pc-dimm: assign and verify the "slot" property during pre_plug
[qemu.git] / accel / kvm / kvm-all.c
blob38f468d8e2b109bc46b21a9e483024bdfc569ade
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "sysemu/sev.h"
42 #include "sysemu/balloon.h"
44 #include "hw/boards.h"
46 /* This check must be after config-host.h is included */
47 #ifdef CONFIG_EVENTFD
48 #include <sys/eventfd.h>
49 #endif
51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
52 * need to use the real host PAGE_SIZE, as that's what KVM will use.
54 #define PAGE_SIZE getpagesize()
56 //#define DEBUG_KVM
58 #ifdef DEBUG_KVM
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...) \
63 do { } while (0)
64 #endif
66 #define KVM_MSI_HASHTAB_SIZE 256
68 struct KVMParkedVcpu {
69 unsigned long vcpu_id;
70 int kvm_fd;
71 QLIST_ENTRY(KVMParkedVcpu) node;
74 struct KVMState
76 AccelState parent_obj;
78 int nr_slots;
79 int fd;
80 int vmfd;
81 int coalesced_mmio;
82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
83 bool coalesced_flush_in_progress;
84 int vcpu_events;
85 int robust_singlestep;
86 int debugregs;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
89 #endif
90 int many_ioeventfds;
91 int intx_set_mask;
92 bool sync_mmu;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 unsigned int sigmask_len;
98 GHashTable *gsimap;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing *irq_routes;
101 int nr_allocated_irq_routes;
102 unsigned long *used_gsi_bitmap;
103 unsigned int gsi_count;
104 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
105 #endif
106 KVMMemoryListener memory_listener;
107 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
109 /* memory encryption */
110 void *memcrypt_handle;
111 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
114 KVMState *kvm_state;
115 bool kvm_kernel_irqchip;
116 bool kvm_split_irqchip;
117 bool kvm_async_interrupts_allowed;
118 bool kvm_halt_in_kernel_allowed;
119 bool kvm_eventfds_allowed;
120 bool kvm_irqfds_allowed;
121 bool kvm_resamplefds_allowed;
122 bool kvm_msi_via_irqfd_allowed;
123 bool kvm_gsi_routing_allowed;
124 bool kvm_gsi_direct_mapping;
125 bool kvm_allowed;
126 bool kvm_readonly_mem_allowed;
127 bool kvm_vm_attributes_allowed;
128 bool kvm_direct_msi_allowed;
129 bool kvm_ioeventfd_any_length_allowed;
130 bool kvm_msi_use_devid;
131 static bool kvm_immediate_exit;
133 static const KVMCapabilityInfo kvm_required_capabilites[] = {
134 KVM_CAP_INFO(USER_MEMORY),
135 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
136 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
137 KVM_CAP_LAST_INFO
140 int kvm_get_max_memslots(void)
142 KVMState *s = KVM_STATE(current_machine->accelerator);
144 return s->nr_slots;
147 bool kvm_memcrypt_enabled(void)
149 if (kvm_state && kvm_state->memcrypt_handle) {
150 return true;
153 return false;
156 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
158 if (kvm_state->memcrypt_handle &&
159 kvm_state->memcrypt_encrypt_data) {
160 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
161 ptr, len);
164 return 1;
167 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
169 KVMState *s = kvm_state;
170 int i;
172 for (i = 0; i < s->nr_slots; i++) {
173 if (kml->slots[i].memory_size == 0) {
174 return &kml->slots[i];
178 return NULL;
181 bool kvm_has_free_slot(MachineState *ms)
183 KVMState *s = KVM_STATE(ms->accelerator);
185 return kvm_get_free_slot(&s->memory_listener);
188 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
190 KVMSlot *slot = kvm_get_free_slot(kml);
192 if (slot) {
193 return slot;
196 fprintf(stderr, "%s: no free slot available\n", __func__);
197 abort();
200 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
201 hwaddr start_addr,
202 hwaddr size)
204 KVMState *s = kvm_state;
205 int i;
207 for (i = 0; i < s->nr_slots; i++) {
208 KVMSlot *mem = &kml->slots[i];
210 if (start_addr == mem->start_addr && size == mem->memory_size) {
211 return mem;
215 return NULL;
219 * Calculate and align the start address and the size of the section.
220 * Return the size. If the size is 0, the aligned section is empty.
222 static hwaddr kvm_align_section(MemoryRegionSection *section,
223 hwaddr *start)
225 hwaddr size = int128_get64(section->size);
226 hwaddr delta, aligned;
228 /* kvm works in page size chunks, but the function may be called
229 with sub-page size and unaligned start address. Pad the start
230 address to next and truncate size to previous page boundary. */
231 aligned = ROUND_UP(section->offset_within_address_space,
232 qemu_real_host_page_size);
233 delta = aligned - section->offset_within_address_space;
234 *start = aligned;
235 if (delta > size) {
236 return 0;
239 return (size - delta) & qemu_real_host_page_mask;
242 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
243 hwaddr *phys_addr)
245 KVMMemoryListener *kml = &s->memory_listener;
246 int i;
248 for (i = 0; i < s->nr_slots; i++) {
249 KVMSlot *mem = &kml->slots[i];
251 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
252 *phys_addr = mem->start_addr + (ram - mem->ram);
253 return 1;
257 return 0;
260 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
262 KVMState *s = kvm_state;
263 struct kvm_userspace_memory_region mem;
264 int ret;
266 mem.slot = slot->slot | (kml->as_id << 16);
267 mem.guest_phys_addr = slot->start_addr;
268 mem.userspace_addr = (unsigned long)slot->ram;
269 mem.flags = slot->flags;
271 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
272 /* Set the slot size to 0 before setting the slot to the desired
273 * value. This is needed based on KVM commit 75d61fbc. */
274 mem.memory_size = 0;
275 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
277 mem.memory_size = slot->memory_size;
278 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
279 slot->old_flags = mem.flags;
280 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
281 mem.memory_size, mem.userspace_addr, ret);
282 return ret;
285 int kvm_destroy_vcpu(CPUState *cpu)
287 KVMState *s = kvm_state;
288 long mmap_size;
289 struct KVMParkedVcpu *vcpu = NULL;
290 int ret = 0;
292 DPRINTF("kvm_destroy_vcpu\n");
294 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
295 if (mmap_size < 0) {
296 ret = mmap_size;
297 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
298 goto err;
301 ret = munmap(cpu->kvm_run, mmap_size);
302 if (ret < 0) {
303 goto err;
306 vcpu = g_malloc0(sizeof(*vcpu));
307 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
308 vcpu->kvm_fd = cpu->kvm_fd;
309 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
310 err:
311 return ret;
314 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
316 struct KVMParkedVcpu *cpu;
318 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
319 if (cpu->vcpu_id == vcpu_id) {
320 int kvm_fd;
322 QLIST_REMOVE(cpu, node);
323 kvm_fd = cpu->kvm_fd;
324 g_free(cpu);
325 return kvm_fd;
329 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
332 int kvm_init_vcpu(CPUState *cpu)
334 KVMState *s = kvm_state;
335 long mmap_size;
336 int ret;
338 DPRINTF("kvm_init_vcpu\n");
340 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
341 if (ret < 0) {
342 DPRINTF("kvm_create_vcpu failed\n");
343 goto err;
346 cpu->kvm_fd = ret;
347 cpu->kvm_state = s;
348 cpu->vcpu_dirty = true;
350 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
351 if (mmap_size < 0) {
352 ret = mmap_size;
353 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
354 goto err;
