4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
32 uint32_t syndrome
, uint32_t target_el
)
34 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
36 assert(!excp_is_internal(excp
));
37 cs
->exception_index
= excp
;
38 env
->exception
.syndrome
= syndrome
;
39 env
->exception
.target_el
= target_el
;
43 static int exception_target_el(CPUARMState
*env
)
45 int target_el
= MAX(1, arm_current_el(env
));
47 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
48 * to EL3 in this case.
50 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
57 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
58 uint32_t rn
, uint32_t maxindex
)
65 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
67 for (shift
= 0; shift
< 32; shift
+= 8) {
68 index
= (ireg
>> shift
) & 0xff;
69 if (index
< maxindex
) {
70 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
73 val
|= def
& (0xff << shift
);
79 #if !defined(CONFIG_USER_ONLY)
81 static inline uint32_t merge_syn_data_abort(uint32_t template_syn
,
82 unsigned int target_el
,
83 bool same_el
, bool ea
,
84 bool s1ptw
, bool is_write
,
89 /* ISV is only set for data aborts routed to EL2 and
90 * never for stage-1 page table walks faulting on stage 2.
92 * Furthermore, ISV is only set for certain kinds of load/stores.
93 * If the template syndrome does not have ISV set, we should leave
96 * See ARMv8 specs, D7-1974:
97 * ISS encoding for an exception from a Data Abort, the
100 if (!(template_syn
& ARM_EL_ISV
) || target_el
!= 2 || s1ptw
) {
101 syn
= syn_data_abort_no_iss(same_el
,
102 ea
, 0, s1ptw
, is_write
, fsc
);
104 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
105 * syndrome created at translation time.
106 * Now we create the runtime syndrome with the remaining fields.
108 syn
= syn_data_abort_with_iss(same_el
,
110 ea
, 0, s1ptw
, is_write
, fsc
,
112 /* Merge the runtime syndrome with the template syndrome. */
118 static void deliver_fault(ARMCPU
*cpu
, vaddr addr
, MMUAccessType access_type
,
119 int mmu_idx
, ARMMMUFaultInfo
*fi
)
121 CPUARMState
*env
= &cpu
->env
;
124 uint32_t syn
, exc
, fsr
, fsc
;
125 ARMMMUIdx arm_mmu_idx
= core_to_arm_mmu_idx(env
, mmu_idx
);
127 target_el
= exception_target_el(env
);
130 env
->cp15
.hpfar_el2
= extract64(fi
->s2addr
, 12, 47) << 4;
132 same_el
= (arm_current_el(env
) == target_el
);
134 if (target_el
== 2 || arm_el_is_aa64(env
, target_el
) ||
135 arm_s1_regime_using_lpae_format(env
, arm_mmu_idx
)) {
136 /* LPAE format fault status register : bottom 6 bits are
137 * status code in the same form as needed for syndrome
139 fsr
= arm_fi_to_lfsc(fi
);
140 fsc
= extract32(fsr
, 0, 6);
142 fsr
= arm_fi_to_sfsc(fi
);
143 /* Short format FSR : this fault will never actually be reported
144 * to an EL that uses a syndrome register. Use a (currently)
145 * reserved FSR code in case the constructed syndrome does leak
146 * into the guest somehow.
