qemu: address todo comment in exec.c
[qemu.git] / block / qcow2-cluster.c
blobc11680d12afbec5f59ac3107227f5d9d5bbd01b7
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 int64_t new_l1_table_offset;
37 uint8_t data[12];
39 new_l1_size = s->l1_size;
40 if (min_size <= new_l1_size)
41 return 0;
42 if (new_l1_size == 0) {
43 new_l1_size = 1;
45 while (min_size > new_l1_size) {
46 new_l1_size = (new_l1_size * 3 + 1) / 2;
48 #ifdef DEBUG_ALLOC2
49 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
50 #endif
52 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
53 new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
54 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
56 /* write new table (align to cluster) */
57 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
58 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
59 if (new_l1_table_offset < 0) {
60 qemu_free(new_l1_table);
61 return new_l1_table_offset;
64 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
65 for(i = 0; i < s->l1_size; i++)
66 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
67 ret = bdrv_pwrite(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
68 if (ret != new_l1_size2)
69 goto fail;
70 for(i = 0; i < s->l1_size; i++)
71 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
73 /* set new table */
74 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
75 cpu_to_be32w((uint32_t*)data, new_l1_size);
76 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
77 ret = bdrv_pwrite(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
78 if (ret != sizeof(data)) {
79 goto fail;
81 qemu_free(s->l1_table);
82 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
83 s->l1_table_offset = new_l1_table_offset;
84 s->l1_table = new_l1_table;
85 s->l1_size = new_l1_size;
86 return 0;
87 fail:
88 qemu_free(new_l1_table);
89 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
90 return ret < 0 ? ret : -EIO;
93 void qcow2_l2_cache_reset(BlockDriverState *bs)
95 BDRVQcowState *s = bs->opaque;
97 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
98 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
99 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
102 static inline int l2_cache_new_entry(BlockDriverState *bs)
104 BDRVQcowState *s = bs->opaque;
105 uint32_t min_count;
106 int min_index, i;
108 /* find a new entry in the least used one */
109 min_index = 0;
110 min_count = 0xffffffff;
111 for(i = 0; i < L2_CACHE_SIZE; i++) {
112 if (s->l2_cache_counts[i] < min_count) {
113 min_count = s->l2_cache_counts[i];
114 min_index = i;
117 return min_index;
121 * seek_l2_table
123 * seek l2_offset in the l2_cache table
124 * if not found, return NULL,
125 * if found,
126 * increments the l2 cache hit count of the entry,
127 * if counter overflow, divide by two all counters
128 * return the pointer to the l2 cache entry
132 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
134 int i, j;
136 for(i = 0; i < L2_CACHE_SIZE; i++) {
137 if (l2_offset == s->l2_cache_offsets[i]) {
138 /* increment the hit count */
139 if (++s->l2_cache_counts[i] == 0xffffffff) {
140 for(j = 0; j < L2_CACHE_SIZE; j++) {
141 s->l2_cache_counts[j] >>= 1;
144 return s->l2_cache + (i << s->l2_bits);
147 return NULL;
151 * l2_load
153 * Loads a L2 table into memory. If the table is in the cache, the cache
154 * is used; otherwise the L2 table is loaded from the image file.
156 * Returns a pointer to the L2 table on success, or NULL if the read from
157 * the image file failed.
160 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
162 BDRVQcowState *s = bs->opaque;
163 int min_index;
164 uint64_t *l2_table;
166 /* seek if the table for the given offset is in the cache */
168 l2_table = seek_l2_table(s, l2_offset);
169 if (l2_table != NULL)
170 return l2_table;
172 /* not found: load a new entry in the least used one */
174 min_index = l2_cache_new_entry(bs);
175 l2_table = s->l2_cache + (min_index << s->l2_bits);
177 BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
178 if (bdrv_pread(bs->file, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
179 s->l2_size * sizeof(uint64_t))
180 return NULL;
181 s->l2_cache_offsets[min_index] = l2_offset;
182 s->l2_cache_counts[min_index] = 1;
184 return l2_table;
188 * Writes one sector of the L1 table to the disk (can't update single entries
189 * and we really don't want bdrv_pread to perform a read-modify-write)
191 #define L1_ENTRIES_PER_SECTOR (512 / 8)
192 static int write_l1_entry(BlockDriverState *bs, int l1_index)
194 BDRVQcowState *s = bs->opaque;
195 uint64_t buf[L1_ENTRIES_PER_SECTOR];
196 int l1_start_index;
197 int i, ret;
199 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
200 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
201 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
204 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
205 ret = bdrv_pwrite(bs->file, s->l1_table_offset + 8 * l1_start_index,
206 buf, sizeof(buf));
207 if (ret < 0) {
208 return ret;
211 return 0;
215 * l2_allocate
217 * Allocate a new l2 entry in the file. If l1_index points to an already
218 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
219 * table) copy the contents of the old L2 table into the newly allocated one.