357 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
358 cpu->kvm_fd, 0);
359 if (cpu->kvm_run == MAP_FAILED) {
360 ret = -errno;
361 DPRINTF("mmap'ing vcpu state failed\n");
362 goto err;
365 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
366 s->coalesced_mmio_ring =
367 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
370 ret = kvm_arch_init_vcpu(cpu);
371 err:
372 return ret;
376 * dirty pages logging control
379 static int kvm_mem_flags(MemoryRegion *mr)
381 bool readonly = mr->readonly || memory_region_is_romd(mr);
382 int flags = 0;
384 if (memory_region_get_dirty_log_mask(mr) != 0) {
385 flags |= KVM_MEM_LOG_DIRTY_PAGES;
387 if (readonly && kvm_readonly_mem_allowed) {
388 flags |= KVM_MEM_READONLY;
390 return flags;
393 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
394 MemoryRegion *mr)
396 mem->flags = kvm_mem_flags(mr);
398 /* If nothing changed effectively, no need to issue ioctl */
399 if (mem->flags == mem->old_flags) {
400 return 0;
403 return kvm_set_user_memory_region(kml, mem, false);
406 static int kvm_section_update_flags(KVMMemoryListener *kml,
407 MemoryRegionSection *section)
409 hwaddr start_addr, size;
410 KVMSlot *mem;
412 size = kvm_align_section(section, &start_addr);
413 if (!size) {
414 return 0;
417 mem = kvm_lookup_matching_slot(kml, start_addr, size);
418 if (!mem) {
419 /* We don't have a slot if we want to trap every access. */
420 return 0;
423 return kvm_slot_update_flags(kml, mem, section->mr);
426 static void kvm_log_start(MemoryListener *listener,
427 MemoryRegionSection *section,
428 int old, int new)
430 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
431 int r;
433 if (old != 0) {
434 return;
437 r = kvm_section_update_flags(kml, section);
438 if (r < 0) {
439 abort();
443 static void kvm_log_stop(MemoryListener *listener,
444 MemoryRegionSection *section,
445 int old, int new)
447 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
448 int r;
450 if (new != 0) {
451 return;
454 r = kvm_section_update_flags(kml, section);
455 if (r < 0) {
456 abort();
460 /* get kvm's dirty pages bitmap and update qemu's */
461 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
462 unsigned long *bitmap)
464 ram_addr_t start = section->offset_within_region +
465 memory_region_get_ram_addr(section->mr);
466 ram_addr_t pages = int128_get64(section->size) / getpagesize();
468 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
469 return 0;
472 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
475 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
476 * This function updates qemu's dirty bitmap using
477 * memory_region_set_dirty(). This means all bits are set
478 * to dirty.
480 * @start_add: start of logged region.
481 * @end_addr: end of logged region.
483 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
484 MemoryRegionSection *section)
486 KVMState *s = kvm_state;
487 struct kvm_dirty_log d = {};
488 KVMSlot *mem;
489 hwaddr start_addr, size;
491 size = kvm_align_section(section, &start_addr);
492 if (size) {
493 mem = kvm_lookup_matching_slot(kml, start_addr, size);
494 if (!mem) {
495 /* We don't have a slot if we want to trap every access. */
496 return 0;
499 /* XXX bad kernel interface alert
500 * For dirty bitmap, kernel allocates array of size aligned to
501 * bits-per-long. But for case when the kernel is 64bits and
502 * the userspace is 32bits, userspace can't align to the same
503 * bits-per-long, since sizeof(long) is different between kernel
504 * and user space. This way, userspace will provide buffer which
505 * may be 4 bytes less than the kernel will use, resulting in
506 * userspace memory corruption (which is not detectable by valgrind
507 * too, in most cases).
508 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
509 * a hope that sizeof(long) won't become >8 any time soon.
511 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
512 /*HOST_LONG_BITS*/ 64) / 8;
513 d.dirty_bitmap = g_malloc0(size);
515 d.slot = mem->slot | (kml->as_id << 16);
516 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
517 DPRINTF("ioctl failed %d\n", errno);
518 g_free(d.dirty_bitmap);
519 return -1;
522 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
523 g_free(d.dirty_bitmap);
526 return 0;
529 static void kvm_coalesce_mmio_region(MemoryListener *listener,
530 MemoryRegionSection *secion,
531 hwaddr start, hwaddr size)
533 KVMState *s = kvm_state;
535 if (s->coalesced_mmio) {
536 struct kvm_coalesced_mmio_zone zone;
538 zone.addr = start;
539 zone.size = size;
540 zone.pad = 0;
542 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
546 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
547 MemoryRegionSection *secion,
548 hwaddr start, hwaddr size)
550 KVMState *s = kvm_state;
552 if (s->coalesced_mmio) {
553 struct kvm_coalesced_mmio_zone zone;
555 zone.addr = start;
556 zone.size = size;
557 zone.pad = 0;
559 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
563 int kvm_check_extension(KVMState *s, unsigned int extension)
565 int ret;
567 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
568 if (ret < 0) {
569 ret = 0;
572 return ret;
575 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
577 int ret;
579 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
580 if (ret < 0) {
581 /* VM wide version not implemented, use global one instead */
582 ret = kvm_check_extension(s, extension);
585 return ret;
588 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
590 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
591 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
592 * endianness, but the memory core hands them in target endianness.
593 * For example, PPC is always treated as big-endian even if running
594 * on KVM and on PPC64LE. Correct here.
596 switch (size) {
597 case 2:
598 val = bswap16(val);
599 break;
600 case 4:
601 val = bswap32(val);
602 break;
604 #endif
605 return val;
608 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
609 bool assign, uint32_t size, bool datamatch)
611 int ret;
612 struct kvm_ioeventfd iofd = {
613 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
614 .addr = addr,
615 .len = size,
616 .flags = 0,
617 .fd = fd,
620 if (!kvm_enabled()) {
621 return -ENOSYS;
624 if (datamatch) {
625 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
627 if (!assign) {
628 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
631 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
633 if (ret < 0) {
634 return -errno;
637 return 0;
640 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
641 bool assign, uint32_t size, bool datamatch)
643 struct kvm_ioeventfd kick = {
644 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
645 .addr = addr,
646 .flags = KVM_IOEVENTFD_FLAG_PIO,
647 .len = size,
648 .fd = fd,
650 int r;
651 if (!kvm_enabled()) {
652 return -ENOSYS;
654 if (datamatch) {
655 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
657 if (!assign) {
658 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
660 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
661 if (r < 0) {
662 return r;
664 return 0;
668 static int kvm_check_many_ioeventfds(void)
670 /* Userspace can use ioeventfd for io notification. This requires a host
671 * that supports eventfd(2) and an I/O thread; since eventfd does not
672 * support SIGIO it cannot interrupt the vcpu.
674 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
675 * can avoid creating too many ioeventfds.
