Update version for v2.6.0-rc4 release
[qemu.git] / linux-user / qemu.h
blob26b0ba2736f53b27b803f93b37e47398442087b1
1 #ifndef QEMU_H
2 #define QEMU_H
5 #include "cpu.h"
6 #include "exec/cpu_ldst.h"
8 #undef DEBUG_REMAP
9 #ifdef DEBUG_REMAP
10 #endif /* DEBUG_REMAP */
12 #include "exec/user/abitypes.h"
14 #include "exec/user/thunk.h"
15 #include "syscall_defs.h"
16 #include "target_syscall.h"
17 #include "exec/gdbstub.h"
18 #include "qemu/queue.h"
20 #define THREAD __thread
22 /* This struct is used to hold certain information about the image.
23 * Basically, it replicates in user space what would be certain
24 * task_struct fields in the kernel
26 struct image_info {
27 abi_ulong load_bias;
28 abi_ulong load_addr;
29 abi_ulong start_code;
30 abi_ulong end_code;
31 abi_ulong start_data;
32 abi_ulong end_data;
33 abi_ulong start_brk;
34 abi_ulong brk;
35 abi_ulong start_mmap;
36 abi_ulong start_stack;
37 abi_ulong stack_limit;
38 abi_ulong entry;
39 abi_ulong code_offset;
40 abi_ulong data_offset;
41 abi_ulong saved_auxv;
42 abi_ulong auxv_len;
43 abi_ulong arg_start;
44 abi_ulong arg_end;
45 uint32_t elf_flags;
46 int personality;
47 #ifdef CONFIG_USE_FDPIC
48 abi_ulong loadmap_addr;
49 uint16_t nsegs;
50 void *loadsegs;
51 abi_ulong pt_dynamic_addr;
52 struct image_info *other_info;
53 #endif
56 #ifdef TARGET_I386
57 /* Information about the current linux thread */
58 struct vm86_saved_state {
59 uint32_t eax; /* return code */
60 uint32_t ebx;
61 uint32_t ecx;
62 uint32_t edx;
63 uint32_t esi;
64 uint32_t edi;
65 uint32_t ebp;
66 uint32_t esp;
67 uint32_t eflags;
68 uint32_t eip;
69 uint16_t cs, ss, ds, es, fs, gs;
71 #endif
73 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
74 /* FPU emulator */
75 #include "nwfpe/fpa11.h"
76 #endif
78 #define MAX_SIGQUEUE_SIZE 1024
80 struct sigqueue {
81 struct sigqueue *next;
82 target_siginfo_t info;
85 struct emulated_sigtable {
86 int pending; /* true if signal is pending */
87 struct sigqueue *first;
88 struct sigqueue info; /* in order to always have memory for the
89 first signal, we put it here */
92 /* NOTE: we force a big alignment so that the stack stored after is
93 aligned too */
94 typedef struct TaskState {
95 pid_t ts_tid; /* tid (or pid) of this task */
96 #ifdef TARGET_ARM
97 # ifdef TARGET_ABI32
98 /* FPA state */
99 FPA11 fpa;
100 # endif
101 int swi_errno;
102 #endif
103 #ifdef TARGET_UNICORE32
104 int swi_errno;
105 #endif
106 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
107 abi_ulong target_v86;
108 struct vm86_saved_state vm86_saved_regs;
109 struct target_vm86plus_struct vm86plus;
110 uint32_t v86flags;
111 uint32_t v86mask;
112 #endif
113 abi_ulong child_tidptr;
114 #ifdef TARGET_M68K
115 int sim_syscalls;
116 abi_ulong tp_value;
117 #endif
118 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
119 /* Extra fields for semihosted binaries. */
120 uint32_t heap_base;
121 uint32_t heap_limit;
122 #endif
123 uint32_t stack_base;
124 int used; /* non zero if used */
125 bool sigsegv_blocked; /* SIGSEGV blocked by guest */
126 struct image_info *info;
127 struct linux_binprm *bprm;
129 struct emulated_sigtable sigtab[TARGET_NSIG];
130 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
131 struct sigqueue *first_free; /* first free siginfo queue entry */
132 int signal_pending; /* non zero if a signal may be pending */
133 } __attribute__((aligned(16))) TaskState;
135 extern char *exec_path;
136 void init_task_state(TaskState *ts);
137 void task_settid(TaskState *);
138 void stop_all_tasks(void);
139 extern const char *qemu_uname_release;
140 extern unsigned long mmap_min_addr;
142 /* ??? See if we can avoid exposing so much of the loader internals. */
144 /* Read a good amount of data initially, to hopefully get all the
145 program headers loaded. */
146 #define BPRM_BUF_SIZE 1024
149 * This structure is used to hold the arguments that are
150 * used when loading binaries.