220 * Otherwise the new table is initialized with zeros.
224 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
226 BDRVQcowState *s = bs->opaque;
227 int min_index;
228 uint64_t old_l2_offset;
229 uint64_t *l2_table;
230 int64_t l2_offset;
231 int ret;
233 old_l2_offset = s->l1_table[l1_index];
235 /* allocate a new l2 entry */
237 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
238 if (l2_offset < 0) {
239 return l2_offset;
242 /* update the L1 entry */
244 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
245 ret = write_l1_entry(bs, l1_index);
246 if (ret < 0) {
247 return ret;
250 /* allocate a new entry in the l2 cache */
252 min_index = l2_cache_new_entry(bs);
253 l2_table = s->l2_cache + (min_index << s->l2_bits);
255 if (old_l2_offset == 0) {
256 /* if there was no old l2 table, clear the new table */
257 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
258 } else {
259 /* if there was an old l2 table, read it from the disk */
260 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
261 ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
262 s->l2_size * sizeof(uint64_t));
263 if (ret < 0) {
264 return ret;
267 /* write the l2 table to the file */
268 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
269 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
270 s->l2_size * sizeof(uint64_t));
271 if (ret < 0) {
272 return ret;
275 /* update the l2 cache entry */
277 s->l2_cache_offsets[min_index] = l2_offset;
278 s->l2_cache_counts[min_index] = 1;
280 *table = l2_table;
281 return 0;
284 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
285 uint64_t *l2_table, uint64_t start, uint64_t mask)
287 int i;
288 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
290 if (!offset)
291 return 0;
293 for (i = start; i < start + nb_clusters; i++)
294 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
295 break;
297 return (i - start);
300 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
302 int i = 0;
304 while(nb_clusters-- && l2_table[i] == 0)
305 i++;
307 return i;
310 /* The crypt function is compatible with the linux cryptoloop
311 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
312 supported */
313 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
314 uint8_t *out_buf, const uint8_t *in_buf,
315 int nb_sectors, int enc,
316 const AES_KEY *key)
318 union {
319 uint64_t ll[2];
320 uint8_t b[16];
321 } ivec;
322 int i;
324 for(i = 0; i < nb_sectors; i++) {
325 ivec.ll[0] = cpu_to_le64(sector_num);
326 ivec.ll[1] = 0;
327 AES_cbc_encrypt(in_buf, out_buf, 512, key,
328 ivec.b, enc);
329 sector_num++;
330 in_buf += 512;
331 out_buf += 512;
336 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
337 uint8_t *buf, int nb_sectors)
339 BDRVQcowState *s = bs->opaque;
340 int ret, index_in_cluster, n, n1;
341 uint64_t cluster_offset;
343 while (nb_sectors > 0) {
344 n = nb_sectors;
345 cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
346 index_in_cluster = sector_num & (s->cluster_sectors - 1);
347 if (!cluster_offset) {
348 if (bs->backing_hd) {
349 /* read from the base image */
350 n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
351 if (n1 > 0) {
352 BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
353 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
354 if (ret < 0)
355 return -1;
357 } else {
358 memset(buf, 0, 512 * n);
360 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
361 if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
362 return -1;
363 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
364 } else {
365 BLKDBG_EVENT(bs->file, BLKDBG_READ);
366 ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
367 if (ret != n * 512)
368 return -1;
369 if (s->crypt_method) {
370 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
371 &s->aes_decrypt_key);
374 nb_sectors -= n;
375 sector_num += n;
376 buf += n * 512;
378 return 0;
381 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
382 uint64_t cluster_offset, int n_start, int n_end)
384 BDRVQcowState *s = bs->opaque;
385 int n, ret;
387 n = n_end - n_start;
388 if (n <= 0)
389 return 0;
390 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
391 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
392 if (ret < 0)
393 return ret;
394 if (s->crypt_method) {
395 qcow2_encrypt_sectors(s, start_sect + n_start,
396 s->cluster_data,
397 s->cluster_data, n, 1,
398 &s->aes_encrypt_key);
400 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
401 ret = bdrv_write(bs->file, (cluster_offset >> 9) + n_start,
402 s->cluster_data, n);
403 if (ret < 0)
404 return ret;
405 return 0;
410 * get_cluster_offset
412 * For a given offset of the disk image, return cluster offset in
413 * qcow2 file.