677 #if defined(CONFIG_EVENTFD)
678 int ioeventfds[7];
679 int i, ret = 0;
680 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
681 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
682 if (ioeventfds[i] < 0) {
683 break;
685 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
686 if (ret < 0) {
687 close(ioeventfds[i]);
688 break;
692 /* Decide whether many devices are supported or not */
693 ret = i == ARRAY_SIZE(ioeventfds);
695 while (i-- > 0) {
696 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
697 close(ioeventfds[i]);
699 return ret;
700 #else
701 return 0;
702 #endif
705 static const KVMCapabilityInfo *
706 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
708 while (list->name) {
709 if (!kvm_check_extension(s, list->value)) {
710 return list;
712 list++;
714 return NULL;
717 static void kvm_set_phys_mem(KVMMemoryListener *kml,
718 MemoryRegionSection *section, bool add)
720 KVMSlot *mem;
721 int err;
722 MemoryRegion *mr = section->mr;
723 bool writeable = !mr->readonly && !mr->rom_device;
724 hwaddr start_addr, size;
725 void *ram;
727 if (!memory_region_is_ram(mr)) {
728 if (writeable || !kvm_readonly_mem_allowed) {
729 return;
730 } else if (!mr->romd_mode) {
731 /* If the memory device is not in romd_mode, then we actually want
732 * to remove the kvm memory slot so all accesses will trap. */
733 add = false;
737 size = kvm_align_section(section, &start_addr);
738 if (!size) {
739 return;
742 /* use aligned delta to align the ram address */
743 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
744 (start_addr - section->offset_within_address_space);
746 if (!add) {
747 mem = kvm_lookup_matching_slot(kml, start_addr, size);
748 if (!mem) {
749 return;
751 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
752 kvm_physical_sync_dirty_bitmap(kml, section);
755 /* unregister the slot */
756 mem->memory_size = 0;
757 mem->flags = 0;
758 err = kvm_set_user_memory_region(kml, mem, false);
759 if (err) {
760 fprintf(stderr, "%s: error unregistering slot: %s\n",
761 __func__, strerror(-err));
762 abort();
764 return;
767 /* register the new slot */
768 mem = kvm_alloc_slot(kml);
769 mem->memory_size = size;
770 mem->start_addr = start_addr;
771 mem->ram = ram;
772 mem->flags = kvm_mem_flags(mr);
774 err = kvm_set_user_memory_region(kml, mem, true);
775 if (err) {
776 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
777 strerror(-err));
778 abort();
782 static void kvm_region_add(MemoryListener *listener,
783 MemoryRegionSection *section)
785 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
787 memory_region_ref(section->mr);
788 kvm_set_phys_mem(kml, section, true);
791 static void kvm_region_del(MemoryListener *listener,
792 MemoryRegionSection *section)
794 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
796 kvm_set_phys_mem(kml, section, false);
797 memory_region_unref(section->mr);
800 static void kvm_log_sync(MemoryListener *listener,
801 MemoryRegionSection *section)
803 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
804 int r;
806 r = kvm_physical_sync_dirty_bitmap(kml, section);
807 if (r < 0) {
808 abort();
812 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
813 MemoryRegionSection *section,
814 bool match_data, uint64_t data,
815 EventNotifier *e)
817 int fd = event_notifier_get_fd(e);
818 int r;
820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
821 data, true, int128_get64(section->size),
822 match_data);
823 if (r < 0) {
824 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
825 __func__, strerror(-r));
826 abort();
830 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
831 MemoryRegionSection *section,
832 bool match_data, uint64_t data,
833 EventNotifier *e)
835 int fd = event_notifier_get_fd(e);
836 int r;
838 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
839 data, false, int128_get64(section->size),
840 match_data);
841 if (r < 0) {
842 abort();
846 static void kvm_io_ioeventfd_add(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
849 EventNotifier *e)
851 int fd = event_notifier_get_fd(e);
852 int r;
854 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
855 data, true, int128_get64(section->size),
856 match_data);
857 if (r < 0) {
858 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
859 __func__, strerror(-r));
860 abort();
864 static void kvm_io_ioeventfd_del(MemoryListener *listener,
865 MemoryRegionSection *section,
866 bool match_data, uint64_t data,
867 EventNotifier *e)
870 int fd = event_notifier_get_fd(e);
871 int r;
873 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
874 data, false, int128_get64(section->size),
875 match_data);
876 if (r < 0) {
877 abort();
881 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
882 AddressSpace *as, int as_id)
884 int i;
886 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
887 kml->as_id = as_id;
889 for (i = 0; i < s->nr_slots; i++) {
890 kml->slots[i].slot = i;
893 kml->listener.region_add = kvm_region_add;
894 kml->listener.region_del = kvm_region_del;
895 kml->listener.log_start = kvm_log_start;
896 kml->listener.log_stop = kvm_log_stop;
897 kml->listener.log_sync = kvm_log_sync;
898 kml->listener.priority = 10;
900 memory_listener_register(&kml->listener, as);
903 static MemoryListener kvm_io_listener = {
904 .eventfd_add = kvm_io_ioeventfd_add,
905 .eventfd_del = kvm_io_ioeventfd_del,
906 .priority = 10,
909 int kvm_set_irq(KVMState *s, int irq, int level)
911 struct kvm_irq_level event;
912 int ret;
914 assert(kvm_async_interrupts_enabled());
916 event.level = level;
917 event.irq = irq;
918 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
919 if (ret < 0) {
920 perror("kvm_set_irq");
921 abort();
924 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
927 #ifdef KVM_CAP_IRQ_ROUTING
928 typedef struct KVMMSIRoute {
929 struct kvm_irq_routing_entry kroute;
930 QTAILQ_ENTRY(KVMMSIRoute) entry;
931 } KVMMSIRoute;
933 static void set_gsi(KVMState *s, unsigned int gsi)
935 set_bit(gsi, s->used_gsi_bitmap);
938 static void clear_gsi(KVMState *s, unsigned int gsi)
940 clear_bit(gsi, s->used_gsi_bitmap);
943 void kvm_init_irq_routing(KVMState *s)
945 int gsi_count, i;
947 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
948 if (gsi_count > 0) {
949 /* Round up so we can search ints using ffs */
950 s->used_gsi_bitmap = bitmap_new(gsi_count);
951 s->gsi_count = gsi_count;
954 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
955 s->nr_allocated_irq_routes = 0;
957 if (!kvm_direct_msi_allowed) {
958 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
959 QTAILQ_INIT(&s->msi_hashtab[i]);
963 kvm_arch_init_irq_routing(s);
966 void kvm_irqchip_commit_routes(KVMState *s)
968 int ret;
970 if (kvm_gsi_direct_mapping()) {
971 return;
974 if (!kvm_gsi_routing_enabled()) {
975 return;
978 s->irq_routes->flags = 0;
979 trace_kvm_irqchip_commit_routes();
980 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
981 assert(ret == 0);
984 static void kvm_add_routing_entry(KVMState *s,
985 struct kvm_irq_routing_entry *entry)
987 struct kvm_irq_routing_entry *new;
988 int n, size;
990 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
991 n = s->nr_allocated_irq_routes * 2;
992 if (n < 64) {
993 n = 64;
995 size = sizeof(struct kvm_irq_routing);
996 size += n * sizeof(*new);
997 s->irq_routes = g_realloc(s->irq_routes, size);
998 s->nr_allocated_irq_routes = n;
1000 n = s->irq_routes->nr++;
1001 new = &s->irq_routes->entries[n];
1003 *new = *entry;
1005 set_gsi(s, entry->gsi);
1008 static int kvm_update_routing_entry(KVMState *s,
1009 struct kvm_irq_routing_entry *new_entry)
1011 struct kvm_irq_routing_entry *entry;
1012 int n;
1014 for (n = 0; n < s->irq_routes->nr; n++) {
1015 entry = &s->irq_routes->entries[n];
1016 if (entry->gsi != new_entry->gsi) {
1017 continue;
1020 if(!memcmp(entry, new_entry, sizeof *entry)) {
1021 return 0;
1024 *entry = *new_entry;
