Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / target / arm / op_helper.c
blob3baf8004f64179f7ec21ea6b178f1e0e22dc6e29
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "cpregs.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 int exception_target_el(CPUARMState *env)
33 int target_el = MAX(1, arm_current_el(env));
36 * No such thing as secure EL1 if EL3 is aarch32,
37 * so update the target EL to EL3 in this case.
39 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
40 target_el = 3;
43 return target_el;
46 void raise_exception(CPUARMState *env, uint32_t excp,
47 uint32_t syndrome, uint32_t target_el)
49 CPUState *cs = env_cpu(env);
51 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
53 * Redirect NS EL1 exceptions to NS EL2. These are reported with
54 * their original syndrome register value, with the exception of
55 * SIMD/FP access traps, which are reported as uncategorized
56 * (see DDI0478C.a D1.10.4)
58 target_el = 2;
59 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
60 syndrome = syn_uncategorized();
64 assert(!excp_is_internal(excp));
65 cs->exception_index = excp;
66 env->exception.syndrome = syndrome;
67 env->exception.target_el = target_el;
68 cpu_loop_exit(cs);
71 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
72 uint32_t target_el, uintptr_t ra)
74 CPUState *cs = env_cpu(env);
77 * restore_state_to_opc() will set env->exception.syndrome, so
78 * we must restore CPU state here before setting the syndrome
79 * the caller passed us, and cannot use cpu_loop_exit_restore().
81 cpu_restore_state(cs, ra);
82 raise_exception(env, excp, syndrome, target_el);
85 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
86 uint64_t ireg, uint64_t def)
88 uint64_t tmp, val = 0;
89 uint32_t maxindex = ((desc & 3) + 1) * 8;
90 uint32_t base_reg = desc >> 2;
91 uint32_t shift, index, reg;
93 for (shift = 0; shift < 64; shift += 8) {
94 index = (ireg >> shift) & 0xff;
95 if (index < maxindex) {
96 reg = base_reg + (index >> 3);
97 tmp = *aa32_vfp_dreg(env, reg);
98 tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
99 } else {
100 tmp = def & (0xffull << shift);
102 val |= tmp;
104 return val;
107 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
110 * Perform the v8M stack limit check for SP updates from translated code,
111 * raising an exception if the limit is breached.
113 if (newvalue < v7m_sp_limit(env)) {
115 * Stack limit exceptions are a rare case, so rather than syncing
116 * PC/condbits before the call, we use raise_exception_ra() so
117 * that cpu_restore_state() will sort them out.
119 raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
123 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
125 uint32_t res = a + b;
126 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
127 env->QF = 1;
128 return res;
131 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
133 uint32_t res = a + b;
134 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
135 env->QF = 1;
136 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
138 return res;
141 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
143 uint32_t res = a - b;
144 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
145 env->QF = 1;
146 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
148 return res;
151 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
153 uint32_t res = a + b;
154 if (res < a) {
155 env->QF = 1;
156 res = ~0;
158 return res;
161 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
163 uint32_t res = a - b;
164 if (res > a) {
165 env->QF = 1;
166 res = 0;
168 return res;
171 /* Signed saturation. */
172 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
174 int32_t top;
175 uint32_t mask;
177 top = val >> shift;
178 mask = (1u << shift) - 1;
179 if (top > 0) {
180 env->QF = 1;
181 return mask;
182 } else if (top < -1) {
183 env->QF = 1;
184 return ~mask;
186 return val;
189 /* Unsigned saturation. */
190 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
192 uint32_t max;
194 max = (1u << shift) - 1;
195 if (val < 0) {
196 env->QF = 1;
197 return 0;
198 } else if (val > max) {
199 env->QF = 1;
200 return max;
202 return val;
205 /* Signed saturate. */
206 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
208 return do_ssat(env, x, shift);
211 /* Dual halfword signed saturate. */
212 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
214 uint32_t res;
216 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
217 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
218 return res;
221 /* Unsigned saturate. */
222 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
224 return do_usat(env, x, shift);
227 /* Dual halfword unsigned saturate. */
228 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
230 uint32_t res;
232 res = (uint16_t)do_usat(env, (int16_t)x, shift);
233 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
234 return res;
237 void HELPER(setend)(CPUARMState *env)
239 env->uncached_cpsr ^= CPSR_E;
240 arm_rebuild_hflags(env);
243 void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
246 * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
247 * check if HSTR.TJDBX means we need to trap to EL2.
