2_table
[l2_index
+ i
] != 0)
725 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
727 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
728 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
732 * Before we update the L2 table to actually point to the new cluster, we
733 * need to be sure that the refcounts have been increased and COW was
736 bdrv_flush(bs
->file
);
738 ret
= write_l2_entries(bs
, l2_table
, l2_offset
, l2_index
, m
->nb_clusters
);
740 qcow2_l2_cache_reset(bs
);
745 * If this was a COW, we need to decrease the refcount of the old cluster.
746 * Also flush bs->file to get the right order for L2 and refcount update.
749 bdrv_flush(bs
->file
);
750 for (i
= 0; i
< j
; i
++) {
751 qcow2_free_any_clusters(bs
,
752 be64_to_cpu(old_cluster
[i
]) & ~QCOW_OFLAG_COPIED
, 1);
758 qemu_free(old_cluster
);
763 * alloc_cluster_offset
765 * For a given offset of the disk image, return cluster offset in qcow2 file.
766 * If the offset is not found, allocate a new cluster.
768 * If the cluster was already allocated, m->nb_clusters is set to 0,
769 * m->depends_on is set to NULL and the other fields in m are meaningless.
771 * If the cluster is newly allocated, m->nb_clusters is set to the number of
772 * contiguous clusters that have been allocated. This may be 0 if the request
773 * conflict with another write request in flight; in this case, m->depends_on
774 * is set and the remaining fields of m are meaningless.
776 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
777 * information about the first allocated cluster.
779 * Return 0 on success and -errno in error cases
781 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
782 int n_start
, int n_end
, int *num
, QCowL2Meta
*m
)
784 BDRVQcowState
*s
= bs
->opaque
;
786 uint64_t l2_offset
, *l2_table
;
787 int64_t cluster_offset
;
788 unsigned int nb_clusters
, i
= 0;
789 QCowL2Meta
*old_alloc
;
791 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
796 nb_clusters
= size_to_clusters(s
, n_end
<< 9);
798 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
800 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
802 /* We keep all QCOW_OFLAG_COPIED clusters */
804 if (cluster_offset
& QCOW_OFLAG_COPIED
) {
805 nb_clusters
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
806 &l2_table
[l2_index
], 0, 0);
808 cluster_offset
&= ~QCOW_OFLAG_COPIED
;
810 m
->depends_on
= NULL
;
815 /* for the moment, multiple compressed clusters are not managed */
817 if (cluster_offset
& QCOW_OFLAG_COMPRESSED
)
820 /* how many available clusters ? */
822 while (i
< nb_clusters
) {
823 i
+= count_contiguous_clusters(nb_clusters
- i
, s
->cluster_size
,
824 &l2_table
[l2_index
], i
, 0);
825 if ((i
>= nb_clusters
) || be64_to_cpu(l2_table
[l2_index
+ i
])) {
829 i
+= count_contiguous_free_clusters(nb_clusters
- i
,
830 &l2_table
[l2_index
+ i
]);
831 if (i
>= nb_clusters
) {
835 cluster_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
837 if ((cluster_offset
& QCOW_OFLAG_COPIED
) ||
838 (cluster_offset
& QCOW_OFLAG_COMPRESSED
))
841 assert(i
<= nb_clusters
);
845 * Check if there already is an AIO write request in flight which allocates
846 * the same cluster. In this case we need to wait until the previous
847 * request has completed and updated the L2 table accordingly.
849 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
851 uint64_t end_offset
= offset
+ nb_clusters
* s
->cluster_size
;
852 uint64_t old_offset
= old_alloc
->offset
;
853 uint64_t old_end_offset
= old_alloc
->offset
+
854 old_alloc
->nb_clusters
* s
->cluster_size
;
856 if (end_offset
< old_offset
|| offset
> old_end_offset
) {
857 /* No intersection */
859 if (offset
< old_offset
) {
860 /* Stop at the start of a running allocation */
861 nb_clusters
= (old_offset
- offset
) >> s
->cluster_bits
;
866 if (nb_clusters
== 0) {
867 /* Set dependency and wait for a callback */
868 m
->depends_on
= old_alloc
;
880 QLIST_INSERT_HEAD(&s
->cluster_allocs
, m
, next_in_flight
);
882 /* allocate a new cluster */
884 cluster_offset
= qcow2_alloc_clusters(bs
, nb_clusters
* s
->cluster_size
);
885 if (cluster_offset
< 0) {
886 QLIST_REMOVE(m
, next_in_flight
);
887 return cluster_offset
;
890 /* save info needed for meta data update */
892 m
->n_start
= n_start
;
893 m
->nb_clusters
= nb_clusters
;
896 m
->nb_available
= MIN(nb_clusters
<< (s
->cluster_bits
- 9), n_end
);
897 m
->cluster_offset
= cluster_offset
;
899 *num
= m
->nb_available
- n_start
;
904 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
905 const uint8_t *buf
, int buf_size
)
907 z_stream strm1
, *strm
= &strm1
;
910 memset(strm
, 0, sizeof(*strm
));
912 strm
->next_in
= (uint8_t *)buf
;
913 strm
->avail_in
= buf_size
;
914 strm
->next_out
= out_buf
;
915 strm
->avail_out
= out_buf_size
;
917 ret
= inflateInit2(strm
, -12);
920 ret
= inflate(strm
, Z_FINISH
);
921 out_len
= strm
->next_out
- out_buf
;
922 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
923 out_len
!= out_buf_size
) {
931 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
933 BDRVQcowState
*s
= bs
->opaque
;
934 int ret
, csize
, nb_csectors
, sector_offset
;
937 coffset
= cluster_offset
& s
->cluster_offset_mask
;
938 if (s
->cluster_cache_offset
!= coffset
) {
939 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
940 sector_offset
= coffset
& 511;
941 csize
= nb_csectors
* 512 - sector_offset
;
942 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
943 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
947 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
948 s
->cluster_data
+ sector_offset
, csize
) < 0) {
951 s
->cluster_cache_offset
= coffset
;