152 struct linux_binprm {
153 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
154 abi_ulong p;
155 int fd;
156 int e_uid, e_gid;
157 int argc, envc;
158 char **argv;
159 char **envp;
160 char * filename; /* Name of binary */
161 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
164 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
165 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
166 abi_ulong stringp, int push_ptr);
167 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
168 struct target_pt_regs * regs, struct image_info *infop,
169 struct linux_binprm *);
171 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
172 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
174 abi_long memcpy_to_target(abi_ulong dest, const void *src,
175 unsigned long len);
176 void target_set_brk(abi_ulong new_brk);
177 abi_long do_brk(abi_ulong new_brk);
178 void syscall_init(void);
179 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
180 abi_long arg2, abi_long arg3, abi_long arg4,
181 abi_long arg5, abi_long arg6, abi_long arg7,
182 abi_long arg8);
183 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
184 extern THREAD CPUState *thread_cpu;
185 void cpu_loop(CPUArchState *env);
186 char *target_strerror(int err);
187 int get_osversion(void);
188 void init_qemu_uname_release(void);
189 void fork_start(void);
190 void fork_end(int child);
192 /* Creates the initial guest address space in the host memory space using
193 * the given host start address hint and size. The guest_start parameter
194 * specifies the start address of the guest space. guest_base will be the
195 * difference between the host start address computed by this function and
196 * guest_start. If fixed is specified, then the mapped address space must
197 * start at host_start. The real start address of the mapped memory space is
198 * returned or -1 if there was an error.
200 unsigned long init_guest_space(unsigned long host_start,
201 unsigned long host_size,
202 unsigned long guest_start,
203 bool fixed);
205 #include "qemu/log.h"
207 /* syscall.c */
208 int host_to_target_waitstatus(int status);
210 /* strace.c */
211 void print_syscall(int num,
212 abi_long arg1, abi_long arg2, abi_long arg3,
213 abi_long arg4, abi_long arg5, abi_long arg6);
214 void print_syscall_ret(int num, abi_long arg1);
215 extern int do_strace;
217 /* signal.c */
218 void process_pending_signals(CPUArchState *cpu_env);
219 void signal_init(void);
220 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
221 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
222 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
223 int target_to_host_signal(int sig);
224 int host_to_target_signal(int sig);
225 long do_sigreturn(CPUArchState *env);
226 long do_rt_sigreturn(CPUArchState *env);
227 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
228 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
230 #ifdef TARGET_I386
231 /* vm86.c */
232 void save_v86_state(CPUX86State *env);
233 void handle_vm86_trap(CPUX86State *env, int trapno);
234 void handle_vm86_fault(CPUX86State *env);
235 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
236 #elif defined(TARGET_SPARC64)
237 void sparc64_set_context(CPUSPARCState *env);
238 void sparc64_get_context(CPUSPARCState *env);
239 #endif
241 /* mmap.c */
242 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
243 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
244 int flags, int fd, abi_ulong offset);
245 int target_munmap(abi_ulong start, abi_ulong len);
246 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
247 abi_ulong new_size, unsigned long flags,
248 abi_ulong new_addr);
249 int target_msync(abi_ulong start, abi_ulong len, int flags);
250 extern unsigned long last_brk;
251 extern abi_ulong mmap_next_start;
252 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
253 void cpu_list_lock(void);
254 void cpu_list_unlock(void);
255 void mmap_fork_start(void);
256 void mmap_fork_end(int child);
258 /* main.c */
259 extern unsigned long guest_stack_size;
261 /* user access */
263 #define VERIFY_READ 0
264 #define VERIFY_WRITE 1 /* implies read access */
266 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
268 return page_check_range((target_ulong)addr, size,
269 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
272 /* NOTE __get_user and __put_user use host pointers and don't check access.
273 These are usually used to access struct data members once the struct has
274 been locked - usually with lock_user_struct. */
276 /* Tricky points:
277 - Use __builtin_choose_expr to avoid type promotion from ?:,
278 - Invalid sizes result in a compile time error stemming from
279 the fact that abort has no parameters.
280 - It's easier to use the endian-specific unaligned load/store
281 functions than host-endian unaligned load/store plus tswapN. */
283 #define __put_user_e(x, hptr, e) \
284 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
285 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
286 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
287 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
288 ((hptr), (x)), (void)0)
290 #define __get_user_e(x, hptr, e) \
291 ((x) = (typeof(*hptr))( \
292 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
293 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
294 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
295 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
296 (hptr)), (void)0)
298 #ifdef TARGET_WORDS_BIGENDIAN
299 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
300 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
301 #else
302 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
303 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
304 #endif
306 /* put_user()/get_user() take a guest address and check access */
307 /* These are usually used to access an atomic data type, such as an int,
308 * that has been passed by address. These internally perform locking
309 * and unlocking on the data type.
311 #define put_user(x, gaddr, target_type) \
312 ({ \
313 abi_ulong __gaddr = (gaddr); \
314 target_type *__hptr; \
315 abi_long __ret = 0; \
316 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
317 __put_user((x), __hptr); \
318 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
319 } else \
320 __ret = -TARGET_EFAULT; \
321 __ret; \
324 #define get_user(x, gaddr, target_type) \
325 ({ \
326 abi_ulong __gaddr = (gaddr); \
327 target_type *__hptr; \
328 abi_long __ret = 0; \
329 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
330 __get_user((x), __hptr); \
331 unlock_user(__hptr, __gaddr, 0); \
332 } else { \
333 /* avoid warning */ \
334 (x) = 0; \
335 __ret = -TARGET_EFAULT; \
337 __ret; \
340 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
341 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
342 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
343 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
344 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
345 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
346 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
347 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
348 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
349 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
351 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
352 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
353 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
354 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
355 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
356 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
357 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
358 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
359 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
360 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
362 /* copy_from_user() and copy_to_user() are usually used to copy data
363 * buffers between the target and host. These internally perform
364 * locking/unlocking of the memory.
366 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
367 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
369 /* Functions for accessing guest memory. The tget and tput functions
370 read/write single values, byteswapping as necessary. The lock_user function
371 gets a pointer to a contiguous area of guest memory, but does not perform
372 any byteswapping. lock_user may return either a pointer to the guest
373 memory, or a temporary buffer. */
375 /* Lock an area of guest memory into the host. If copy is true then the
376 host area will have the same contents as the guest. */
377 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
379 if (!access_ok(type, guest_addr, len))
380 return NULL;
381 #ifdef DEBUG_REMAP
383 void *addr;
384 addr = malloc(len);
385 if (copy)
386 memcpy(addr, g2h(guest_addr), len);
387 else
388 memset(addr, 0, len);
389 return addr;
391 #else
392 return g2h(guest_addr);
393 #endif
396 /* Unlock an area of guest memory. The first LEN bytes must be
397 flushed back to guest memory. host_ptr = NULL is explicitly
398 allowed and does nothing. */
399 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
400 long len)
403 #ifdef DEBUG_REMAP
404 if (!host_ptr)
405 return;
406 if (host_ptr == g2h(guest_addr))
407 return;
408 if (len > 0)
409 memcpy(g2h(guest_addr), host_ptr, len);
410 free(host_ptr);
411 #endif
414 /* Return the length of a string in target memory or -TARGET_EFAULT if
415 access error. */
416 abi_long target_strlen(abi_ulong gaddr);
418 /* Like lock_user but for null terminated strings. */
419 static inline void *lock_user_string(abi_ulong guest_addr)
421 abi_long len;
422 len = target_strlen(guest_addr);
423 if (len < 0)
424 return NULL;
425 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
428 /* Helper macros for locking/unlocking a target struct. */
429 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
430 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
431 #define unlock_user_struct(host_ptr, guest_addr, copy) \
432 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
434 #include <pthread.h>
436 /* Include target-specific struct and function definitions;
437 * they may need access to the target-independent structures
438 * above, so include them last.
440 #include "target_cpu.h"
441 #include "target_signal.h"
442 #include "target_structs.h"
444 #endif /* QEMU_H */