1026 return 0;
1029 return -ESRCH;
1032 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1034 struct kvm_irq_routing_entry e = {};
1036 assert(pin < s->gsi_count);
1038 e.gsi = irq;
1039 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1040 e.flags = 0;
1041 e.u.irqchip.irqchip = irqchip;
1042 e.u.irqchip.pin = pin;
1043 kvm_add_routing_entry(s, &e);
1046 void kvm_irqchip_release_virq(KVMState *s, int virq)
1048 struct kvm_irq_routing_entry *e;
1049 int i;
1051 if (kvm_gsi_direct_mapping()) {
1052 return;
1055 for (i = 0; i < s->irq_routes->nr; i++) {
1056 e = &s->irq_routes->entries[i];
1057 if (e->gsi == virq) {
1058 s->irq_routes->nr--;
1059 *e = s->irq_routes->entries[s->irq_routes->nr];
1062 clear_gsi(s, virq);
1063 kvm_arch_release_virq_post(virq);
1064 trace_kvm_irqchip_release_virq(virq);
1067 static unsigned int kvm_hash_msi(uint32_t data)
1069 /* This is optimized for IA32 MSI layout. However, no other arch shall
1070 * repeat the mistake of not providing a direct MSI injection API. */
1071 return data & 0xff;
1074 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1076 KVMMSIRoute *route, *next;
1077 unsigned int hash;
1079 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1080 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1081 kvm_irqchip_release_virq(s, route->kroute.gsi);
1082 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1083 g_free(route);
1088 static int kvm_irqchip_get_virq(KVMState *s)
1090 int next_virq;
1093 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1094 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1095 * number can succeed even though a new route entry cannot be added.
1096 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1098 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1099 kvm_flush_dynamic_msi_routes(s);
1102 /* Return the lowest unused GSI in the bitmap */
1103 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1104 if (next_virq >= s->gsi_count) {
1105 return -ENOSPC;
1106 } else {
1107 return next_virq;
1111 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1113 unsigned int hash = kvm_hash_msi(msg.data);
1114 KVMMSIRoute *route;
1116 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1117 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1118 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1119 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1120 return route;
1123 return NULL;
1126 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1128 struct kvm_msi msi;
1129 KVMMSIRoute *route;
1131 if (kvm_direct_msi_allowed) {
1132 msi.address_lo = (uint32_t)msg.address;
1133 msi.address_hi = msg.address >> 32;
1134 msi.data = le32_to_cpu(msg.data);
1135 msi.flags = 0;
1136 memset(msi.pad, 0, sizeof(msi.pad));
1138 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1141 route = kvm_lookup_msi_route(s, msg);
1142 if (!route) {
1143 int virq;
1145 virq = kvm_irqchip_get_virq(s);
1146 if (virq < 0) {
1147 return virq;
1150 route = g_malloc0(sizeof(KVMMSIRoute));
1151 route->kroute.gsi = virq;
1152 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1153 route->kroute.flags = 0;
1154 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1155 route->kroute.u.msi.address_hi = msg.address >> 32;
1156 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1158 kvm_add_routing_entry(s, &route->kroute);
1159 kvm_irqchip_commit_routes(s);
1161 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1162 entry);
1165 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1167 return kvm_set_irq(s, route->kroute.gsi, 1);
1170 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1172 struct kvm_irq_routing_entry kroute = {};
1173 int virq;
1174 MSIMessage msg = {0, 0};
1176 if (pci_available && dev) {
1177 msg = pci_get_msi_message(dev, vector);
1180 if (kvm_gsi_direct_mapping()) {
1181 return kvm_arch_msi_data_to_gsi(msg.data);
1184 if (!kvm_gsi_routing_enabled()) {
1185 return -ENOSYS;
1188 virq = kvm_irqchip_get_virq(s);
1189 if (virq < 0) {
1190 return virq;
1193 kroute.gsi = virq;
1194 kroute.type = KVM_IRQ_ROUTING_MSI;
1195 kroute.flags = 0;
1196 kroute.u.msi.address_lo = (uint32_t)msg.address;
1197 kroute.u.msi.address_hi = msg.address >> 32;
1198 kroute.u.msi.data = le32_to_cpu(msg.data);
1199 if (pci_available && kvm_msi_devid_required()) {
1200 kroute.flags = KVM_MSI_VALID_DEVID;
1201 kroute.u.msi.devid = pci_requester_id(dev);
1203 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1204 kvm_irqchip_release_virq(s, virq);
1205 return -EINVAL;
1208 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1209 vector, virq);
1211 kvm_add_routing_entry(s, &kroute);
1212 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1213 kvm_irqchip_commit_routes(s);
1215 return virq;
1218 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1219 PCIDevice *dev)
1221 struct kvm_irq_routing_entry kroute = {};
1223 if (kvm_gsi_direct_mapping()) {
1224 return 0;
1227 if (!kvm_irqchip_in_kernel()) {
1228 return -ENOSYS;
1231 kroute.gsi = virq;
1232 kroute.type = KVM_IRQ_ROUTING_MSI;
1233 kroute.flags = 0;
1234 kroute.u.msi.address_lo = (uint32_t)msg.address;
1235 kroute.u.msi.address_hi = msg.address >> 32;
1236 kroute.u.msi.data = le32_to_cpu(msg.data);
1237 if (pci_available && kvm_msi_devid_required()) {
1238 kroute.flags = KVM_MSI_VALID_DEVID;
1239 kroute.u.msi.devid = pci_requester_id(dev);
1241 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1242 return -EINVAL;
1245 trace_kvm_irqchip_update_msi_route(virq);
1247 return kvm_update_routing_entry(s, &kroute);
1250 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1251 bool assign)
1253 struct kvm_irqfd irqfd = {
1254 .fd = fd,
1255 .gsi = virq,
1256 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1259 if (rfd != -1) {
1260 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1261 irqfd.resamplefd = rfd;
1264 if (!kvm_irqfds_enabled()) {
1265 return -ENOSYS;
1268 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1271 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1273 struct kvm_irq_routing_entry kroute = {};
1274 int virq;
1276 if (!kvm_gsi_routing_enabled()) {
1277 return -ENOSYS;
1280 virq = kvm_irqchip_get_virq(s);
1281 if (virq < 0) {
1282 return virq;
1285 kroute.gsi = virq;
1286 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1287 kroute.flags = 0;
1288 kroute.u.adapter.summary_addr = adapter->summary_addr;
1289 kroute.u.adapter.ind_addr = adapter->ind_addr;
1290 kroute.u.adapter.summary_offset = adapter->summary_offset;
1291 kroute.u.adapter.ind_offset = adapter->ind_offset;
1292 kroute.u.adapter.adapter_id = adapter->adapter_id;
1294 kvm_add_routing_entry(s, &kroute);
1296 return virq;
1299 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1301 struct kvm_irq_routing_entry kroute = {};
1302 int virq;
1304 if (!kvm_gsi_routing_enabled()) {
1305 return -ENOSYS;
1307 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1308 return -ENOSYS;
1310 virq = kvm_irqchip_get_virq(s);
1311 if (virq < 0) {
1312 return virq;
1315 kroute.gsi = virq;
1316 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1317 kroute.flags = 0;
1318 kroute.u.hv_sint.vcpu = vcpu;
1319 kroute.u.hv_sint.sint = sint;
1321 kvm_add_routing_entry(s, &kroute);
1322 kvm_irqchip_commit_routes(s);
1324 return virq;
1327 #else /* !KVM_CAP_IRQ_ROUTING */
1329 void kvm_init_irq_routing(KVMState *s)
1333 void kvm_irqchip_release_virq(KVMState *s, int virq)
1337 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1339 abort();
1342 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1344 return -ENOSYS;
1347 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1349 return -ENOSYS;
1352 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1354 return -ENOSYS;
1357 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1359 abort();
1362 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1364 return -ENOSYS;
1366 #endif /* !KVM_CAP_IRQ_ROUTING */