249 if (env->cp15.hstr_el2 & HSTR_TJDBX) {
251 * We know the condition code check passed, so take the IMPDEF
252 * choice to always report CV=1 COND 0xe
254 uint32_t syn = syn_bxjtrap(1, 0xe, rm);
255 raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
259 #ifndef CONFIG_USER_ONLY
260 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
261 * The function returns the target EL (1-3) if the instruction is to be trapped;
262 * otherwise it returns 0 indicating it is not trapped.
264 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
266 int cur_el = arm_current_el(env);
267 uint64_t mask;
269 if (arm_feature(env, ARM_FEATURE_M)) {
270 /* M profile cores can never trap WFI/WFE. */
271 return 0;
274 /* If we are currently in EL0 then we need to check if SCTLR is set up for
275 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
277 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
278 int target_el;
280 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
281 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
282 /* Secure EL0 and Secure PL1 is at EL3 */
283 target_el = 3;
284 } else {
285 target_el = 1;
288 if (!(env->cp15.sctlr_el[target_el] & mask)) {
289 return target_el;
293 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
294 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
295 * bits will be zero indicating no trap.
297 if (cur_el < 2) {
298 mask = is_wfe ? HCR_TWE : HCR_TWI;
299 if (arm_hcr_el2_eff(env) & mask) {
300 return 2;
304 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
305 if (cur_el < 3) {
306 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
307 if (env->cp15.scr_el3 & mask) {
308 return 3;
312 return 0;
314 #endif
316 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
318 #ifdef CONFIG_USER_ONLY
320 * WFI in the user-mode emulator is technically permitted but not
321 * something any real-world code would do. AArch64 Linux kernels
322 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
323 * AArch32 kernels don't trap it so it will delay a bit.
324 * For QEMU, make it NOP here, because trying to raise EXCP_HLT
325 * would trigger an abort.
327 return;
328 #else
329 CPUState *cs = env_cpu(env);
330 int target_el = check_wfx_trap(env, false);
332 if (cpu_has_work(cs)) {
333 /* Don't bother to go into our "low power state" if
334 * we would just wake up immediately.
336 return;
339 if (target_el) {
340 if (env->aarch64) {
341 env->pc -= insn_len;
342 } else {
343 env->regs[15] -= insn_len;
346 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
347 target_el);
350 cs->exception_index = EXCP_HLT;
351 cs->halted = 1;
352 cpu_loop_exit(cs);
353 #endif
356 void HELPER(wfe)(CPUARMState *env)
358 /* This is a hint instruction that is semantically different
359 * from YIELD even though we currently implement it identically.
360 * Don't actually halt the CPU, just yield back to top
361 * level loop. This is not going into a "low power state"
362 * (ie halting until some event occurs), so we never take
363 * a configurable trap to a different exception level.
365 HELPER(yield)(env);
368 void HELPER(yield)(CPUARMState *env)
370 CPUState *cs = env_cpu(env);
372 /* This is a non-trappable hint instruction that generally indicates
373 * that the guest is currently busy-looping. Yield control back to the
374 * top level loop so that a more deserving VCPU has a chance to run.
376 cs->exception_index = EXCP_YIELD;
377 cpu_loop_exit(cs);
380 /* Raise an internal-to-QEMU exception. This is limited to only
381 * those EXCP values which are special cases for QEMU to interrupt
382 * execution and not to be used for exceptions which are passed to
383 * the guest (those must all have syndrome information and thus should
384 * use exception_with_syndrome*).