415 * on entry, *num is the number of contiguous clusters we'd like to
416 * access following offset.
418 * on exit, *num is the number of contiguous clusters we can read.
420 * Return 1, if the offset is found
421 * Return 0, otherwise.
425 uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
426 int *num)
428 BDRVQcowState *s = bs->opaque;
429 unsigned int l1_index, l2_index;
430 uint64_t l2_offset, *l2_table, cluster_offset;
431 int l1_bits, c;
432 unsigned int index_in_cluster, nb_clusters;
433 uint64_t nb_available, nb_needed;
435 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
436 nb_needed = *num + index_in_cluster;
438 l1_bits = s->l2_bits + s->cluster_bits;
440 /* compute how many bytes there are between the offset and
441 * the end of the l1 entry
444 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
446 /* compute the number of available sectors */
448 nb_available = (nb_available >> 9) + index_in_cluster;
450 if (nb_needed > nb_available) {
451 nb_needed = nb_available;
454 cluster_offset = 0;
456 /* seek the the l2 offset in the l1 table */
458 l1_index = offset >> l1_bits;
459 if (l1_index >= s->l1_size)
460 goto out;
462 l2_offset = s->l1_table[l1_index];
464 /* seek the l2 table of the given l2 offset */
466 if (!l2_offset)
467 goto out;
469 /* load the l2 table in memory */
471 l2_offset &= ~QCOW_OFLAG_COPIED;
472 l2_table = l2_load(bs, l2_offset);
473 if (l2_table == NULL)
474 return 0;
476 /* find the cluster offset for the given disk offset */
478 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
479 cluster_offset = be64_to_cpu(l2_table[l2_index]);
480 nb_clusters = size_to_clusters(s, nb_needed << 9);
482 if (!cluster_offset) {
483 /* how many empty clusters ? */
484 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
485 } else {
486 /* how many allocated clusters ? */
487 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
488 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
491 nb_available = (c * s->cluster_sectors);
492 out:
493 if (nb_available > nb_needed)
494 nb_available = nb_needed;
496 *num = nb_available - index_in_cluster;
498 return cluster_offset & ~QCOW_OFLAG_COPIED;
502 * get_cluster_table
504 * for a given disk offset, load (and allocate if needed)
505 * the l2 table.
507 * the l2 table offset in the qcow2 file and the cluster index
508 * in the l2 table are given to the caller.
510 * Returns 0 on success, -errno in failure case
512 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
513 uint64_t **new_l2_table,
514 uint64_t *new_l2_offset,
515 int *new_l2_index)
517 BDRVQcowState *s = bs->opaque;
518 unsigned int l1_index, l2_index;
519 uint64_t l2_offset;
520 uint64_t *l2_table = NULL;
521 int ret;
523 /* seek the the l2 offset in the l1 table */
525 l1_index = offset >> (s->l2_bits + s->cluster_bits);
526 if (l1_index >= s->l1_size) {
527 ret = qcow2_grow_l1_table(bs, l1_index + 1);
528 if (ret < 0) {
529 return ret;
532 l2_offset = s->l1_table[l1_index];
534 /* seek the l2 table of the given l2 offset */
536 if (l2_offset & QCOW_OFLAG_COPIED) {
537 /* load the l2 table in memory */
538 l2_offset &= ~QCOW_OFLAG_COPIED;
539 l2_table = l2_load(bs, l2_offset);
540 if (l2_table == NULL) {
541 return -EIO;
543 } else {
544 if (l2_offset)
545 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
546 ret = l2_allocate(bs, l1_index, &l2_table);
547 if (ret < 0) {
548 return ret;
550 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
553 /* find the cluster offset for the given disk offset */
555 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
557 *new_l2_table = l2_table;
558 *new_l2_offset = l2_offset;
559 *new_l2_index = l2_index;
561 return 0;
565 * alloc_compressed_cluster_offset
567 * For a given offset of the disk image, return cluster offset in
568 * qcow2 file.