151 if (access_type
== MMU_INST_FETCH
) {
152 syn
= syn_insn_abort(same_el
, fi
->ea
, fi
->s1ptw
, fsc
);
153 exc
= EXCP_PREFETCH_ABORT
;
155 syn
= merge_syn_data_abort(env
->exception
.syndrome
, target_el
,
156 same_el
, fi
->ea
, fi
->s1ptw
,
157 access_type
== MMU_DATA_STORE
,
159 if (access_type
== MMU_DATA_STORE
160 && arm_feature(env
, ARM_FEATURE_V6
)) {
163 exc
= EXCP_DATA_ABORT
;
166 env
->exception
.vaddress
= addr
;
167 env
->exception
.fsr
= fsr
;
168 raise_exception(env
, exc
, syn
, target_el
);
171 /* try to fill the TLB and return an exception if error. If retaddr is
172 * NULL, it means that the function was called in C code (i.e. not
173 * from generated code or from helper.c)
175 void tlb_fill(CPUState
*cs
, target_ulong addr
, int size
,
176 MMUAccessType access_type
, int mmu_idx
, uintptr_t retaddr
)
179 ARMMMUFaultInfo fi
= {};
181 ret
= arm_tlb_fill(cs
, addr
, access_type
, mmu_idx
, &fi
);
183 ARMCPU
*cpu
= ARM_CPU(cs
);
185 /* now we have a real cpu fault */
186 cpu_restore_state(cs
, retaddr
);
188 deliver_fault(cpu
, addr
, access_type
, mmu_idx
, &fi
);
192 /* Raise a data fault alignment exception for the specified virtual address */
193 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
,
194 MMUAccessType access_type
,
195 int mmu_idx
, uintptr_t retaddr
)
197 ARMCPU
*cpu
= ARM_CPU(cs
);
198 ARMMMUFaultInfo fi
= {};
200 /* now we have a real cpu fault */
201 cpu_restore_state(cs
, retaddr
);
203 fi
.type
= ARMFault_Alignment
;
204 deliver_fault(cpu
, vaddr
, access_type
, mmu_idx
, &fi
);
207 /* arm_cpu_do_transaction_failed: handle a memory system error response
208 * (eg "no device/memory present at address") by raising an external abort
211 void arm_cpu_do_transaction_failed(CPUState
*cs
, hwaddr physaddr
,
212 vaddr addr
, unsigned size
,
213 MMUAccessType access_type
,
214 int mmu_idx
, MemTxAttrs attrs
,
215 MemTxResult response
, uintptr_t retaddr
)
217 ARMCPU
*cpu
= ARM_CPU(cs
);
218 ARMMMUFaultInfo fi
= {};
220 /* now we have a real cpu fault */
221 cpu_restore_state(cs
, retaddr
);
223 fi
.ea
= arm_extabort_type(response
);
224 fi
.type
= ARMFault_SyncExternal
;
225 deliver_fault(cpu
, addr
, access_type
, mmu_idx
, &fi
);
228 #endif /* !defined(CONFIG_USER_ONLY) */
230 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
232 uint32_t res
= a
+ b
;
233 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
238 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
240 uint32_t res
= a
+ b
;
241 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
243 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
248 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
250 uint32_t res
= a
- b
;
251 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
253 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
258 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
261 if (val
>= 0x40000000) {
264 } else if (val
<= (int32_t)0xc0000000) {
273 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
275 uint32_t res
= a
+ b
;
283 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
285 uint32_t res
= a
- b
;
293 /* Signed saturation. */
294 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
300 mask
= (1u << shift
) - 1;
304 } else if (top
< -1) {
311 /* Unsigned saturation. */
312 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
316 max
= (1u << shift
) - 1;
320 } else if (val
> max
) {
327 /* Signed saturate. */
328 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
330 return do_ssat(env
, x
, shift
);
333 /* Dual halfword signed saturate. */
334 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
338 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
339 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
343 /* Unsigned saturate. */
344 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
346 return do_usat(env
, x
, shift
);
349 /* Dual halfword unsigned saturate. */
350 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
354 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
355 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
359 void HELPER(setend
)(CPUARMState
*env
)
361 env
->uncached_cpsr
^= CPSR_E
;
364 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
365 * The function returns the target EL (1-3) if the instruction is to be trapped;
366 * otherwise it returns 0 indicating it is not trapped.
368 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
370 int cur_el
= arm_current_el(env
);
373 if (arm_feature(env
, ARM_FEATURE_M
)) {
374 /* M profile cores can never trap WFI/WFE. */
378 /* If we are currently in EL0 then we need to check if SCTLR is set up for
379 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
381 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
384 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
385 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
386 /* Secure EL0 and Secure PL1 is at EL3 */
392 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
397 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
398 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
399 * bits will be zero indicating no trap.
401 if (cur_el
< 2 && !arm_is_secure(env
)) {
402 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
403 if (env
->cp15
.hcr_el2
& mask
) {
408 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
410 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
411 if (env
->cp15
.scr_el3
& mask
) {
419 void HELPER(wfi
)(CPUARMState
*env
, uint32_t insn_len
)
421 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
422 int target_el
= check_wfx_trap(env
, false);
424 if (cpu_has_work(cs
)) {
425 /* Don't bother to go into our "low power state" if
426 * we would just wake up immediately.