1368 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1369 EventNotifier *rn, int virq)
1371 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1372 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1375 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1376 int virq)
1378 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1379 false);
1382 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1383 EventNotifier *rn, qemu_irq irq)
1385 gpointer key, gsi;
1386 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1388 if (!found) {
1389 return -ENXIO;
1391 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1394 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1395 qemu_irq irq)
1397 gpointer key, gsi;
1398 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1400 if (!found) {
1401 return -ENXIO;
1403 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1406 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1408 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1411 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1413 int ret;
1415 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1417 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1418 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1419 if (ret < 0) {
1420 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1421 exit(1);
1423 } else {
1424 return;
1427 /* First probe and see if there's a arch-specific hook to create the
1428 * in-kernel irqchip for us */
1429 ret = kvm_arch_irqchip_create(machine, s);
1430 if (ret == 0) {
1431 if (machine_kernel_irqchip_split(machine)) {
1432 perror("Split IRQ chip mode not supported.");
1433 exit(1);
1434 } else {
1435 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1438 if (ret < 0) {
1439 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1440 exit(1);
1443 kvm_kernel_irqchip = true;
1444 /* If we have an in-kernel IRQ chip then we must have asynchronous
1445 * interrupt delivery (though the reverse is not necessarily true)
1447 kvm_async_interrupts_allowed = true;
1448 kvm_halt_in_kernel_allowed = true;
1450 kvm_init_irq_routing(s);
1452 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1455 /* Find number of supported CPUs using the recommended
1456 * procedure from the kernel API documentation to cope with
1457 * older kernels that may be missing capabilities.
1459 static int kvm_recommended_vcpus(KVMState *s)
1461 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1462 return (ret) ? ret : 4;
1465 static int kvm_max_vcpus(KVMState *s)
1467 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1468 return (ret) ? ret : kvm_recommended_vcpus(s);
1471 static int kvm_max_vcpu_id(KVMState *s)
1473 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1474 return (ret) ? ret : kvm_max_vcpus(s);
1477 bool kvm_vcpu_id_is_valid(int vcpu_id)
1479 KVMState *s = KVM_STATE(current_machine->accelerator);
1480 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1483 static int kvm_init(MachineState *ms)
1485 MachineClass *mc = MACHINE_GET_CLASS(ms);
1486 static const char upgrade_note[] =
1487 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1488 "(see http://sourceforge.net/projects/kvm).\n";
1489 struct {
1490 const char *name;
1491 int num;
1492 } num_cpus[] = {
1493 { "SMP", smp_cpus },
1494 { "hotpluggable", max_cpus },
1495 { NULL, }
1496 }, *nc = num_cpus;
1497 int soft_vcpus_limit, hard_vcpus_limit;
1498 KVMState *s;
1499 const KVMCapabilityInfo *missing_cap;
1500 int ret;
1501 int type = 0;
1502 const char *kvm_type;
1504 s = KVM_STATE(ms->accelerator);
1507 * On systems where the kernel can support different base page
1508 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1509 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1510 * page size for the system though.
1512 assert(TARGET_PAGE_SIZE <= getpagesize());
1514 s->sigmask_len = 8;
1516 #ifdef KVM_CAP_SET_GUEST_DEBUG
1517 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1518 #endif
1519 QLIST_INIT(&s->kvm_parked_vcpus);
1520 s->vmfd = -1;
1521 s->fd = qemu_open("/dev/kvm", O_RDWR);
1522 if (s->fd == -1) {
1523 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1524 ret = -errno;
1525 goto err;
1528 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1529 if (ret < KVM_API_VERSION) {
1530 if (ret >= 0) {
1531 ret = -EINVAL;
1533 fprintf(stderr, "kvm version too old\n");
1534 goto err;
1537 if (ret > KVM_API_VERSION) {
1538 ret = -EINVAL;
1539 fprintf(stderr, "kvm version not supported\n");
1540 goto err;
1543 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1544 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1546 /* If unspecified, use the default value */
1547 if (!s->nr_slots) {
1548 s->nr_slots = 32;
1551 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1552 if (mc->kvm_type) {
1553 type = mc->kvm_type(kvm_type);
1554 } else if (kvm_type) {
1555 ret = -EINVAL;
1556 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1557 goto err;
1560 do {
1561 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1562 } while (ret == -EINTR);
1564 if (ret < 0) {
1565 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1566 strerror(-ret));
1568 #ifdef TARGET_S390X
1569 if (ret == -EINVAL) {
1570 fprintf(stderr,
1571 "Host kernel setup problem detected. Please verify:\n");
1572 fprintf(stderr, "- for kernels supporting the switch_amode or"
1573 " user_mode parameters, whether\n");
1574 fprintf(stderr,
1575 " user space is running in primary address space\n");
1576 fprintf(stderr,
1577 "- for kernels supporting the vm.allocate_pgste sysctl, "
1578 "whether it is enabled\n");
1580 #endif
1581 goto err;
1584 s->vmfd = ret;
1586 /* check the vcpu limits */
1587 soft_vcpus_limit = kvm_recommended_vcpus(s);
1588 hard_vcpus_limit = kvm_max_vcpus(s);
1590 while (nc->name) {
1591 if (nc->num > soft_vcpus_limit) {
1592 warn_report("Number of %s cpus requested (%d) exceeds "
1593 "the recommended cpus supported by KVM (%d)",
1594 nc->name, nc->num, soft_vcpus_limit);
1596 if (nc->num > hard_vcpus_limit) {
1597 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1598 "the maximum cpus supported by KVM (%d)\n",
1599 nc->name, nc->num, hard_vcpus_limit);
1600 exit(1);
1603 nc++;
1606 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1607 if (!missing_cap) {
1608 missing_cap =
1609 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1611 if (missing_cap) {
1612 ret = -EINVAL;
1613 fprintf(stderr, "kvm does not support %s\n%s",
1614 missing_cap->name, upgrade_note);
1615 goto err;
1618 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1620 #ifdef KVM_CAP_VCPU_EVENTS
1621 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1622 #endif
1624 s->robust_singlestep =
1625 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1627 #ifdef KVM_CAP_DEBUGREGS
1628 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1629 #endif
1631 #ifdef KVM_CAP_IRQ_ROUTING
1632 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1633 #endif
1635 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1637 s->irq_set_ioctl = KVM_IRQ_LINE;
1638 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1639 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1642 #ifdef KVM_CAP_READONLY_MEM
1643 kvm_readonly_mem_allowed =
1644 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1645 #endif
1647 kvm_eventfds_allowed =
1648 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1650 kvm_irqfds_allowed =
1651 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1653 kvm_resamplefds_allowed =
1654 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1656 kvm_vm_attributes_allowed =
1657 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1659 kvm_ioeventfd_any_length_allowed =
1660 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1662 kvm_state = s;
1665 * if memory encryption object is specified then initialize the memory
1666 * encryption context.
1668 if (ms->memory_encryption) {
1669 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
1670 if (!kvm_state->memcrypt_handle) {
1671 ret = -1;
1672 goto err;
1675 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
1678 ret = kvm_arch_init(ms, s);
1679 if (ret < 0) {
1680 goto err;
1683 if (machine_kernel_irqchip_allowed(ms)) {
1684 kvm_irqchip_create(ms, s);
1687 if (kvm_eventfds_allowed) {
1688 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1689 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1691 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1692 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1694 kvm_memory_listener_register(s, &s->memory_listener,
1695 &address_space_memory, 0);
1696 memory_listener_register(&kvm_io_listener,
1697 &address_space_io);
1699 s->many_ioeventfds = kvm_check_many_ioeventfds();
1701 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1702 if (!s->sync_mmu) {
1703 qemu_balloon_inhibit(true);
1706 return 0;
1708 err:
1709 assert(ret < 0);
1710 if (s->vmfd >= 0) {
1711 close(s->vmfd);
1713 if (s->fd != -1) {
1714 close(s->fd);
1716 g_free(s->memory_listener.slots);
1718 return ret;
1721 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1723 s->sigmask_len = sigmask_len;
1726 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1727 int size, uint32_t count)
1729 int i;
1730 uint8_t *ptr = data;
1732 for (i = 0; i < count; i++) {
1733 address_space_rw(&address_space_io, port, attrs,
1734 ptr, size,
1735 direction == KVM_EXIT_IO_OUT);
1736 ptr += size;
1740 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1742 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1743 run->internal.suberror);
1745 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1746 int i;
1748 for (i = 0; i < run->internal.ndata; ++i) {
1749 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1750 i, (uint64_t)run->internal.data[i]);
1753 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1754 fprintf(stderr, "emulation failure\n");
1755 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1756 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1757 return EXCP_INTERRUPT;
1760 /* FIXME: Should trigger a qmp message to let management know
1761 * something went wrong.
1763 return -1;
1766 void kvm_flush_coalesced_mmio_buffer(void)
1768 KVMState *s = kvm_state;
1770 if (s->coalesced_flush_in_progress) {
1771 return;
1774 s->coalesced_flush_in_progress = true;
1776 if (s->coalesced_mmio_ring) {
1777 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1778 while (ring->first != ring->last) {
1779 struct kvm_coalesced_mmio *ent;
1781 ent = &ring->coalesced_mmio[ring->first];
1783 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1784 smp_wmb();
1785 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1789 s->coalesced_flush_in_progress = false;
1792 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1794 if (!cpu->vcpu_dirty) {
1795 kvm_arch_get_registers(cpu);
1796 cpu->vcpu_dirty = true;
1800 void kvm_cpu_synchronize_state(CPUState *cpu)
1802 if (!cpu->vcpu_dirty) {
1803 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1807 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1809 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1810 cpu->vcpu_dirty = false;
1813 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1815 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1818 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1820 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1821 cpu->vcpu_dirty = false;
1824 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1826 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1829 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1831 cpu->vcpu_dirty = true;
1834 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1836 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1839 #ifdef KVM_HAVE_MCE_INJECTION
1840 static __thread void *pending_sigbus_addr;
1841 static __thread int pending_sigbus_code;
1842 static __thread bool have_sigbus_pending;
1843 #endif
1845 static void kvm_cpu_kick(CPUState *cpu)
1847 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1850 static void kvm_cpu_kick_self(void)
1852 if (kvm_immediate_exit) {
1853 kvm_cpu_kick(current_cpu);
1854 } else {
1855 qemu_cpu_kick_self();
1859 static void kvm_eat_signals(CPUState *cpu)
1861 struct timespec ts = { 0, 0 };
1862 siginfo_t siginfo;
1863 sigset_t waitset;
1864 sigset_t chkset;
1865 int r;
1867 if (kvm_immediate_exit) {
1868 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1869 /* Write kvm_run->immediate_exit before the cpu->exit_request
1870 * write in kvm_cpu_exec.
1872 smp_wmb();
1873 return;
1876 sigemptyset(&waitset);
1877 sigaddset(&waitset, SIG_IPI);
1879 do {
1880 r = sigtimedwait(&waitset, &siginfo, &ts);
1881 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1882 perror("sigtimedwait");
1883 exit(1);
1886 r = sigpending(&chkset);
1887 if (r == -1) {
1888 perror("sigpending");
1889 exit(1);
1891 } while (sigismember(&chkset, SIG_IPI));
1894 int kvm_cpu_exec(CPUState *cpu)
1896 struct kvm_run *run = cpu->kvm_run;
1897 int ret, run_ret;
1899 DPRINTF("kvm_cpu_exec()\n");
1901 if (kvm_arch_process_async_events(cpu)) {
1902 atomic_set(&cpu->exit_request, 0);
1903 return EXCP_HLT;
1906 qemu_mutex_unlock_iothread();
1907 cpu_exec_start(cpu);
1909 do {
1910 MemTxAttrs attrs;
1912 if (cpu->vcpu_dirty) {
1913 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1914 cpu->vcpu_dirty = false;
1917 kvm_arch_pre_run(cpu, run);
1918 if (atomic_read(&cpu->exit_request)) {
1919 DPRINTF("interrupt exit requested\n");
1921 * KVM requires us to reenter the kernel after IO exits to complete
1922 * instruction emulation. This self-signal will ensure that we
1923 * leave ASAP again.
1925 kvm_cpu_kick_self();
1928 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1929 * Matching barrier in kvm_eat_signals.