386 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
388 CPUState *cs = env_cpu(env);
390 assert(excp_is_internal(excp));
391 cs->exception_index = excp;
392 cpu_loop_exit(cs);
395 /* Raise an exception with the specified syndrome register value */
396 void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp,
397 uint32_t syndrome, uint32_t target_el)
399 raise_exception(env, excp, syndrome, target_el);
403 * Raise an exception with the specified syndrome register value
404 * to the default target el.
406 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
407 uint32_t syndrome)
409 raise_exception(env, excp, syndrome, exception_target_el(env));
412 uint32_t HELPER(cpsr_read)(CPUARMState *env)
414 return cpsr_read(env) & ~CPSR_EXEC;
417 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
419 cpsr_write(env, val, mask, CPSRWriteByInstr);
420 /* TODO: Not all cpsr bits are relevant to hflags. */
421 arm_rebuild_hflags(env);
424 /* Write the CPSR for a 32-bit exception return */
425 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
427 uint32_t mask;
429 qemu_mutex_lock_iothread();
430 arm_call_pre_el_change_hook(env_archcpu(env));
431 qemu_mutex_unlock_iothread();
433 mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
434 cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
436 /* Generated code has already stored the new PC value, but
437 * without masking out its low bits, because which bits need
438 * masking depends on whether we're returning to Thumb or ARM
439 * state. Do the masking now.
441 env->regs[15] &= (env->thumb ? ~1 : ~3);
442 arm_rebuild_hflags(env);
444 qemu_mutex_lock_iothread();
445 arm_call_el_change_hook(env_archcpu(env));
446 qemu_mutex_unlock_iothread();
449 /* Access to user mode registers from privileged modes. */
450 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
452 uint32_t val;
454 if (regno == 13) {
455 val = env->banked_r13[BANK_USRSYS];
456 } else if (regno == 14) {
457 val = env->banked_r14[BANK_USRSYS];
458 } else if (regno >= 8
459 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
460 val = env->usr_regs[regno - 8];
461 } else {
462 val = env->regs[regno];
464 return val;
467 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
469 if (regno == 13) {
470 env->banked_r13[BANK_USRSYS] = val;
471 } else if (regno == 14) {
472 env->banked_r14[BANK_USRSYS] = val;
473 } else if (regno >= 8
474 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
475 env->usr_regs[regno - 8] = val;
476 } else {
477 env->regs[regno] = val;
481 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
483 if ((env->uncached_cpsr & CPSR_M) == mode) {
484 env->regs[13] = val;
485 } else {
486 env->banked_r13[bank_number(mode)] = val;
490 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
492 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
493 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
494 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
496 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
497 exception_target_el(env));
500 if ((env->uncached_cpsr & CPSR_M) == mode) {
501 return env->regs[13];
502 } else {
503 return env->banked_r13[bank_number(mode)];
507 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
508 uint32_t regno)
510 /* Raise an exception if the requested access is one of the UNPREDICTABLE
511 * cases; otherwise return. This broadly corresponds to the pseudocode
512 * BankedRegisterAccessValid() and SPSRAccessValid(),
513 * except that we have already handled some cases at translate time.