570 * If the offset is not found, allocate a new compressed cluster.
572 * Return the cluster offset if successful,
573 * Return 0, otherwise.
577 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
578 uint64_t offset,
579 int compressed_size)
581 BDRVQcowState *s = bs->opaque;
582 int l2_index, ret;
583 uint64_t l2_offset, *l2_table;
584 int64_t cluster_offset;
585 int nb_csectors;
587 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
588 if (ret < 0) {
589 return 0;
592 cluster_offset = be64_to_cpu(l2_table[l2_index]);
593 if (cluster_offset & QCOW_OFLAG_COPIED)
594 return cluster_offset & ~QCOW_OFLAG_COPIED;
596 if (cluster_offset)
597 qcow2_free_any_clusters(bs, cluster_offset, 1);
599 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
600 if (cluster_offset < 0) {
601 return 0;
604 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
605 (cluster_offset >> 9);
607 cluster_offset |= QCOW_OFLAG_COMPRESSED |
608 ((uint64_t)nb_csectors << s->csize_shift);
610 /* update L2 table */
612 /* compressed clusters never have the copied flag */
614 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
615 l2_table[l2_index] = cpu_to_be64(cluster_offset);
616 if (bdrv_pwrite(bs->file,
617 l2_offset + l2_index * sizeof(uint64_t),
618 l2_table + l2_index,
619 sizeof(uint64_t)) != sizeof(uint64_t))
620 return 0;
622 return cluster_offset;
626 * Write L2 table updates to disk, writing whole sectors to avoid a
627 * read-modify-write in bdrv_pwrite
629 #define L2_ENTRIES_PER_SECTOR (512 / 8)
630 static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
631 uint64_t l2_offset, int l2_index, int num)
633 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
634 int start_offset = (8 * l2_index) & ~511;
635 int end_offset = (8 * (l2_index + num) + 511) & ~511;
636 size_t len = end_offset - start_offset;
637 int ret;
639 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
640 ret = bdrv_pwrite(bs->file, l2_offset + start_offset,
641 &l2_table[l2_start_index], len);
642 if (ret < 0) {
643 return ret;
646 return 0;
649 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
651 BDRVQcowState *s = bs->opaque;
652 int i, j = 0, l2_index, ret;
653 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
654 uint64_t cluster_offset = m->cluster_offset;
656 if (m->nb_clusters == 0)
657 return 0;
659 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
661 /* copy content of unmodified sectors */
662 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
663 if (m->n_start) {
664 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
665 if (ret < 0)
666 goto err;
669 if (m->nb_available & (s->cluster_sectors - 1)) {
670 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
671 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
672 m->nb_available - end, s->cluster_sectors);
673 if (ret < 0)
674 goto err;
677 /* update L2 table */
678 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
679 if (ret < 0) {
680 goto err;
683 for (i = 0; i < m->nb_clusters; i++) {
684 /* if two concurrent writes happen to the same unallocated cluster
685 * each write allocates separate cluster and writes data concurrently.
686 * The first one to complete updates l2 table with pointer to its
687 * cluster the second one has to do RMW (which is done above by
688 * copy_sectors()), update l2 table with its cluster pointer and free
689 * old cluster. This is what this loop does */
690 if(l2_table[l2_index + i] != 0)
691 old_cluster[j++] = l2_table[l2_index + i];
693 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
694 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
697 ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
698 if (ret < 0) {
699 goto err;
702 for (i = 0; i < j; i++)
703 qcow2_free_any_clusters(bs,
704 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
706 ret = 0;
707 err:
708 qemu_free(old_cluster);
709 return ret;
713 * alloc_cluster_offset
715 * For a given offset of the disk image, return cluster offset in qcow2 file.
716 * If the offset is not found, allocate a new cluster.
718 * If the cluster was already allocated, m->nb_clusters is set to 0,
719 * m->depends_on is set to NULL and the other fields in m are meaningless.
721 * If the cluster is newly allocated, m->nb_clusters is set to the number of
722 * contiguous clusters that have been allocated. This may be 0 if the request
723 * conflict with another write request in flight; in this case, m->depends_on
724 * is set and the remaining fields of m are meaningless.
726 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
727 * information about the first allocated cluster.