1931 smp_rmb();
1933 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1935 attrs = kvm_arch_post_run(cpu, run);
1937 #ifdef KVM_HAVE_MCE_INJECTION
1938 if (unlikely(have_sigbus_pending)) {
1939 qemu_mutex_lock_iothread();
1940 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1941 pending_sigbus_addr);
1942 have_sigbus_pending = false;
1943 qemu_mutex_unlock_iothread();
1945 #endif
1947 if (run_ret < 0) {
1948 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1949 DPRINTF("io window exit\n");
1950 kvm_eat_signals(cpu);
1951 ret = EXCP_INTERRUPT;
1952 break;
1954 fprintf(stderr, "error: kvm run failed %s\n",
1955 strerror(-run_ret));
1956 #ifdef TARGET_PPC
1957 if (run_ret == -EBUSY) {
1958 fprintf(stderr,
1959 "This is probably because your SMT is enabled.\n"
1960 "VCPU can only run on primary threads with all "
1961 "secondary threads offline.\n");
1963 #endif
1964 ret = -1;
1965 break;
1968 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1969 switch (run->exit_reason) {
1970 case KVM_EXIT_IO:
1971 DPRINTF("handle_io\n");
1972 /* Called outside BQL */
1973 kvm_handle_io(run->io.port, attrs,
1974 (uint8_t *)run + run->io.data_offset,
1975 run->io.direction,
1976 run->io.size,
1977 run->io.count);
1978 ret = 0;
1979 break;
1980 case KVM_EXIT_MMIO:
1981 DPRINTF("handle_mmio\n");
1982 /* Called outside BQL */
1983 address_space_rw(&address_space_memory,
1984 run->mmio.phys_addr, attrs,
1985 run->mmio.data,
1986 run->mmio.len,
1987 run->mmio.is_write);
1988 ret = 0;
1989 break;
1990 case KVM_EXIT_IRQ_WINDOW_OPEN:
1991 DPRINTF("irq_window_open\n");
1992 ret = EXCP_INTERRUPT;
1993 break;
1994 case KVM_EXIT_SHUTDOWN:
1995 DPRINTF("shutdown\n");
1996 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1997 ret = EXCP_INTERRUPT;
1998 break;
1999 case KVM_EXIT_UNKNOWN:
2000 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2001 (uint64_t)run->hw.hardware_exit_reason);
2002 ret = -1;
2003 break;
2004 case KVM_EXIT_INTERNAL_ERROR:
2005 ret = kvm_handle_internal_error(cpu, run);
2006 break;
2007 case KVM_EXIT_SYSTEM_EVENT:
2008 switch (run->system_event.type) {
2009 case KVM_SYSTEM_EVENT_SHUTDOWN:
2010 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2011 ret = EXCP_INTERRUPT;
2012 break;
2013 case KVM_SYSTEM_EVENT_RESET:
2014 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2015 ret = EXCP_INTERRUPT;
2016 break;
2017 case KVM_SYSTEM_EVENT_CRASH:
2018 kvm_cpu_synchronize_state(cpu);
2019 qemu_mutex_lock_iothread();
2020 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2021 qemu_mutex_unlock_iothread();
2022 ret = 0;
2023 break;
2024 default:
2025 DPRINTF("kvm_arch_handle_exit\n");
2026 ret = kvm_arch_handle_exit(cpu, run);
2027 break;
2029 break;
2030 default:
2031 DPRINTF("kvm_arch_handle_exit\n");
2032 ret = kvm_arch_handle_exit(cpu, run);
2033 break;
2035 } while (ret == 0);
2037 cpu_exec_end(cpu);
2038 qemu_mutex_lock_iothread();
2040 if (ret < 0) {
2041 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2042 vm_stop(RUN_STATE_INTERNAL_ERROR);
2045 atomic_set(&cpu->exit_request, 0);
2046 return ret;
2049 int kvm_ioctl(KVMState *s, int type, ...)
2051 int ret;
2052 void *arg;
2053 va_list ap;
2055 va_start(ap, type);
2056 arg = va_arg(ap, void *);
2057 va_end(ap);
2059 trace_kvm_ioctl(type, arg);
2060 ret = ioctl(s->fd, type, arg);
2061 if (ret == -1) {
2062 ret = -errno;
2064 return ret;
2067 int kvm_vm_ioctl(KVMState *s, int type, ...)
2069 int ret;
2070 void *arg;
2071 va_list ap;
2073 va_start(ap, type);
2074 arg = va_arg(ap, void *);
2075 va_end(ap);
2077 trace_kvm_vm_ioctl(type, arg);
2078 ret = ioctl(s->vmfd, type, arg);
2079 if (ret == -1) {
2080 ret = -errno;
2082 return ret;
2085 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2087 int ret;
2088 void *arg;
2089 va_list ap;
2091 va_start(ap, type);
2092 arg = va_arg(ap, void *);
2093 va_end(ap);
2095 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2096 ret = ioctl(cpu->kvm_fd, type, arg);
2097 if (ret == -1) {
2098 ret = -errno;
2100 return ret;
2103 int kvm_device_ioctl(int fd, int type, ...)
2105 int ret;
2106 void *arg;
2107 va_list ap;
2109 va_start(ap, type);
2110 arg = va_arg(ap, void *);
2111 va_end(ap);
2113 trace_kvm_device_ioctl(fd, type, arg);
2114 ret = ioctl(fd, type, arg);
2115 if (ret == -1) {
2116 ret = -errno;
2118 return ret;
2121 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2123 int ret;
2124 struct kvm_device_attr attribute = {
2125 .group = group,
2126 .attr = attr,
2129 if (!kvm_vm_attributes_allowed) {
2130 return 0;
2133 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2134 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2135 return ret ? 0 : 1;
2138 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2140 struct kvm_device_attr attribute = {
2141 .group = group,
2142 .attr = attr,
2143 .flags = 0,
2146 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2149 int kvm_device_access(int fd, int group, uint64_t attr,
2150 void *val, bool write, Error **errp)
2152 struct kvm_device_attr kvmattr;
2153 int err;
2155 kvmattr.flags = 0;
2156 kvmattr.group = group;
2157 kvmattr.attr = attr;
2158 kvmattr.addr = (uintptr_t)val;
2160 err = kvm_device_ioctl(fd,
2161 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2162 &kvmattr);
2163 if (err < 0) {
2164 error_setg_errno(errp, -err,
2165 "KVM_%s_DEVICE_ATTR failed: Group %d "
2166 "attr 0x%016" PRIx64,
2167 write ? "SET" : "GET", group, attr);
2169 return err;
2172 bool kvm_has_sync_mmu(void)
2174 return kvm_state->sync_mmu;
2177 int kvm_has_vcpu_events(void)
2179 return kvm_state->vcpu_events;
2182 int kvm_has_robust_singlestep(void)
2184 return kvm_state->robust_singlestep;
2187 int kvm_has_debugregs(void)
2189 return kvm_state->debugregs;
2192 int kvm_has_many_ioeventfds(void)
2194 if (!kvm_enabled()) {
2195 return 0;
2197 return kvm_state->many_ioeventfds;
2200 int kvm_has_gsi_routing(void)
2202 #ifdef KVM_CAP_IRQ_ROUTING
2203 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2204 #else
2205 return false;
2206 #endif
2209 int kvm_has_intx_set_mask(void)
2211 return kvm_state->intx_set_mask;
2214 bool kvm_arm_supports_user_irq(void)
2216 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2219 #ifdef KVM_CAP_SET_GUEST_DEBUG
2220 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2221 target_ulong pc)
2223 struct kvm_sw_breakpoint *bp;
2225 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2226 if (bp->pc == pc) {
2227 return bp;
2230 return NULL;
2233 int kvm_sw_breakpoints_active(CPUState *cpu)
2235 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2238 struct kvm_set_guest_debug_data {
2239 struct kvm_guest_debug dbg;
2240 int err;
2243 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2245 struct kvm_set_guest_debug_data *dbg_data =
2246 (struct kvm_set_guest_debug_data *) data.host_ptr;
2248 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2249 &dbg_data->dbg);
2252 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2254 struct kvm_set_guest_debug_data data;
2256 data.dbg.control = reinject_trap;
2258 if (cpu->singlestep_enabled) {
2259 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2261 kvm_arch_update_guest_debug(cpu, &data.dbg);
2263 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2264 RUN_ON_CPU_HOST_PTR(&data));
2265 return data.err;
2268 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2269 target_ulong len, int type)
2271 struct kvm_sw_breakpoint *bp;
2272 int err;
2274 if (type == GDB_BREAKPOINT_SW) {
2275 bp = kvm_find_sw_breakpoint(cpu, addr);
2276 if (bp) {
2277 bp->use_count++;
2278 return 0;
2281 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2282 bp->pc = addr;
2283 bp->use_count = 1;
2284 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2285 if (err) {
2286 g_free(bp);
2287 return err;
2290 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2291 } else {
2292 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2293 if (err) {
2294 return err;
2298 CPU_FOREACH(cpu) {
2299 err = kvm_update_guest_debug(cpu, 0);
2300 if (err) {
2301 return err;
2304 return 0;
2307 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2308 target_ulong len, int type)
2310 struct kvm_sw_breakpoint *bp;
2311 int err;
2313 if (type == GDB_BREAKPOINT_SW) {
2314 bp = kvm_find_sw_breakpoint(cpu, addr);
2315 if (!bp) {
2316 return -ENOENT;
2319 if (bp->use_count > 1) {
2320 bp->use_count--;
2321 return 0;
2324 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2325 if (err) {
2326 return err;
2329 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2330 g_free(bp);
2331 } else {
2332 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2333 if (err) {
2334 return err;
2338 CPU_FOREACH(cpu) {
2339 err = kvm_update_guest_debug(cpu, 0);
2340 if (err) {
2341 return err;
2344 return 0;
2347 void kvm_remove_all_breakpoints(CPUState *cpu)
2349 struct kvm_sw_breakpoint *bp, *next;
2350 KVMState *s = cpu->kvm_state;
2351 CPUState *tmpcpu;
2353 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2354 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2355 /* Try harder to find a CPU that currently sees the breakpoint. */
2356 CPU_FOREACH(tmpcpu) {
2357 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2358 break;
2362 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2363 g_free(bp);
2365 kvm_arch_remove_all_hw_breakpoints();
2367 CPU_FOREACH(cpu) {
2368 kvm_update_guest_debug(cpu, 0);
2372 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2374 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2376 return -EINVAL;
2379 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2380 target_ulong len, int type)
2382 return -EINVAL;
2385 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2386 target_ulong len, int type)
2388 return -EINVAL;
2391 void kvm_remove_all_breakpoints(CPUState *cpu)
2394 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2396 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2398 KVMState *s = kvm_state;
2399 struct kvm_signal_mask *sigmask;
2400 int r;
2402 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2404 sigmask->len = s->sigmask_len;
2405 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2406 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2407 g_free(sigmask);
2409 return r;
2412 static void kvm_ipi_signal(int sig)
2414 if (current_cpu) {
2415 assert(kvm_immediate_exit);
2416 kvm_cpu_kick(current_cpu);
2420 void kvm_init_cpu_signals(CPUState *cpu)
2422 int r;
2423 sigset_t set;
2424 struct sigaction sigact;
2426 memset(&sigact, 0, sizeof(sigact));
2427 sigact.sa_handler = kvm_ipi_signal;
2428 sigaction(SIG_IPI, &sigact, NULL);
2430 pthread_sigmask(SIG_BLOCK, NULL, &set);
2431 #if defined KVM_HAVE_MCE_INJECTION
2432 sigdelset(&set, SIGBUS);
2433 pthread_sigmask(SIG_SETMASK, &set, NULL);
2434 #endif
2435 sigdelset(&set, SIG_IPI);
2436 if (kvm_immediate_exit) {
2437 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2438 } else {
2439 r = kvm_set_signal_mask(cpu, &set);
2441 if (r) {
2442 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2443 exit(1);
2447 /* Called asynchronously in VCPU thread. */
2448 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2450 #ifdef KVM_HAVE_MCE_INJECTION
2451 if (have_sigbus_pending) {
2452 return 1;
2454 have_sigbus_pending = true;
2455 pending_sigbus_addr = addr;
2456 pending_sigbus_code = code;
2457 atomic_set(&cpu->exit_request, 1);
2458 return 0;
2459 #else
2460 return 1;
2461 #endif
2464 /* Called synchronously (via signalfd) in main thread. */
2465 int kvm_on_sigbus(int code, void *addr)
2467 #ifdef KVM_HAVE_MCE_INJECTION
2468 /* Action required MCE kills the process if SIGBUS is blocked. Because
2469 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2470 * we can only get action optional here.
2472 assert(code != BUS_MCEERR_AR);
2473 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2474 return 0;
2475 #else
2476 return 1;
2477 #endif
2480 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2482 int ret;
2483 struct kvm_create_device create_dev;
2485 create_dev.type = type;
2486 create_dev.fd = -1;
2487 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2489 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2490 return -ENOTSUP;
2493 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2494 if (ret) {
2495 return ret;
2498 return test ? 0 : create_dev.fd;
2501 bool kvm_device_supported(int vmfd, uint64_t type)
2503 struct kvm_create_device create_dev = {
2504 .type = type,
2505 .fd = -1,
2506 .flags = KVM_CREATE_DEVICE_TEST,
2509 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2510 return false;
2513 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2516 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2518 struct kvm_one_reg reg;
2519 int r;
2521 reg.id = id;
2522 reg.addr = (uintptr_t) source;
2523 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2524 if (r) {
2525 trace_kvm_failed_reg_set(id, strerror(-r));
2527 return r;
2530 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2532 struct kvm_one_reg reg;
2533 int r;
2535 reg.id = id;
2536 reg.addr = (uintptr_t) target;
2537 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2538 if (r) {
2539 trace_kvm_failed_reg_get(id, strerror(-r));
2541 return r;
2544 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2546 AccelClass *ac = ACCEL_CLASS(oc);
2547 ac->name = "KVM";
2548 ac->init_machine = kvm_init;
2549 ac->allowed = &kvm_allowed;
2552 static const TypeInfo kvm_accel_type = {
2553 .name = TYPE_KVM_ACCEL,
2554 .parent = TYPE_ACCEL,
2555 .class_init = kvm_accel_class_init,
2556 .instance_size = sizeof(KVMState),
2559 static void kvm_type_init(void)
2561 type_register_static(&kvm_accel_type);
2564 type_init(kvm_type_init);