515 int curmode = env->uncached_cpsr & CPSR_M;
517 if (regno == 17) {
518 /* ELR_Hyp: a special case because access from tgtmode is OK */
519 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
520 goto undef;
522 return;
525 if (curmode == tgtmode) {
526 goto undef;
529 if (tgtmode == ARM_CPU_MODE_USR) {
530 switch (regno) {
531 case 8 ... 12:
532 if (curmode != ARM_CPU_MODE_FIQ) {
533 goto undef;
535 break;
536 case 13:
537 if (curmode == ARM_CPU_MODE_SYS) {
538 goto undef;
540 break;
541 case 14:
542 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
543 goto undef;
545 break;
546 default:
547 break;
551 if (tgtmode == ARM_CPU_MODE_HYP) {
552 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
553 if (curmode != ARM_CPU_MODE_MON) {
554 goto undef;
558 return;
560 undef:
561 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
562 exception_target_el(env));
565 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
566 uint32_t regno)
568 msr_mrs_banked_exc_checks(env, tgtmode, regno);
570 switch (regno) {
571 case 16: /* SPSRs */
572 env->banked_spsr[bank_number(tgtmode)] = value;
573 break;
574 case 17: /* ELR_Hyp */
575 env->elr_el[2] = value;
576 break;
577 case 13:
578 env->banked_r13[bank_number(tgtmode)] = value;
579 break;
580 case 14:
581 env->banked_r14[r14_bank_number(tgtmode)] = value;
582 break;
583 case 8 ... 12:
584 switch (tgtmode) {
585 case ARM_CPU_MODE_USR:
586 env->usr_regs[regno - 8] = value;
587 break;
588 case ARM_CPU_MODE_FIQ:
589 env->fiq_regs[regno - 8] = value;
590 break;
591 default:
592 g_assert_not_reached();
594 break;
595 default:
596 g_assert_not_reached();
600 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
602 msr_mrs_banked_exc_checks(env, tgtmode, regno);
604 switch (regno) {
605 case 16: /* SPSRs */
606 return env->banked_spsr[bank_number(tgtmode)];
607 case 17: /* ELR_Hyp */
608 return env->elr_el[2];
609 case 13:
610 return env->banked_r13[bank_number(tgtmode)];
611 case 14:
612 return env->banked_r14[r14_bank_number(tgtmode)];
613 case 8 ... 12:
614 switch (tgtmode) {
615 case ARM_CPU_MODE_USR:
616 return env->usr_regs[regno - 8];
617 case ARM_CPU_MODE_FIQ:
618 return env->fiq_regs[regno - 8];
619 default:
620 g_assert_not_reached();
622 default:
623 g_assert_not_reached();
627 const void *HELPER(access_check_cp_reg)(CPUARMState *env, uint32_t key,
628 uint32_t syndrome, uint32_t isread)
630 ARMCPU *cpu = env_archcpu(env);
631 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
632 CPAccessResult res = CP_ACCESS_OK;
633 int target_el;
635 assert(ri != NULL);
637 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
638 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
639 res = CP_ACCESS_TRAP;
640 goto fail;
643 if (ri->accessfn) {
644 res = ri->accessfn(env, ri, isread);
648 * If the access function indicates a trap from EL0 to EL1 then
649 * that always takes priority over the HSTR_EL2 trap. (If it indicates
650 * a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates
651 * a trap to EL2, then the syndrome is the same either way so we don't
652 * care whether technically the architecture says that HSTR_EL2 trap or
653 * the other trap takes priority. So we take the "check HSTR_EL2" path
654 * for all of those cases.)
656 if (res != CP_ACCESS_OK && ((res & CP_ACCESS_EL_MASK) == 0) &&
657 arm_current_el(env) == 0) {
658 goto fail;
662 * HSTR_EL2 traps from EL1 are checked earlier, in generated code;
663 * we only need to check here for traps from EL0.
665 if (!is_a64(env) && arm_current_el(env) == 0 && ri->cp == 15 &&
666 arm_is_el2_enabled(env) &&
667 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
668 uint32_t mask = 1 << ri->crn;
670 if (ri->type & ARM_CP_64BIT) {
671 mask = 1 << ri->crm;
674 /* T4 and T14 are RES0 */
675 mask &= ~((1 << 4) | (1 << 14));
677 if (env->cp15.hstr_el2 & mask) {
678 res = CP_ACCESS_TRAP_EL2;
679 goto fail;
684 * Fine-grained traps also are lower priority than undef-to-EL1,
685 * higher priority than trap-to-EL3, and we don't care about priority
686 * order with other EL2 traps because the syndrome value is the same.