729 * Return 0 on success and -errno in error cases
731 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
732 int n_start, int n_end, int *num, QCowL2Meta *m)
734 BDRVQcowState *s = bs->opaque;
735 int l2_index, ret;
736 uint64_t l2_offset, *l2_table;
737 int64_t cluster_offset;
738 unsigned int nb_clusters, i = 0;
739 QCowL2Meta *old_alloc;
741 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
742 if (ret < 0) {
743 return ret;
746 nb_clusters = size_to_clusters(s, n_end << 9);
748 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
750 cluster_offset = be64_to_cpu(l2_table[l2_index]);
752 /* We keep all QCOW_OFLAG_COPIED clusters */
754 if (cluster_offset & QCOW_OFLAG_COPIED) {
755 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
756 &l2_table[l2_index], 0, 0);
758 cluster_offset &= ~QCOW_OFLAG_COPIED;
759 m->nb_clusters = 0;
760 m->depends_on = NULL;
762 goto out;
765 /* for the moment, multiple compressed clusters are not managed */
767 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
768 nb_clusters = 1;
770 /* how many available clusters ? */
772 while (i < nb_clusters) {
773 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
774 &l2_table[l2_index], i, 0);
775 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
776 break;
779 i += count_contiguous_free_clusters(nb_clusters - i,
780 &l2_table[l2_index + i]);
781 if (i >= nb_clusters) {
782 break;
785 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
787 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
788 (cluster_offset & QCOW_OFLAG_COMPRESSED))
789 break;
791 assert(i <= nb_clusters);
792 nb_clusters = i;
795 * Check if there already is an AIO write request in flight which allocates
796 * the same cluster. In this case we need to wait until the previous
797 * request has completed and updated the L2 table accordingly.
799 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
801 uint64_t end_offset = offset + nb_clusters * s->cluster_size;
802 uint64_t old_offset = old_alloc->offset;
803 uint64_t old_end_offset = old_alloc->offset +
804 old_alloc->nb_clusters * s->cluster_size;
806 if (end_offset < old_offset || offset > old_end_offset) {
807 /* No intersection */
808 } else {
809 if (offset < old_offset) {
810 /* Stop at the start of a running allocation */
811 nb_clusters = (old_offset - offset) >> s->cluster_bits;
812 } else {
813 nb_clusters = 0;
816 if (nb_clusters == 0) {
817 /* Set dependency and wait for a callback */
818 m->depends_on = old_alloc;
819 m->nb_clusters = 0;
820 *num = 0;
821 return 0;
826 if (!nb_clusters) {
827 abort();
830 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
832 /* allocate a new cluster */
834 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
835 if (cluster_offset < 0) {
836 QLIST_REMOVE(m, next_in_flight);
837 return cluster_offset;
840 /* save info needed for meta data update */
841 m->offset = offset;
842 m->n_start = n_start;
843 m->nb_clusters = nb_clusters;
845 out:
846 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
847 m->cluster_offset = cluster_offset;
849 *num = m->nb_available - n_start;
851 return 0;
854 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
855 const uint8_t *buf, int buf_size)
857 z_stream strm1, *strm = &strm1;
858 int ret, out_len;
860 memset(strm, 0, sizeof(*strm));
862 strm->next_in = (uint8_t *)buf;
863 strm->avail_in = buf_size;
864 strm->next_out = out_buf;
865 strm->avail_out = out_buf_size;
867 ret = inflateInit2(strm, -12);
868 if (ret != Z_OK)
869 return -1;
870 ret = inflate(strm, Z_FINISH);
871 out_len = strm->next_out - out_buf;
872 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
873 out_len != out_buf_size) {
874 inflateEnd(strm);
875 return -1;
877 inflateEnd(strm);
878 return 0;
881 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
883 BDRVQcowState *s = bs->opaque;
884 int ret, csize, nb_csectors, sector_offset;
885 uint64_t coffset;
887 coffset = cluster_offset & s->cluster_offset_mask;
888 if (s->cluster_cache_offset != coffset) {
889 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
890 sector_offset = coffset & 511;
891 csize = nb_csectors * 512 - sector_offset;
892 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
893 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
894 if (ret < 0) {
895 return -1;
897 if (decompress_buffer(s->cluster_cache, s->cluster_size,
898 s->cluster_data + sector_offset, csize) < 0) {
899 return -1;
901 s->cluster_cache_offset = coffset;
903 return 0;