433 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0, insn_len
== 2),
437 cs
->exception_index
= EXCP_HLT
;
442 void HELPER(wfe
)(CPUARMState
*env
)
444 /* This is a hint instruction that is semantically different
445 * from YIELD even though we currently implement it identically.
446 * Don't actually halt the CPU, just yield back to top
447 * level loop. This is not going into a "low power state"
448 * (ie halting until some event occurs), so we never take
449 * a configurable trap to a different exception level.
454 void HELPER(yield
)(CPUARMState
*env
)
456 ARMCPU
*cpu
= arm_env_get_cpu(env
);
457 CPUState
*cs
= CPU(cpu
);
459 /* This is a non-trappable hint instruction that generally indicates
460 * that the guest is currently busy-looping. Yield control back to the
461 * top level loop so that a more deserving VCPU has a chance to run.
463 cs
->exception_index
= EXCP_YIELD
;
467 /* Raise an internal-to-QEMU exception. This is limited to only
468 * those EXCP values which are special cases for QEMU to interrupt
469 * execution and not to be used for exceptions which are passed to
470 * the guest (those must all have syndrome information and thus should
471 * use exception_with_syndrome).
473 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
475 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
477 assert(excp_is_internal(excp
));
478 cs
->exception_index
= excp
;
482 /* Raise an exception with the specified syndrome register value */
483 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
484 uint32_t syndrome
, uint32_t target_el
)
486 raise_exception(env
, excp
, syndrome
, target_el
);
489 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
491 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
494 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
496 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
499 /* Write the CPSR for a 32-bit exception return */
500 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
502 cpsr_write(env
, val
, CPSR_ERET_MASK
, CPSRWriteExceptionReturn
);
504 /* Generated code has already stored the new PC value, but
505 * without masking out its low bits, because which bits need
506 * masking depends on whether we're returning to Thumb or ARM
507 * state. Do the masking now.
509 env
->regs
[15] &= (env
->thumb
? ~1 : ~3);
511 qemu_mutex_lock_iothread();
512 arm_call_el_change_hook(arm_env_get_cpu(env
));
513 qemu_mutex_unlock_iothread();
516 /* Access to user mode registers from privileged modes. */
517 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
522 val
= env
->banked_r13
[BANK_USRSYS
];
523 } else if (regno
== 14) {
524 val
= env
->banked_r14
[BANK_USRSYS
];
525 } else if (regno
>= 8
526 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
527 val
= env
->usr_regs
[regno
- 8];
529 val
= env
->regs
[regno
];
534 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
537 env
->banked_r13
[BANK_USRSYS
] = val
;
538 } else if (regno
== 14) {
539 env
->banked_r14
[BANK_USRSYS
] = val
;
540 } else if (regno
>= 8
541 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
542 env
->usr_regs
[regno
- 8] = val
;
544 env
->regs
[regno
] = val
;
548 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
550 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
553 env
->banked_r13
[bank_number(mode
)] = val
;
557 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
559 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
560 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
561 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
563 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
564 exception_target_el(env
));
567 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
568 return env
->regs
[13];
570 return env
->banked_r13
[bank_number(mode
)];
574 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
577 /* Raise an exception if the requested access is one of the UNPREDICTABLE
578 * cases; otherwise return. This broadly corresponds to the pseudocode
579 * BankedRegisterAccessValid() and SPSRAccessValid(),
580 * except that we have already handled some cases at translate time.
582 int curmode
= env
->uncached_cpsr
& CPSR_M
;
584 if (curmode
== tgtmode
) {
588 if (tgtmode
== ARM_CPU_MODE_USR
) {
591 if (curmode
!= ARM_CPU_MODE_FIQ
) {
596 if (curmode
== ARM_CPU_MODE_SYS
) {
601 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
610 if (tgtmode
== ARM_CPU_MODE_HYP
) {
612 case 17: /* ELR_Hyp */
613 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
618 if (curmode
!= ARM_CPU_MODE_MON
) {
628 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
629 exception_target_el(env
));
632 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
635 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
639 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
641 case 17: /* ELR_Hyp */
642 env
->elr_el
[2] = value
;
645 env
->banked_r13
[bank_number(tgtmode
)] = value
;
648 env
->banked_r14
[bank_number(tgtmode
)] = value
;
652 case ARM_CPU_MODE_USR
:
653 env
->usr_regs
[regno
- 8] = value
;
655 case ARM_CPU_MODE_FIQ
:
656 env
->fiq_regs
[regno
- 8] = value
;
659 g_assert_not_reached();
663 g_assert_not_reached();
667 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
669 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
673 return env
->banked_spsr
[bank_number(tgtmode
)];
674 case 17: /* ELR_Hyp */
675 return env
->elr_el
[2];
677 return env
->banked_r13
[bank_number(tgtmode
)];
679 return env
->banked_r14
[bank_number(tgtmode
)];
682 case ARM_CPU_MODE_USR
:
683 return env
->usr_regs
[regno
- 8];
684 case ARM_CPU_MODE_FIQ
:
685 return env
->fiq_regs
[regno
- 8];
687 g_assert_not_reached();
690 g_assert_not_reached();
694 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
697 const ARMCPRegInfo
*ri
= rip
;
700 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
701 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
702 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
709 switch (ri
->accessfn(env
, ri
, isread
)) {
713 target_el
= exception_target_el(env
);
715 case CP_ACCESS_TRAP_EL2
:
716 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
717 * a bug in the access function.
719 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
722 case CP_ACCESS_TRAP_EL3
:
725 case CP_ACCESS_TRAP_UNCATEGORIZED
:
726 target_el
= exception_target_el(env
);
727 syndrome
= syn_uncategorized();
729 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
731 syndrome
= syn_uncategorized();
733 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
735 syndrome
= syn_uncategorized();
737 case CP_ACCESS_TRAP_FP_EL2
:
739 /* Since we are an implementation that takes exceptions on a trapped
740 * conditional insn only if the insn has passed its condition code
741 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
742 * (which is also the required value for AArch64 traps).
744 syndrome
= syn_fp_access_trap(1, 0xe, false);
746 case CP_ACCESS_TRAP_FP_EL3
:
748 syndrome
= syn_fp_access_trap(1, 0xe, false);
751 g_assert_not_reached();
754 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
757 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
759 const ARMCPRegInfo
*ri
= rip
;
761 if (ri
->type
& ARM_CP_IO
) {
762 qemu_mutex_lock_iothread();
763 ri
->writefn(env
, ri
, value
);
764 qemu_mutex_unlock_iothread();
766 ri
->writefn(env
, ri
, value
);
770 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
772 const ARMCPRegInfo
*ri
= rip
;
775 if (ri
->type
& ARM_CP_IO
) {
776 qemu_mutex_lock_iothread();
777 res
= ri
->readfn(env
, ri
);
778 qemu_mutex_unlock_iothread();
780 res
= ri
->readfn(env
, ri
);
786 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
788 const ARMCPRegInfo
*ri
= rip
;
790 if (ri
->type
& ARM_CP_IO
) {
791 qemu_mutex_lock_iothread();
792 ri
->writefn(env
, ri
, value
);
793 qemu_mutex_unlock_iothread();
795 ri
->writefn(env
, ri
, value
);
799 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
801 const ARMCPRegInfo
*ri
= rip
;
804 if (ri
->type
& ARM_CP_IO
) {
805 qemu_mutex_lock_iothread();
806 res
= ri
->readfn(env
, ri
);
807 qemu_mutex_unlock_iothread();
809 res
= ri
->readfn(env
, ri
);
815 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
817 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
818 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
819 * to catch that case at translate time.
821 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
822 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
823 extract32(op
, 3, 3), 4,
825 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
829 case 0x05: /* SPSel */
830 update_spsel(env
, imm
);
832 case 0x1e: /* DAIFSet */
833 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
835 case 0x1f: /* DAIFClear */
836 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
839 g_assert_not_reached();
843 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
845 env
->pstate
&= ~PSTATE_SS
;
848 void HELPER(pre_hvc
)(CPUARMState
*env
)
850 ARMCPU
*cpu
= arm_env_get_cpu(env
);
851 int cur_el
= arm_current_el(env
);
852 /* FIXME: Use actual secure state. */
856 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
857 /* If PSCI is enabled and this looks like a valid PSCI call then
858 * that overrides the architecturally mandated HVC behaviour.
863 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
864 /* If EL2 doesn't exist, HVC always UNDEFs */
866 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
867 /* EL3.HCE has priority over EL2.HCD. */
868 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
870 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
873 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
874 * For ARMv8/AArch64, HVC is allowed in EL3.
875 * Note that we've already trapped HVC from EL0 at translation
878 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
883 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
884 exception_target_el(env
));
888 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
890 ARMCPU
*cpu
= arm_env_get_cpu(env
);
891 int cur_el
= arm_current_el(env
);
892 bool secure
= arm_is_secure(env
);
893 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
894 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
895 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
896 * extensions, SMD only applies to NS state.
897 * On ARMv7 without the Virtualization extensions, the SMD bit
898 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
899 * so we need not special case this here.
901 bool undef
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd
: smd
&& !secure
;
903 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
904 cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
905 /* If we have no EL3 then SMC always UNDEFs and can't be
906 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
907 * firmware within QEMU, and we want an EL2 guest to be able
908 * to forbid its EL1 from making PSCI calls into QEMU's
909 * "firmware" via HCR.TSC, so for these purposes treat
910 * PSCI-via-SMC as implying an EL3.
913 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
914 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
915 * We also want an EL2 guest to be able to forbid its EL1 from
916 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
918 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
921 /* If PSCI is enabled and this looks like a valid PSCI call then
922 * suppress the UNDEF -- we'll catch the SMC exception and
923 * implement the PSCI call behaviour there.
925 if (undef
&& !arm_is_psci_call(cpu
, EXCP_SMC
)) {
926 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
927 exception_target_el(env
));
931 static int el_from_spsr(uint32_t spsr
)
933 /* Return the exception level that this SPSR is requesting a return to,
934 * or -1 if it is invalid (an illegal return)
936 if (spsr
& PSTATE_nRW
) {
937 switch (spsr
& CPSR_M
) {
938 case ARM_CPU_MODE_USR
:
940 case ARM_CPU_MODE_HYP
:
942 case ARM_CPU_MODE_FIQ
:
943 case ARM_CPU_MODE_IRQ
:
944 case ARM_CPU_MODE_SVC
:
945 case ARM_CPU_MODE_ABT
:
946 case ARM_CPU_MODE_UND
:
947 case ARM_CPU_MODE_SYS
:
949 case ARM_CPU_MODE_MON
:
950 /* Returning to Mon from AArch64 is never possible,
951 * so this is an illegal return.
957 if (extract32(spsr
, 1, 1)) {
958 /* Return with reserved M[1] bit set */
961 if (extract32(spsr
, 0, 4) == 1) {
962 /* return to EL0 with M[0] bit set */
965 return extract32(spsr
, 2, 2);
969 void HELPER(exception_return
)(CPUARMState
*env
)
971 int cur_el
= arm_current_el(env
);
972 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
973 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
975 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
977 aarch64_save_sp(env
, cur_el
);
979 arm_clear_exclusive(env
);
981 /* We must squash the PSTATE.SS bit to zero unless both of the
983 * 1. debug exceptions are currently disabled
984 * 2. singlestep will be active in the EL we return to
985 * We check 1 here and 2 after we've done the pstate/cpsr write() to
986 * transition to the EL we're going to.
988 if (arm_generate_debug_exceptions(env
)) {
992 new_el
= el_from_spsr(spsr
);
997 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
998 /* Disallow return to an EL which is unimplemented or higher
999 * than the current one.
1001 goto illegal_return
;
1004 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
1005 /* Return to an EL which is configured for a different register width */
1006 goto illegal_return
;
1009 if (new_el
== 2 && arm_is_secure_below_el3(env
)) {
1010 /* Return to the non-existent secure-EL2 */
1011 goto illegal_return
;
1014 if (new_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TGE
)
1015 && !arm_is_secure_below_el3(env
)) {
1016 goto illegal_return
;
1019 if (!return_to_aa64
) {
1021 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1022 * will sort the register banks out for us, and we've already
1023 * caught all the bad-mode cases in el_from_spsr().
1025 cpsr_write(env
, spsr
, ~0, CPSRWriteRaw
);
1026 if (!arm_singlestep_active(env
)) {
1027 env
->uncached_cpsr
&= ~PSTATE_SS
;
1029 aarch64_sync_64_to_32(env
);
1031 if (spsr
& CPSR_T
) {
1032 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x1;
1034 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x3;
1036 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1037 "AArch32 EL%d PC 0x%" PRIx32
"\n",
1038 cur_el
, new_el
, env
->regs
[15]);
1041 pstate_write(env
, spsr
);
1042 if (!arm_singlestep_active(env
)) {
1043 env
->pstate
&= ~PSTATE_SS
;
1045 aarch64_restore_sp(env
, new_el
);
1046 env
->pc
= env
->elr_el
[cur_el
];
1047 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1048 "AArch64 EL%d PC 0x%" PRIx64
"\n",
1049 cur_el
, new_el
, env
->pc
);
1052 qemu_mutex_lock_iothread();
1053 arm_call_el_change_hook(arm_env_get_cpu(env
));
1054 qemu_mutex_unlock_iothread();
1059 /* Illegal return events of various kinds have architecturally
1060 * mandated behaviour:
1061 * restore NZCV and DAIF from SPSR_ELx
1063 * restore PC from ELR_ELx
1064 * no change to exception level, execution state or stack pointer
1066 env
->pstate
|= PSTATE_IL
;
1067 env
->pc
= env
->elr_el
[cur_el
];
1068 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
1069 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
1070 pstate_write(env
, spsr
);
1071 if (!arm_singlestep_active(env
)) {
1072 env
->pstate
&= ~PSTATE_SS
;
1074 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal exception return at EL%d: "
1075 "resuming execution at 0x%" PRIx64
"\n", cur_el
, env
->pc
);
1078 /* Return true if the linked breakpoint entry lbn passes its checks */
1079 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
1081 CPUARMState
*env
= &cpu
->env
;
1082 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
1083 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
1084 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
1086 uint32_t contextidr
;
1088 /* Links to unimplemented or non-context aware breakpoints are
1089 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1090 * as if linked to an UNKNOWN context-aware breakpoint (in which
1091 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1092 * We choose the former.
1094 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
1098 bcr
= env
->cp15
.dbgbcr
[lbn
];
1100 if (extract64(bcr
, 0, 1) == 0) {
1101 /* Linked breakpoint disabled : generate no events */
1105 bt
= extract64(bcr
, 20, 4);
1107 /* We match the whole register even if this is AArch32 using the
1108 * short descriptor format (in which case it holds both PROCID and ASID),
1109 * since we don't implement the optional v7 context ID masking.
1111 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
1114 case 3: /* linked context ID match */
1115 if (arm_current_el(env
) > 1) {
1116 /* Context matches never fire in EL2 or (AArch64) EL3 */
1119 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
1120 case 5: /* linked address mismatch (reserved in AArch64) */
1121 case 9: /* linked VMID match (reserved if no EL2) */
1122 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1124 /* Links to Unlinked context breakpoints must generate no
1125 * events; we choose to do the same for reserved values too.
1133 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
1135 CPUARMState
*env
= &cpu
->env
;
1137 int pac
, hmc
, ssc
, wt
, lbn
;
1138 /* Note that for watchpoints the check is against the CPU security
1139 * state, not the S/NS attribute on the offending data access.
1141 bool is_secure
= arm_is_secure(env
);
1142 int access_el
= arm_current_el(env
);
1145 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
1147 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
1150 cr
= env
->cp15
.dbgwcr
[n
];
1151 if (wp
->hitattrs
.user
) {
1152 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1153 * match watchpoints as if they were accesses done at EL0, even if
1154 * the CPU is at EL1 or higher.
1159 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1161 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
1164 cr
= env
->cp15
.dbgbcr
[n
];
1166 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1167 * enabled and that the address and access type match; for breakpoints
1168 * we know the address matched; check the remaining fields, including
1169 * linked breakpoints. We rely on WCR and BCR having the same layout
1170 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1171 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1172 * must act either like some valid combination or as if the watchpoint
1173 * were disabled. We choose the former, and use this together with
1174 * the fact that EL3 must always be Secure and EL2 must always be
1175 * Non-Secure to simplify the code slightly compared to the full
1176 * table in the ARM ARM.
1178 pac
= extract64(cr
, 1, 2);
1179 hmc
= extract64(cr
, 13, 1);
1180 ssc
= extract64(cr
, 14, 2);
1198 switch (access_el
) {
1206 if (extract32(pac
, 0, 1) == 0) {
1211 if (extract32(pac
, 1, 1) == 0) {
1216 g_assert_not_reached();
1219 wt
= extract64(cr
, 20, 1);
1220 lbn
= extract64(cr
, 16, 4);
1222 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
1229 static bool check_watchpoints(ARMCPU
*cpu
)
1231 CPUARMState
*env
= &cpu
->env
;
1234 /* If watchpoints are disabled globally or we can't take debug
1235 * exceptions here then watchpoint firings are ignored.
1237 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1238 || !arm_generate_debug_exceptions(env
)) {
1242 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
1243 if (bp_wp_matches(cpu
, n
, true)) {
1250 static bool check_breakpoints(ARMCPU
*cpu
)
1252 CPUARMState
*env
= &cpu
->env
;
1255 /* If breakpoints are disabled globally or we can't take debug
1256 * exceptions here then breakpoint firings are ignored.
1258 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1259 || !arm_generate_debug_exceptions(env
)) {
1263 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
1264 if (bp_wp_matches(cpu
, n
, false)) {
1271 void HELPER(check_breakpoints
)(CPUARMState
*env
)
1273 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1275 if (check_breakpoints(cpu
)) {
1276 HELPER(exception_internal(env
, EXCP_DEBUG
));
1280 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
)
1282 /* Called by core code when a CPU watchpoint fires; need to check if this
1283 * is also an architectural watchpoint match.
1285 ARMCPU
*cpu
= ARM_CPU(cs
);
1287 return check_watchpoints(cpu
);
1290 vaddr
arm_adjust_watchpoint_address(CPUState
*cs
, vaddr addr
, int len
)
1292 ARMCPU
*cpu
= ARM_CPU(cs
);
1293 CPUARMState
*env
= &cpu
->env
;
1295 /* In BE32 system mode, target memory is stored byteswapped (on a
1296 * little-endian host system), and by the time we reach here (via an
1297 * opcode helper) the addresses of subword accesses have been adjusted
1298 * to account for that, which means that watchpoints will not match.
1299 * Undo the adjustment here.
1301 if (arm_sctlr_b(env
)) {
1304 } else if (len
== 2) {
1312 void arm_debug_excp_handler(CPUState
*cs
)
1314 /* Called by core code when a watchpoint or breakpoint fires;
1315 * need to check which one and raise the appropriate exception.
1317 ARMCPU
*cpu
= ARM_CPU(cs
);
1318 CPUARMState
*env
= &cpu
->env
;
1319 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
1322 if (wp_hit
->flags
& BP_CPU
) {
1323 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
1324 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
1326 cs
->watchpoint_hit
= NULL
;
1328 if (extended_addresses_enabled(env
)) {
1329 env
->exception
.fsr
= (1 << 9) | 0x22;
1331 env
->exception
.fsr
= 0x2;
1333 env
->exception
.vaddress
= wp_hit
->hitaddr
;
1334 raise_exception(env
, EXCP_DATA_ABORT
,
1335 syn_watchpoint(same_el
, 0, wnr
),
1336 arm_debug_target_el(env
));
1339 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1340 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
1342 /* (1) GDB breakpoints should be handled first.
1343 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1344 * since singlestep is also done by generating a debug internal
1347 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
1348 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
1352 if (extended_addresses_enabled(env
)) {
1353 env
->exception
.fsr
= (1 << 9) | 0x22;
1355 env
->exception
.fsr
= 0x2;
1357 /* FAR is UNKNOWN, so doesn't need setting */
1358 raise_exception(env
, EXCP_PREFETCH_ABORT
,
1359 syn_breakpoint(same_el
),
1360 arm_debug_target_el(env
));
1364 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1365 The only way to do that in TCG is a conditional branch, which clobbers
1366 all our temporaries. For now implement these as helper functions. */
1368 /* Similarly for variable shift instructions. */
1370 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1372 int shift
= i
& 0xff;
1379 } else if (shift
!= 0) {
1380 env
->CF
= (x
>> (32 - shift
)) & 1;
1386 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1388 int shift
= i
& 0xff;
1391 env
->CF
= (x
>> 31) & 1;
1395 } else if (shift
!= 0) {
1396 env
->CF
= (x
>> (shift
- 1)) & 1;
1402 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1404 int shift
= i
& 0xff;
1406 env
->CF
= (x
>> 31) & 1;
1407 return (int32_t)x
>> 31;
1408 } else if (shift
!= 0) {
1409 env
->CF
= (x
>> (shift
- 1)) & 1;
1410 return (int32_t)x
>> shift
;
1415 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1419 shift
= shift1
& 0x1f;
1422 env
->CF
= (x
>> 31) & 1;
1425 env
->CF
= (x
>> (shift
- 1)) & 1;
1426 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));