688 if (arm_fgt_active(env, arm_current_el(env))) {
689 uint64_t trapword = 0;
690 unsigned int idx = FIELD_EX32(ri->fgt, FGT, IDX);
691 unsigned int bitpos = FIELD_EX32(ri->fgt, FGT, BITPOS);
692 bool rev = FIELD_EX32(ri->fgt, FGT, REV);
693 bool trapbit;
695 if (ri->fgt & FGT_EXEC) {
696 assert(idx < ARRAY_SIZE(env->cp15.fgt_exec));
697 trapword = env->cp15.fgt_exec[idx];
698 } else if (isread && (ri->fgt & FGT_R)) {
699 assert(idx < ARRAY_SIZE(env->cp15.fgt_read));
700 trapword = env->cp15.fgt_read[idx];
701 } else if (!isread && (ri->fgt & FGT_W)) {
702 assert(idx < ARRAY_SIZE(env->cp15.fgt_write));
703 trapword = env->cp15.fgt_write[idx];
706 trapbit = extract64(trapword, bitpos, 1);
707 if (trapbit != rev) {
708 res = CP_ACCESS_TRAP_EL2;
709 goto fail;
713 if (likely(res == CP_ACCESS_OK)) {
714 return ri;
717 fail:
718 switch (res & ~CP_ACCESS_EL_MASK) {
719 case CP_ACCESS_TRAP:
720 break;
721 case CP_ACCESS_TRAP_UNCATEGORIZED:
722 /* Only CP_ACCESS_TRAP traps are direct to a specified EL */
723 assert((res & CP_ACCESS_EL_MASK) == 0);
724 if (cpu_isar_feature(aa64_ids, cpu) && isread &&
725 arm_cpreg_in_idspace(ri)) {
727 * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
728 * not EC_UNCATEGORIZED
730 break;
732 syndrome = syn_uncategorized();
733 break;
734 default:
735 g_assert_not_reached();
738 target_el = res & CP_ACCESS_EL_MASK;
739 switch (target_el) {
740 case 0:
741 target_el = exception_target_el(env);
742 break;
743 case 2:
744 assert(arm_current_el(env) != 3);
745 assert(arm_is_el2_enabled(env));
746 break;
747 case 3:
748 assert(arm_feature(env, ARM_FEATURE_EL3));
749 break;
750 default:
751 /* No "direct" traps to EL1 */
752 g_assert_not_reached();
755 raise_exception(env, EXCP_UDEF, syndrome, target_el);
758 const void *HELPER(lookup_cp_reg)(CPUARMState *env, uint32_t key)
760 ARMCPU *cpu = env_archcpu(env);
761 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
763 assert(ri != NULL);
764 return ri;
767 void HELPER(set_cp_reg)(CPUARMState *env, const void *rip, uint32_t value)
769 const ARMCPRegInfo *ri = rip;
771 if (ri->type & ARM_CP_IO) {
772 qemu_mutex_lock_iothread();
773 ri->writefn(env, ri, value);
774 qemu_mutex_unlock_iothread();
775 } else {
776 ri->writefn(env, ri, value);
780 uint32_t HELPER(get_cp_reg)(CPUARMState *env, const void *rip)
782 const ARMCPRegInfo *ri = rip;
783 uint32_t res;
785 if (ri->type & ARM_CP_IO) {
786 qemu_mutex_lock_iothread();
787 res = ri->readfn(env, ri);
788 qemu_mutex_unlock_iothread();
789 } else {
790 res = ri->readfn(env, ri);
793 return res;
796 void HELPER(set_cp_reg64)(CPUARMState *env, const void *rip, uint64_t value)
798 const ARMCPRegInfo *ri = rip;
800 if (ri->type & ARM_CP_IO) {
801 qemu_mutex_lock_iothread();
802 ri->writefn(env, ri, value);
803 qemu_mutex_unlock_iothread();
804 } else {
805 ri->writefn(env, ri, value);
809 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, const void *rip)
811 const ARMCPRegInfo *ri = rip;
812 uint64_t res;
814 if (ri->type & ARM_CP_IO) {
815 qemu_mutex_lock_iothread();
816 res = ri->readfn(env, ri);
817 qemu_mutex_unlock_iothread();
818 } else {
819 res = ri->readfn(env, ri);
822 return res;
825 void HELPER(pre_hvc)(CPUARMState *env)
827 ARMCPU *cpu = env_archcpu(env);
828 int cur_el = arm_current_el(env);
829 /* FIXME: Use actual secure state. */
830 bool secure = false;
831 bool undef;
833 if (arm_is_psci_call(cpu, EXCP_HVC)) {
834 /* If PSCI is enabled and this looks like a valid PSCI call then
835 * that overrides the architecturally mandated HVC behaviour.
837 return;
840 if (!arm_feature(env, ARM_FEATURE_EL2)) {
841 /* If EL2 doesn't exist, HVC always UNDEFs */
842 undef = true;
843 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
844 /* EL3.HCE has priority over EL2.HCD. */
845 undef = !(env->cp15.scr_el3 & SCR_HCE);
846 } else {
847 undef = env->cp15.hcr_el2 & HCR_HCD;
850 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
851 * For ARMv8/AArch64, HVC is allowed in EL3.
852 * Note that we've already trapped HVC from EL0 at translation
853 * time.
855 if (secure && (!is_a64(env) || cur_el == 1)) {
856 undef = true;
859 if (undef) {
860 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
861 exception_target_el(env));
865 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
867 ARMCPU *cpu = env_archcpu(env);
868 int cur_el = arm_current_el(env);
869 bool secure = arm_is_secure(env);
870 bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
873 * SMC behaviour is summarized in the following table.
874 * This helper handles the "Trap to EL2" and "Undef insn" cases.
875 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
876 * helper.
878 * -> ARM_FEATURE_EL3 and !SMD
879 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
881 * Conduit SMC, valid call Trap to EL2 PSCI Call
882 * Conduit SMC, inval call Trap to EL2 Trap to EL3
883 * Conduit not SMC Trap to EL2 Trap to EL3
886 * -> ARM_FEATURE_EL3 and SMD
887 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
889 * Conduit SMC, valid call Trap to EL2 PSCI Call
890 * Conduit SMC, inval call Trap to EL2 Undef insn
891 * Conduit not SMC Trap to EL2 Undef insn
894 * -> !ARM_FEATURE_EL3
895 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
897 * Conduit SMC, valid call Trap to EL2 PSCI Call
898 * Conduit SMC, inval call Trap to EL2 Undef insn
899 * Conduit not SMC Undef insn Undef insn
902 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
903 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
904 * extensions, SMD only applies to NS state.
905 * On ARMv7 without the Virtualization extensions, the SMD bit
906 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
907 * so we need not special case this here.
909 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
910 : smd_flag && !secure;
912 if (!arm_feature(env, ARM_FEATURE_EL3) &&
913 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
914 /* If we have no EL3 then SMC always UNDEFs and can't be
915 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
916 * firmware within QEMU, and we want an EL2 guest to be able
917 * to forbid its EL1 from making PSCI calls into QEMU's
918 * "firmware" via HCR.TSC, so for these purposes treat
919 * PSCI-via-SMC as implying an EL3.
920 * This handles the very last line of the previous table.
922 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
923 exception_target_el(env));
926 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
927 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
928 * We also want an EL2 guest to be able to forbid its EL1 from
929 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
930 * This handles all the "Trap to EL2" cases of the previous table.
932 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
935 /* Catch the two remaining "Undef insn" cases of the previous table:
936 * - PSCI conduit is SMC but we don't have a valid PCSI call,
937 * - We don't have EL3 or SMD is set.
939 if (!arm_is_psci_call(cpu, EXCP_SMC) &&
940 (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
941 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
942 exception_target_el(env));
946 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
947 The only way to do that in TCG is a conditional branch, which clobbers
948 all our temporaries. For now implement these as helper functions. */
950 /* Similarly for variable shift instructions. */
952 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
954 int shift = i & 0xff;
955 if (shift >= 32) {
956 if (shift == 32)
957 env->CF = x & 1;
958 else
959 env->CF = 0;
960 return 0;
961 } else if (shift != 0) {
962 env->CF = (x >> (32 - shift)) & 1;
963 return x << shift;
965 return x;
968 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
970 int shift = i & 0xff;
971 if (shift >= 32) {
972 if (shift == 32)
973 env->CF = (x >> 31) & 1;
974 else
975 env->CF = 0;
976 return 0;
977 } else if (shift != 0) {
978 env->CF = (x >> (shift - 1)) & 1;
979 return x >> shift;
981 return x;
984 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
986 int shift = i & 0xff;
987 if (shift >= 32) {
988 env->CF = (x >> 31) & 1;
989 return (int32_t)x >> 31;
990 } else if (shift != 0) {
991 env->CF = (x >> (shift - 1)) & 1;
992 return (int32_t)x >> shift;
994 return x;
997 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
999 int shift1, shift;
1000 shift1 = i & 0xff;
1001 shift = shift1 & 0x1f;
1002 if (shift == 0) {
1003 if (shift1 != 0)
1004 env->CF = (x >> 31) & 1;
1005 return x;
1006 } else {
1007 env->CF = (x >> (shift - 1)) & 1;
1008 return ((uint32_t)x >> shift) | (x << (32 - shift));
1012 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
1013 uint32_t access_type, uint32_t mmu_idx,
1014 uint32_t size)
1016 uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
1017 uintptr_t ra = GETPC();
1019 if (likely(size <= in_page)) {
1020 probe_access(env, ptr, size, access_type, mmu_idx, ra);
1021 } else {
1022 probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
1023 probe_access(env, ptr + in_page, size - in_page,
1024 access_type, mmu_idx, ra);
1029 * This function corresponds to AArch64.vESBOperation().
1030 * Note that the AArch32 version is not functionally different.
1032 void HELPER(vesb)(CPUARMState *env)
1035 * The EL2Enabled() check is done inside arm_hcr_el2_eff,
1036 * and will return HCR_EL2.VSE == 0, so nothing happens.
1038 uint64_t hcr = arm_hcr_el2_eff(env);
1039 bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO);
1040 bool pending = enabled && (hcr & HCR_VSE);
1041 bool masked = (env->daif & PSTATE_A);
1043 /* If VSE pending and masked, defer the exception. */
1044 if (pending && masked) {
1045 uint32_t syndrome;
1047 if (arm_el_is_aa64(env, 1)) {
1048 /* Copy across IDS and ISS from VSESR. */
1049 syndrome = env->cp15.vsesr_el2 & 0x1ffffff;
1050 } else {
1051 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal };
1053 if (extended_addresses_enabled(env)) {
1054 syndrome = arm_fi_to_lfsc(&fi);
1055 } else {
1056 syndrome = arm_fi_to_sfsc(&fi);
1058 /* Copy across AET and ExT from VSESR. */
1059 syndrome |= env->cp15.vsesr_el2 & 0xd000;
1062 /* Set VDISR_EL2.A along with the syndrome. */
1063 env->cp15.vdisr_el2 = syndrome | (1u << 31);
1065 /* Clear pending virtual SError */
1066 env->cp15.hcr_el2 &= ~HCR_VSE;
1067 cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR);