kvm: kvm_log_sync() is only called with known memory sections
[qemu.git] / accel / kvm / kvm-all.c
bloba8083e80be4b46d3648d087592b1c60c96a8bd08
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
50 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 #define PAGE_SIZE getpagesize()
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #define KVM_MSI_HASHTAB_SIZE 256
66 struct KVMParkedVcpu {
67 unsigned long vcpu_id;
68 int kvm_fd;
69 QLIST_ENTRY(KVMParkedVcpu) node;
72 struct KVMState
74 AccelState parent_obj;
76 int nr_slots;
77 int fd;
78 int vmfd;
79 int coalesced_mmio;
80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81 bool coalesced_flush_in_progress;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int many_ioeventfds;
89 int intx_set_mask;
90 /* The man page (and posix) say ioctl numbers are signed int, but
91 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
92 * unsigned, and treating them as signed here can break things */
93 unsigned irq_set_ioctl;
94 unsigned int sigmask_len;
95 GHashTable *gsimap;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 unsigned long *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 #endif
103 KVMMemoryListener memory_listener;
104 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_split_irqchip;
110 bool kvm_async_interrupts_allowed;
111 bool kvm_halt_in_kernel_allowed;
112 bool kvm_eventfds_allowed;
113 bool kvm_irqfds_allowed;
114 bool kvm_resamplefds_allowed;
115 bool kvm_msi_via_irqfd_allowed;
116 bool kvm_gsi_routing_allowed;
117 bool kvm_gsi_direct_mapping;
118 bool kvm_allowed;
119 bool kvm_readonly_mem_allowed;
120 bool kvm_vm_attributes_allowed;
121 bool kvm_direct_msi_allowed;
122 bool kvm_ioeventfd_any_length_allowed;
123 bool kvm_msi_use_devid;
124 static bool kvm_immediate_exit;
126 static const KVMCapabilityInfo kvm_required_capabilites[] = {
127 KVM_CAP_INFO(USER_MEMORY),
128 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
129 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
130 KVM_CAP_LAST_INFO
133 int kvm_get_max_memslots(void)
135 KVMState *s = KVM_STATE(current_machine->accelerator);
137 return s->nr_slots;
140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
142 KVMState *s = kvm_state;
143 int i;
145 for (i = 0; i < s->nr_slots; i++) {
146 if (kml->slots[i].memory_size == 0) {
147 return &kml->slots[i];
151 return NULL;
154 bool kvm_has_free_slot(MachineState *ms)
156 KVMState *s = KVM_STATE(ms->accelerator);
158 return kvm_get_free_slot(&s->memory_listener);
161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
163 KVMSlot *slot = kvm_get_free_slot(kml);
165 if (slot) {
166 return slot;
169 fprintf(stderr, "%s: no free slot available\n", __func__);
170 abort();
173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
174 hwaddr start_addr,
175 hwaddr size)
177 KVMState *s = kvm_state;
178 int i;
180 for (i = 0; i < s->nr_slots; i++) {
181 KVMSlot *mem = &kml->slots[i];
183 if (start_addr == mem->start_addr && size == mem->memory_size) {
184 return mem;
188 return NULL;
192 * Calculate and align the start address and the size of the section.
193 * Return the size. If the size is 0, the aligned section is empty.
195 static hwaddr kvm_align_section(MemoryRegionSection *section,
196 hwaddr *start)
198 hwaddr size = int128_get64(section->size);
199 hwaddr delta;
201 *start = section->offset_within_address_space;
203 /* kvm works in page size chunks, but the function may be called
204 with sub-page size and unaligned start address. Pad the start
205 address to next and truncate size to previous page boundary. */
206 delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask);
207 delta &= ~qemu_real_host_page_mask;
208 *start += delta;
209 if (delta > size) {
210 return 0;
212 size -= delta;
213 size &= qemu_real_host_page_mask;
214 if (*start & ~qemu_real_host_page_mask) {
215 return 0;
218 return size;
221 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
222 hwaddr *phys_addr)
224 KVMMemoryListener *kml = &s->memory_listener;
225 int i;
227 for (i = 0; i < s->nr_slots; i++) {
228 KVMSlot *mem = &kml->slots[i];
230 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
231 *phys_addr = mem->start_addr + (ram - mem->ram);
232 return 1;
236 return 0;
239 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
241 KVMState *s = kvm_state;
242 struct kvm_userspace_memory_region mem;
244 mem.slot = slot->slot | (kml->as_id << 16);
245 mem.guest_phys_addr = slot->start_addr;
246 mem.userspace_addr = (unsigned long)slot->ram;
247 mem.flags = slot->flags;
249 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
250 /* Set the slot size to 0 before setting the slot to the desired
251 * value. This is needed based on KVM commit 75d61fbc. */
252 mem.memory_size = 0;
253 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
255 mem.memory_size = slot->memory_size;
256 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
259 int kvm_destroy_vcpu(CPUState *cpu)
261 KVMState *s = kvm_state;
262 long mmap_size;
263 struct KVMParkedVcpu *vcpu = NULL;
264 int ret = 0;
266 DPRINTF("kvm_destroy_vcpu\n");
268 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
269 if (mmap_size < 0) {
270 ret = mmap_size;
271 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
272 goto err;
275 ret = munmap(cpu->kvm_run, mmap_size);
276 if (ret < 0) {
277 goto err;
280 vcpu = g_malloc0(sizeof(*vcpu));
281 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
282 vcpu->kvm_fd = cpu->kvm_fd;
283 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
284 err:
285 return ret;
288 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
290 struct KVMParkedVcpu *cpu;
292 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
293 if (cpu->vcpu_id == vcpu_id) {
294 int kvm_fd;
296 QLIST_REMOVE(cpu, node);
297 kvm_fd = cpu->kvm_fd;
298 g_free(cpu);
299 return kvm_fd;
303 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
306 int kvm_init_vcpu(CPUState *cpu)
308 KVMState *s = kvm_state;
309 long mmap_size;
310 int ret;
312 DPRINTF("kvm_init_vcpu\n");
314 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
315 if (ret < 0) {
316 DPRINTF("kvm_create_vcpu failed\n");
317 goto err;
320 cpu->kvm_fd = ret;
321 cpu->kvm_state = s;
322 cpu->vcpu_dirty = true;
324 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
325 if (mmap_size < 0) {
326 ret = mmap_size;
327 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
328 goto err;
331 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
332 cpu->kvm_fd, 0);
333 if (cpu->kvm_run == MAP_FAILED) {
334 ret = -errno;
335 DPRINTF("mmap'ing vcpu state failed\n");
336 goto err;
339 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
340 s->coalesced_mmio_ring =
341 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
344 ret = kvm_arch_init_vcpu(cpu);
345 err:
346 return ret;
350 * dirty pages logging control
353 static int kvm_mem_flags(MemoryRegion *mr)
355 bool readonly = mr->readonly || memory_region_is_romd(mr);
356 int flags = 0;
358 if (memory_region_get_dirty_log_mask(mr) != 0) {
359 flags |= KVM_MEM_LOG_DIRTY_PAGES;
361 if (readonly && kvm_readonly_mem_allowed) {
362 flags |= KVM_MEM_READONLY;
364 return flags;
367 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
368 MemoryRegion *mr)
370 int old_flags;
372 old_flags = mem->flags;
373 mem->flags = kvm_mem_flags(mr);
375 /* If nothing changed effectively, no need to issue ioctl */
376 if (mem->flags == old_flags) {
377 return 0;
380 return kvm_set_user_memory_region(kml, mem);
383 static int kvm_section_update_flags(KVMMemoryListener *kml,
384 MemoryRegionSection *section)
386 hwaddr start_addr, size;
387 KVMSlot *mem;
389 size = kvm_align_section(section, &start_addr);
390 if (!size) {
391 return 0;
394 mem = kvm_lookup_matching_slot(kml, start_addr, size);
395 if (!mem) {
396 fprintf(stderr, "%s: error finding slot\n", __func__);
397 abort();
400 return kvm_slot_update_flags(kml, mem, section->mr);
403 static void kvm_log_start(MemoryListener *listener,
404 MemoryRegionSection *section,
405 int old, int new)
407 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
408 int r;
410 if (old != 0) {
411 return;
414 r = kvm_section_update_flags(kml, section);
415 if (r < 0) {
416 abort();
420 static void kvm_log_stop(MemoryListener *listener,
421 MemoryRegionSection *section,
422 int old, int new)
424 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
425 int r;
427 if (new != 0) {
428 return;
431 r = kvm_section_update_flags(kml, section);
432 if (r < 0) {
433 abort();
437 /* get kvm's dirty pages bitmap and update qemu's */
438 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
439 unsigned long *bitmap)
441 ram_addr_t start = section->offset_within_region +
442 memory_region_get_ram_addr(section->mr);
443 ram_addr_t pages = int128_get64(section->size) / getpagesize();
445 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
446 return 0;
449 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
452 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
453 * This function updates qemu's dirty bitmap using
454 * memory_region_set_dirty(). This means all bits are set
455 * to dirty.
457 * @start_add: start of logged region.
458 * @end_addr: end of logged region.
460 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
461 MemoryRegionSection *section)
463 KVMState *s = kvm_state;
464 struct kvm_dirty_log d = {};
465 KVMSlot *mem;
466 hwaddr start_addr, size;
468 size = kvm_align_section(section, &start_addr);
469 if (size) {
470 mem = kvm_lookup_matching_slot(kml, start_addr, size);
471 if (!mem) {
472 fprintf(stderr, "%s: error finding slot\n", __func__);
473 abort();
476 /* XXX bad kernel interface alert
477 * For dirty bitmap, kernel allocates array of size aligned to
478 * bits-per-long. But for case when the kernel is 64bits and
479 * the userspace is 32bits, userspace can't align to the same
480 * bits-per-long, since sizeof(long) is different between kernel
481 * and user space. This way, userspace will provide buffer which
482 * may be 4 bytes less than the kernel will use, resulting in
483 * userspace memory corruption (which is not detectable by valgrind
484 * too, in most cases).
485 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
486 * a hope that sizeof(long) won't become >8 any time soon.
488 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
489 /*HOST_LONG_BITS*/ 64) / 8;
490 d.dirty_bitmap = g_malloc0(size);
492 d.slot = mem->slot | (kml->as_id << 16);
493 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
494 DPRINTF("ioctl failed %d\n", errno);
495 g_free(d.dirty_bitmap);
496 return -1;
499 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
500 g_free(d.dirty_bitmap);
503 return 0;
506 static void kvm_coalesce_mmio_region(MemoryListener *listener,
507 MemoryRegionSection *secion,
508 hwaddr start, hwaddr size)
510 KVMState *s = kvm_state;
512 if (s->coalesced_mmio) {
513 struct kvm_coalesced_mmio_zone zone;
515 zone.addr = start;
516 zone.size = size;
517 zone.pad = 0;
519 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
523 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
524 MemoryRegionSection *secion,
525 hwaddr start, hwaddr size)
527 KVMState *s = kvm_state;
529 if (s->coalesced_mmio) {
530 struct kvm_coalesced_mmio_zone zone;
532 zone.addr = start;
533 zone.size = size;
534 zone.pad = 0;
536 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
540 int kvm_check_extension(KVMState *s, unsigned int extension)
542 int ret;
544 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
545 if (ret < 0) {
546 ret = 0;
549 return ret;
552 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
554 int ret;
556 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
557 if (ret < 0) {
558 /* VM wide version not implemented, use global one instead */
559 ret = kvm_check_extension(s, extension);
562 return ret;
565 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
567 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
568 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
569 * endianness, but the memory core hands them in target endianness.
570 * For example, PPC is always treated as big-endian even if running
571 * on KVM and on PPC64LE. Correct here.
573 switch (size) {
574 case 2:
575 val = bswap16(val);
576 break;
577 case 4:
578 val = bswap32(val);
579 break;
581 #endif
582 return val;
585 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
586 bool assign, uint32_t size, bool datamatch)
588 int ret;
589 struct kvm_ioeventfd iofd = {
590 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
591 .addr = addr,
592 .len = size,
593 .flags = 0,
594 .fd = fd,
597 if (!kvm_enabled()) {
598 return -ENOSYS;
601 if (datamatch) {
602 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
604 if (!assign) {
605 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
608 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
610 if (ret < 0) {
611 return -errno;
614 return 0;
617 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
618 bool assign, uint32_t size, bool datamatch)
620 struct kvm_ioeventfd kick = {
621 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
622 .addr = addr,
623 .flags = KVM_IOEVENTFD_FLAG_PIO,
624 .len = size,
625 .fd = fd,
627 int r;
628 if (!kvm_enabled()) {
629 return -ENOSYS;
631 if (datamatch) {
632 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
634 if (!assign) {
635 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
637 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
638 if (r < 0) {
639 return r;
641 return 0;
645 static int kvm_check_many_ioeventfds(void)
647 /* Userspace can use ioeventfd for io notification. This requires a host
648 * that supports eventfd(2) and an I/O thread; since eventfd does not
649 * support SIGIO it cannot interrupt the vcpu.
651 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
652 * can avoid creating too many ioeventfds.
654 #if defined(CONFIG_EVENTFD)
655 int ioeventfds[7];
656 int i, ret = 0;
657 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
658 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
659 if (ioeventfds[i] < 0) {
660 break;
662 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
663 if (ret < 0) {
664 close(ioeventfds[i]);
665 break;
669 /* Decide whether many devices are supported or not */
670 ret = i == ARRAY_SIZE(ioeventfds);
672 while (i-- > 0) {
673 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
674 close(ioeventfds[i]);
676 return ret;
677 #else
678 return 0;
679 #endif
682 static const KVMCapabilityInfo *
683 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
685 while (list->name) {
686 if (!kvm_check_extension(s, list->value)) {
687 return list;
689 list++;
691 return NULL;
694 static void kvm_set_phys_mem(KVMMemoryListener *kml,
695 MemoryRegionSection *section, bool add)
697 KVMSlot *mem;
698 int err;
699 MemoryRegion *mr = section->mr;
700 bool writeable = !mr->readonly && !mr->rom_device;
701 hwaddr start_addr, size;
702 void *ram;
704 if (!memory_region_is_ram(mr)) {
705 if (writeable || !kvm_readonly_mem_allowed) {
706 return;
707 } else if (!mr->romd_mode) {
708 /* If the memory device is not in romd_mode, then we actually want
709 * to remove the kvm memory slot so all accesses will trap. */
710 add = false;
714 size = kvm_align_section(section, &start_addr);
715 if (!size) {
716 return;
719 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
720 (section->offset_within_address_space - start_addr);
722 mem = kvm_lookup_matching_slot(kml, start_addr, size);
723 if (!add) {
724 if (!mem) {
725 g_assert(!memory_region_is_ram(mr) && !writeable && !mr->romd_mode);
726 return;
728 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
729 kvm_physical_sync_dirty_bitmap(kml, section);
732 /* unregister the slot */
733 mem->memory_size = 0;
734 err = kvm_set_user_memory_region(kml, mem);
735 if (err) {
736 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
737 __func__, strerror(-err));
738 abort();
740 return;
743 if (mem) {
744 /* update the slot */
745 kvm_slot_update_flags(kml, mem, mr);
746 return;
749 /* register the new slot */
750 mem = kvm_alloc_slot(kml);
751 mem->memory_size = size;
752 mem->start_addr = start_addr;
753 mem->ram = ram;
754 mem->flags = kvm_mem_flags(mr);
756 err = kvm_set_user_memory_region(kml, mem);
757 if (err) {
758 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
759 strerror(-err));
760 abort();
764 static void kvm_region_add(MemoryListener *listener,
765 MemoryRegionSection *section)
767 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
769 memory_region_ref(section->mr);
770 kvm_set_phys_mem(kml, section, true);
773 static void kvm_region_del(MemoryListener *listener,
774 MemoryRegionSection *section)
776 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
778 kvm_set_phys_mem(kml, section, false);
779 memory_region_unref(section->mr);
782 static void kvm_log_sync(MemoryListener *listener,
783 MemoryRegionSection *section)
785 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
786 int r;
788 r = kvm_physical_sync_dirty_bitmap(kml, section);
789 if (r < 0) {
790 abort();
794 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
795 MemoryRegionSection *section,
796 bool match_data, uint64_t data,
797 EventNotifier *e)
799 int fd = event_notifier_get_fd(e);
800 int r;
802 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
803 data, true, int128_get64(section->size),
804 match_data);
805 if (r < 0) {
806 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
807 __func__, strerror(-r));
808 abort();
812 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
813 MemoryRegionSection *section,
814 bool match_data, uint64_t data,
815 EventNotifier *e)
817 int fd = event_notifier_get_fd(e);
818 int r;
820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
821 data, false, int128_get64(section->size),
822 match_data);
823 if (r < 0) {
824 abort();
828 static void kvm_io_ioeventfd_add(MemoryListener *listener,
829 MemoryRegionSection *section,
830 bool match_data, uint64_t data,
831 EventNotifier *e)
833 int fd = event_notifier_get_fd(e);
834 int r;
836 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
837 data, true, int128_get64(section->size),
838 match_data);
839 if (r < 0) {
840 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
841 __func__, strerror(-r));
842 abort();
846 static void kvm_io_ioeventfd_del(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
849 EventNotifier *e)
852 int fd = event_notifier_get_fd(e);
853 int r;
855 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
856 data, false, int128_get64(section->size),
857 match_data);
858 if (r < 0) {
859 abort();
863 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
864 AddressSpace *as, int as_id)
866 int i;
868 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
869 kml->as_id = as_id;
871 for (i = 0; i < s->nr_slots; i++) {
872 kml->slots[i].slot = i;
875 kml->listener.region_add = kvm_region_add;
876 kml->listener.region_del = kvm_region_del;
877 kml->listener.log_start = kvm_log_start;
878 kml->listener.log_stop = kvm_log_stop;
879 kml->listener.log_sync = kvm_log_sync;
880 kml->listener.priority = 10;
882 memory_listener_register(&kml->listener, as);
885 static MemoryListener kvm_io_listener = {
886 .eventfd_add = kvm_io_ioeventfd_add,
887 .eventfd_del = kvm_io_ioeventfd_del,
888 .priority = 10,
891 int kvm_set_irq(KVMState *s, int irq, int level)
893 struct kvm_irq_level event;
894 int ret;
896 assert(kvm_async_interrupts_enabled());
898 event.level = level;
899 event.irq = irq;
900 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
901 if (ret < 0) {
902 perror("kvm_set_irq");
903 abort();
906 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
909 #ifdef KVM_CAP_IRQ_ROUTING
910 typedef struct KVMMSIRoute {
911 struct kvm_irq_routing_entry kroute;
912 QTAILQ_ENTRY(KVMMSIRoute) entry;
913 } KVMMSIRoute;
915 static void set_gsi(KVMState *s, unsigned int gsi)
917 set_bit(gsi, s->used_gsi_bitmap);
920 static void clear_gsi(KVMState *s, unsigned int gsi)
922 clear_bit(gsi, s->used_gsi_bitmap);
925 void kvm_init_irq_routing(KVMState *s)
927 int gsi_count, i;
929 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
930 if (gsi_count > 0) {
931 /* Round up so we can search ints using ffs */
932 s->used_gsi_bitmap = bitmap_new(gsi_count);
933 s->gsi_count = gsi_count;
936 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
937 s->nr_allocated_irq_routes = 0;
939 if (!kvm_direct_msi_allowed) {
940 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
941 QTAILQ_INIT(&s->msi_hashtab[i]);
945 kvm_arch_init_irq_routing(s);
948 void kvm_irqchip_commit_routes(KVMState *s)
950 int ret;
952 if (kvm_gsi_direct_mapping()) {
953 return;
956 if (!kvm_gsi_routing_enabled()) {
957 return;
960 s->irq_routes->flags = 0;
961 trace_kvm_irqchip_commit_routes();
962 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
963 assert(ret == 0);
966 static void kvm_add_routing_entry(KVMState *s,
967 struct kvm_irq_routing_entry *entry)
969 struct kvm_irq_routing_entry *new;
970 int n, size;
972 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
973 n = s->nr_allocated_irq_routes * 2;
974 if (n < 64) {
975 n = 64;
977 size = sizeof(struct kvm_irq_routing);
978 size += n * sizeof(*new);
979 s->irq_routes = g_realloc(s->irq_routes, size);
980 s->nr_allocated_irq_routes = n;
982 n = s->irq_routes->nr++;
983 new = &s->irq_routes->entries[n];
985 *new = *entry;
987 set_gsi(s, entry->gsi);
990 static int kvm_update_routing_entry(KVMState *s,
991 struct kvm_irq_routing_entry *new_entry)
993 struct kvm_irq_routing_entry *entry;
994 int n;
996 for (n = 0; n < s->irq_routes->nr; n++) {
997 entry = &s->irq_routes->entries[n];
998 if (entry->gsi != new_entry->gsi) {
999 continue;
1002 if(!memcmp(entry, new_entry, sizeof *entry)) {
1003 return 0;
1006 *entry = *new_entry;
1008 return 0;
1011 return -ESRCH;
1014 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1016 struct kvm_irq_routing_entry e = {};
1018 assert(pin < s->gsi_count);
1020 e.gsi = irq;
1021 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1022 e.flags = 0;
1023 e.u.irqchip.irqchip = irqchip;
1024 e.u.irqchip.pin = pin;
1025 kvm_add_routing_entry(s, &e);
1028 void kvm_irqchip_release_virq(KVMState *s, int virq)
1030 struct kvm_irq_routing_entry *e;
1031 int i;
1033 if (kvm_gsi_direct_mapping()) {
1034 return;
1037 for (i = 0; i < s->irq_routes->nr; i++) {
1038 e = &s->irq_routes->entries[i];
1039 if (e->gsi == virq) {
1040 s->irq_routes->nr--;
1041 *e = s->irq_routes->entries[s->irq_routes->nr];
1044 clear_gsi(s, virq);
1045 kvm_arch_release_virq_post(virq);
1046 trace_kvm_irqchip_release_virq(virq);
1049 static unsigned int kvm_hash_msi(uint32_t data)
1051 /* This is optimized for IA32 MSI layout. However, no other arch shall
1052 * repeat the mistake of not providing a direct MSI injection API. */
1053 return data & 0xff;
1056 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1058 KVMMSIRoute *route, *next;
1059 unsigned int hash;
1061 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1062 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1063 kvm_irqchip_release_virq(s, route->kroute.gsi);
1064 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1065 g_free(route);
1070 static int kvm_irqchip_get_virq(KVMState *s)
1072 int next_virq;
1075 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1076 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1077 * number can succeed even though a new route entry cannot be added.
1078 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1080 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1081 kvm_flush_dynamic_msi_routes(s);
1084 /* Return the lowest unused GSI in the bitmap */
1085 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1086 if (next_virq >= s->gsi_count) {
1087 return -ENOSPC;
1088 } else {
1089 return next_virq;
1093 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1095 unsigned int hash = kvm_hash_msi(msg.data);
1096 KVMMSIRoute *route;
1098 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1099 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1100 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1101 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1102 return route;
1105 return NULL;
1108 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1110 struct kvm_msi msi;
1111 KVMMSIRoute *route;
1113 if (kvm_direct_msi_allowed) {
1114 msi.address_lo = (uint32_t)msg.address;
1115 msi.address_hi = msg.address >> 32;
1116 msi.data = le32_to_cpu(msg.data);
1117 msi.flags = 0;
1118 memset(msi.pad, 0, sizeof(msi.pad));
1120 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1123 route = kvm_lookup_msi_route(s, msg);
1124 if (!route) {
1125 int virq;
1127 virq = kvm_irqchip_get_virq(s);
1128 if (virq < 0) {
1129 return virq;
1132 route = g_malloc0(sizeof(KVMMSIRoute));
1133 route->kroute.gsi = virq;
1134 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1135 route->kroute.flags = 0;
1136 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1137 route->kroute.u.msi.address_hi = msg.address >> 32;
1138 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1140 kvm_add_routing_entry(s, &route->kroute);
1141 kvm_irqchip_commit_routes(s);
1143 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1144 entry);
1147 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1149 return kvm_set_irq(s, route->kroute.gsi, 1);
1152 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1154 struct kvm_irq_routing_entry kroute = {};
1155 int virq;
1156 MSIMessage msg = {0, 0};
1158 if (pci_available && dev) {
1159 msg = pci_get_msi_message(dev, vector);
1162 if (kvm_gsi_direct_mapping()) {
1163 return kvm_arch_msi_data_to_gsi(msg.data);
1166 if (!kvm_gsi_routing_enabled()) {
1167 return -ENOSYS;
1170 virq = kvm_irqchip_get_virq(s);
1171 if (virq < 0) {
1172 return virq;
1175 kroute.gsi = virq;
1176 kroute.type = KVM_IRQ_ROUTING_MSI;
1177 kroute.flags = 0;
1178 kroute.u.msi.address_lo = (uint32_t)msg.address;
1179 kroute.u.msi.address_hi = msg.address >> 32;
1180 kroute.u.msi.data = le32_to_cpu(msg.data);
1181 if (pci_available && kvm_msi_devid_required()) {
1182 kroute.flags = KVM_MSI_VALID_DEVID;
1183 kroute.u.msi.devid = pci_requester_id(dev);
1185 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1186 kvm_irqchip_release_virq(s, virq);
1187 return -EINVAL;
1190 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1191 vector, virq);
1193 kvm_add_routing_entry(s, &kroute);
1194 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1195 kvm_irqchip_commit_routes(s);
1197 return virq;
1200 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1201 PCIDevice *dev)
1203 struct kvm_irq_routing_entry kroute = {};
1205 if (kvm_gsi_direct_mapping()) {
1206 return 0;
1209 if (!kvm_irqchip_in_kernel()) {
1210 return -ENOSYS;
1213 kroute.gsi = virq;
1214 kroute.type = KVM_IRQ_ROUTING_MSI;
1215 kroute.flags = 0;
1216 kroute.u.msi.address_lo = (uint32_t)msg.address;
1217 kroute.u.msi.address_hi = msg.address >> 32;
1218 kroute.u.msi.data = le32_to_cpu(msg.data);
1219 if (pci_available && kvm_msi_devid_required()) {
1220 kroute.flags = KVM_MSI_VALID_DEVID;
1221 kroute.u.msi.devid = pci_requester_id(dev);
1223 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1224 return -EINVAL;
1227 trace_kvm_irqchip_update_msi_route(virq);
1229 return kvm_update_routing_entry(s, &kroute);
1232 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1233 bool assign)
1235 struct kvm_irqfd irqfd = {
1236 .fd = fd,
1237 .gsi = virq,
1238 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1241 if (rfd != -1) {
1242 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1243 irqfd.resamplefd = rfd;
1246 if (!kvm_irqfds_enabled()) {
1247 return -ENOSYS;
1250 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1253 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1255 struct kvm_irq_routing_entry kroute = {};
1256 int virq;
1258 if (!kvm_gsi_routing_enabled()) {
1259 return -ENOSYS;
1262 virq = kvm_irqchip_get_virq(s);
1263 if (virq < 0) {
1264 return virq;
1267 kroute.gsi = virq;
1268 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1269 kroute.flags = 0;
1270 kroute.u.adapter.summary_addr = adapter->summary_addr;
1271 kroute.u.adapter.ind_addr = adapter->ind_addr;
1272 kroute.u.adapter.summary_offset = adapter->summary_offset;
1273 kroute.u.adapter.ind_offset = adapter->ind_offset;
1274 kroute.u.adapter.adapter_id = adapter->adapter_id;
1276 kvm_add_routing_entry(s, &kroute);
1278 return virq;
1281 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1283 struct kvm_irq_routing_entry kroute = {};
1284 int virq;
1286 if (!kvm_gsi_routing_enabled()) {
1287 return -ENOSYS;
1289 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1290 return -ENOSYS;
1292 virq = kvm_irqchip_get_virq(s);
1293 if (virq < 0) {
1294 return virq;
1297 kroute.gsi = virq;
1298 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1299 kroute.flags = 0;
1300 kroute.u.hv_sint.vcpu = vcpu;
1301 kroute.u.hv_sint.sint = sint;
1303 kvm_add_routing_entry(s, &kroute);
1304 kvm_irqchip_commit_routes(s);
1306 return virq;
1309 #else /* !KVM_CAP_IRQ_ROUTING */
1311 void kvm_init_irq_routing(KVMState *s)
1315 void kvm_irqchip_release_virq(KVMState *s, int virq)
1319 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1321 abort();
1324 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1326 return -ENOSYS;
1329 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1331 return -ENOSYS;
1334 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1336 return -ENOSYS;
1339 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1341 abort();
1344 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1346 return -ENOSYS;
1348 #endif /* !KVM_CAP_IRQ_ROUTING */
1350 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1351 EventNotifier *rn, int virq)
1353 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1354 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1357 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1358 int virq)
1360 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1361 false);
1364 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1365 EventNotifier *rn, qemu_irq irq)
1367 gpointer key, gsi;
1368 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1370 if (!found) {
1371 return -ENXIO;
1373 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1376 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1377 qemu_irq irq)
1379 gpointer key, gsi;
1380 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1382 if (!found) {
1383 return -ENXIO;
1385 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1388 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1390 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1393 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1395 int ret;
1397 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1399 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1400 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1401 if (ret < 0) {
1402 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1403 exit(1);
1405 } else {
1406 return;
1409 /* First probe and see if there's a arch-specific hook to create the
1410 * in-kernel irqchip for us */
1411 ret = kvm_arch_irqchip_create(machine, s);
1412 if (ret == 0) {
1413 if (machine_kernel_irqchip_split(machine)) {
1414 perror("Split IRQ chip mode not supported.");
1415 exit(1);
1416 } else {
1417 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1420 if (ret < 0) {
1421 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1422 exit(1);
1425 kvm_kernel_irqchip = true;
1426 /* If we have an in-kernel IRQ chip then we must have asynchronous
1427 * interrupt delivery (though the reverse is not necessarily true)
1429 kvm_async_interrupts_allowed = true;
1430 kvm_halt_in_kernel_allowed = true;
1432 kvm_init_irq_routing(s);
1434 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1437 /* Find number of supported CPUs using the recommended
1438 * procedure from the kernel API documentation to cope with
1439 * older kernels that may be missing capabilities.
1441 static int kvm_recommended_vcpus(KVMState *s)
1443 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1444 return (ret) ? ret : 4;
1447 static int kvm_max_vcpus(KVMState *s)
1449 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1450 return (ret) ? ret : kvm_recommended_vcpus(s);
1453 static int kvm_max_vcpu_id(KVMState *s)
1455 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1456 return (ret) ? ret : kvm_max_vcpus(s);
1459 bool kvm_vcpu_id_is_valid(int vcpu_id)
1461 KVMState *s = KVM_STATE(current_machine->accelerator);
1462 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1465 static int kvm_init(MachineState *ms)
1467 MachineClass *mc = MACHINE_GET_CLASS(ms);
1468 static const char upgrade_note[] =
1469 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1470 "(see http://sourceforge.net/projects/kvm).\n";
1471 struct {
1472 const char *name;
1473 int num;
1474 } num_cpus[] = {
1475 { "SMP", smp_cpus },
1476 { "hotpluggable", max_cpus },
1477 { NULL, }
1478 }, *nc = num_cpus;
1479 int soft_vcpus_limit, hard_vcpus_limit;
1480 KVMState *s;
1481 const KVMCapabilityInfo *missing_cap;
1482 int ret;
1483 int type = 0;
1484 const char *kvm_type;
1486 s = KVM_STATE(ms->accelerator);
1489 * On systems where the kernel can support different base page
1490 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1491 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1492 * page size for the system though.
1494 assert(TARGET_PAGE_SIZE <= getpagesize());
1496 s->sigmask_len = 8;
1498 #ifdef KVM_CAP_SET_GUEST_DEBUG
1499 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1500 #endif
1501 QLIST_INIT(&s->kvm_parked_vcpus);
1502 s->vmfd = -1;
1503 s->fd = qemu_open("/dev/kvm", O_RDWR);
1504 if (s->fd == -1) {
1505 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1506 ret = -errno;
1507 goto err;
1510 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1511 if (ret < KVM_API_VERSION) {
1512 if (ret >= 0) {
1513 ret = -EINVAL;
1515 fprintf(stderr, "kvm version too old\n");
1516 goto err;
1519 if (ret > KVM_API_VERSION) {
1520 ret = -EINVAL;
1521 fprintf(stderr, "kvm version not supported\n");
1522 goto err;
1525 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1526 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1528 /* If unspecified, use the default value */
1529 if (!s->nr_slots) {
1530 s->nr_slots = 32;
1533 /* check the vcpu limits */
1534 soft_vcpus_limit = kvm_recommended_vcpus(s);
1535 hard_vcpus_limit = kvm_max_vcpus(s);
1537 while (nc->name) {
1538 if (nc->num > soft_vcpus_limit) {
1539 fprintf(stderr,
1540 "Warning: Number of %s cpus requested (%d) exceeds "
1541 "the recommended cpus supported by KVM (%d)\n",
1542 nc->name, nc->num, soft_vcpus_limit);
1544 if (nc->num > hard_vcpus_limit) {
1545 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1546 "the maximum cpus supported by KVM (%d)\n",
1547 nc->name, nc->num, hard_vcpus_limit);
1548 exit(1);
1551 nc++;
1554 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1555 if (mc->kvm_type) {
1556 type = mc->kvm_type(kvm_type);
1557 } else if (kvm_type) {
1558 ret = -EINVAL;
1559 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1560 goto err;
1563 do {
1564 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1565 } while (ret == -EINTR);
1567 if (ret < 0) {
1568 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1569 strerror(-ret));
1571 #ifdef TARGET_S390X
1572 if (ret == -EINVAL) {
1573 fprintf(stderr,
1574 "Host kernel setup problem detected. Please verify:\n");
1575 fprintf(stderr, "- for kernels supporting the switch_amode or"
1576 " user_mode parameters, whether\n");
1577 fprintf(stderr,
1578 " user space is running in primary address space\n");
1579 fprintf(stderr,
1580 "- for kernels supporting the vm.allocate_pgste sysctl, "
1581 "whether it is enabled\n");
1583 #endif
1584 goto err;
1587 s->vmfd = ret;
1588 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1589 if (!missing_cap) {
1590 missing_cap =
1591 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1593 if (missing_cap) {
1594 ret = -EINVAL;
1595 fprintf(stderr, "kvm does not support %s\n%s",
1596 missing_cap->name, upgrade_note);
1597 goto err;
1600 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1602 #ifdef KVM_CAP_VCPU_EVENTS
1603 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1604 #endif
1606 s->robust_singlestep =
1607 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1609 #ifdef KVM_CAP_DEBUGREGS
1610 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1611 #endif
1613 #ifdef KVM_CAP_IRQ_ROUTING
1614 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1615 #endif
1617 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1619 s->irq_set_ioctl = KVM_IRQ_LINE;
1620 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1621 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1624 #ifdef KVM_CAP_READONLY_MEM
1625 kvm_readonly_mem_allowed =
1626 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1627 #endif
1629 kvm_eventfds_allowed =
1630 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1632 kvm_irqfds_allowed =
1633 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1635 kvm_resamplefds_allowed =
1636 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1638 kvm_vm_attributes_allowed =
1639 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1641 kvm_ioeventfd_any_length_allowed =
1642 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1644 kvm_state = s;
1646 ret = kvm_arch_init(ms, s);
1647 if (ret < 0) {
1648 goto err;
1651 if (machine_kernel_irqchip_allowed(ms)) {
1652 kvm_irqchip_create(ms, s);
1655 if (kvm_eventfds_allowed) {
1656 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1657 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1659 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1660 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1662 kvm_memory_listener_register(s, &s->memory_listener,
1663 &address_space_memory, 0);
1664 memory_listener_register(&kvm_io_listener,
1665 &address_space_io);
1667 s->many_ioeventfds = kvm_check_many_ioeventfds();
1669 return 0;
1671 err:
1672 assert(ret < 0);
1673 if (s->vmfd >= 0) {
1674 close(s->vmfd);
1676 if (s->fd != -1) {
1677 close(s->fd);
1679 g_free(s->memory_listener.slots);
1681 return ret;
1684 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1686 s->sigmask_len = sigmask_len;
1689 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1690 int size, uint32_t count)
1692 int i;
1693 uint8_t *ptr = data;
1695 for (i = 0; i < count; i++) {
1696 address_space_rw(&address_space_io, port, attrs,
1697 ptr, size,
1698 direction == KVM_EXIT_IO_OUT);
1699 ptr += size;
1703 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1705 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1706 run->internal.suberror);
1708 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1709 int i;
1711 for (i = 0; i < run->internal.ndata; ++i) {
1712 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1713 i, (uint64_t)run->internal.data[i]);
1716 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1717 fprintf(stderr, "emulation failure\n");
1718 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1719 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1720 return EXCP_INTERRUPT;
1723 /* FIXME: Should trigger a qmp message to let management know
1724 * something went wrong.
1726 return -1;
1729 void kvm_flush_coalesced_mmio_buffer(void)
1731 KVMState *s = kvm_state;
1733 if (s->coalesced_flush_in_progress) {
1734 return;
1737 s->coalesced_flush_in_progress = true;
1739 if (s->coalesced_mmio_ring) {
1740 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1741 while (ring->first != ring->last) {
1742 struct kvm_coalesced_mmio *ent;
1744 ent = &ring->coalesced_mmio[ring->first];
1746 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1747 smp_wmb();
1748 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1752 s->coalesced_flush_in_progress = false;
1755 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1757 if (!cpu->vcpu_dirty) {
1758 kvm_arch_get_registers(cpu);
1759 cpu->vcpu_dirty = true;
1763 void kvm_cpu_synchronize_state(CPUState *cpu)
1765 if (!cpu->vcpu_dirty) {
1766 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1770 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1772 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1773 cpu->vcpu_dirty = false;
1776 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1778 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1781 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1783 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1784 cpu->vcpu_dirty = false;
1787 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1789 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1792 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1794 cpu->vcpu_dirty = true;
1797 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1799 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1802 #ifdef KVM_HAVE_MCE_INJECTION
1803 static __thread void *pending_sigbus_addr;
1804 static __thread int pending_sigbus_code;
1805 static __thread bool have_sigbus_pending;
1806 #endif
1808 static void kvm_cpu_kick(CPUState *cpu)
1810 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1813 static void kvm_cpu_kick_self(void)
1815 if (kvm_immediate_exit) {
1816 kvm_cpu_kick(current_cpu);
1817 } else {
1818 qemu_cpu_kick_self();
1822 static void kvm_eat_signals(CPUState *cpu)
1824 struct timespec ts = { 0, 0 };
1825 siginfo_t siginfo;
1826 sigset_t waitset;
1827 sigset_t chkset;
1828 int r;
1830 if (kvm_immediate_exit) {
1831 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1832 /* Write kvm_run->immediate_exit before the cpu->exit_request
1833 * write in kvm_cpu_exec.
1835 smp_wmb();
1836 return;
1839 sigemptyset(&waitset);
1840 sigaddset(&waitset, SIG_IPI);
1842 do {
1843 r = sigtimedwait(&waitset, &siginfo, &ts);
1844 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1845 perror("sigtimedwait");
1846 exit(1);
1849 r = sigpending(&chkset);
1850 if (r == -1) {
1851 perror("sigpending");
1852 exit(1);
1854 } while (sigismember(&chkset, SIG_IPI));
1857 int kvm_cpu_exec(CPUState *cpu)
1859 struct kvm_run *run = cpu->kvm_run;
1860 int ret, run_ret;
1862 DPRINTF("kvm_cpu_exec()\n");
1864 if (kvm_arch_process_async_events(cpu)) {
1865 atomic_set(&cpu->exit_request, 0);
1866 return EXCP_HLT;
1869 qemu_mutex_unlock_iothread();
1870 cpu_exec_start(cpu);
1872 do {
1873 MemTxAttrs attrs;
1875 if (cpu->vcpu_dirty) {
1876 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1877 cpu->vcpu_dirty = false;
1880 kvm_arch_pre_run(cpu, run);
1881 if (atomic_read(&cpu->exit_request)) {
1882 DPRINTF("interrupt exit requested\n");
1884 * KVM requires us to reenter the kernel after IO exits to complete
1885 * instruction emulation. This self-signal will ensure that we
1886 * leave ASAP again.
1888 kvm_cpu_kick_self();
1891 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1892 * Matching barrier in kvm_eat_signals.
1894 smp_rmb();
1896 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1898 attrs = kvm_arch_post_run(cpu, run);
1900 #ifdef KVM_HAVE_MCE_INJECTION
1901 if (unlikely(have_sigbus_pending)) {
1902 qemu_mutex_lock_iothread();
1903 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1904 pending_sigbus_addr);
1905 have_sigbus_pending = false;
1906 qemu_mutex_unlock_iothread();
1908 #endif
1910 if (run_ret < 0) {
1911 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1912 DPRINTF("io window exit\n");
1913 kvm_eat_signals(cpu);
1914 ret = EXCP_INTERRUPT;
1915 break;
1917 fprintf(stderr, "error: kvm run failed %s\n",
1918 strerror(-run_ret));
1919 #ifdef TARGET_PPC
1920 if (run_ret == -EBUSY) {
1921 fprintf(stderr,
1922 "This is probably because your SMT is enabled.\n"
1923 "VCPU can only run on primary threads with all "
1924 "secondary threads offline.\n");
1926 #endif
1927 ret = -1;
1928 break;
1931 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1932 switch (run->exit_reason) {
1933 case KVM_EXIT_IO:
1934 DPRINTF("handle_io\n");
1935 /* Called outside BQL */
1936 kvm_handle_io(run->io.port, attrs,
1937 (uint8_t *)run + run->io.data_offset,
1938 run->io.direction,
1939 run->io.size,
1940 run->io.count);
1941 ret = 0;
1942 break;
1943 case KVM_EXIT_MMIO:
1944 DPRINTF("handle_mmio\n");
1945 /* Called outside BQL */
1946 address_space_rw(&address_space_memory,
1947 run->mmio.phys_addr, attrs,
1948 run->mmio.data,
1949 run->mmio.len,
1950 run->mmio.is_write);
1951 ret = 0;
1952 break;
1953 case KVM_EXIT_IRQ_WINDOW_OPEN:
1954 DPRINTF("irq_window_open\n");
1955 ret = EXCP_INTERRUPT;
1956 break;
1957 case KVM_EXIT_SHUTDOWN:
1958 DPRINTF("shutdown\n");
1959 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1960 ret = EXCP_INTERRUPT;
1961 break;
1962 case KVM_EXIT_UNKNOWN:
1963 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1964 (uint64_t)run->hw.hardware_exit_reason);
1965 ret = -1;
1966 break;
1967 case KVM_EXIT_INTERNAL_ERROR:
1968 ret = kvm_handle_internal_error(cpu, run);
1969 break;
1970 case KVM_EXIT_SYSTEM_EVENT:
1971 switch (run->system_event.type) {
1972 case KVM_SYSTEM_EVENT_SHUTDOWN:
1973 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1974 ret = EXCP_INTERRUPT;
1975 break;
1976 case KVM_SYSTEM_EVENT_RESET:
1977 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1978 ret = EXCP_INTERRUPT;
1979 break;
1980 case KVM_SYSTEM_EVENT_CRASH:
1981 kvm_cpu_synchronize_state(cpu);
1982 qemu_mutex_lock_iothread();
1983 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
1984 qemu_mutex_unlock_iothread();
1985 ret = 0;
1986 break;
1987 default:
1988 DPRINTF("kvm_arch_handle_exit\n");
1989 ret = kvm_arch_handle_exit(cpu, run);
1990 break;
1992 break;
1993 default:
1994 DPRINTF("kvm_arch_handle_exit\n");
1995 ret = kvm_arch_handle_exit(cpu, run);
1996 break;
1998 } while (ret == 0);
2000 cpu_exec_end(cpu);
2001 qemu_mutex_lock_iothread();
2003 if (ret < 0) {
2004 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2005 vm_stop(RUN_STATE_INTERNAL_ERROR);
2008 atomic_set(&cpu->exit_request, 0);
2009 return ret;
2012 int kvm_ioctl(KVMState *s, int type, ...)
2014 int ret;
2015 void *arg;
2016 va_list ap;
2018 va_start(ap, type);
2019 arg = va_arg(ap, void *);
2020 va_end(ap);
2022 trace_kvm_ioctl(type, arg);
2023 ret = ioctl(s->fd, type, arg);
2024 if (ret == -1) {
2025 ret = -errno;
2027 return ret;
2030 int kvm_vm_ioctl(KVMState *s, int type, ...)
2032 int ret;
2033 void *arg;
2034 va_list ap;
2036 va_start(ap, type);
2037 arg = va_arg(ap, void *);
2038 va_end(ap);
2040 trace_kvm_vm_ioctl(type, arg);
2041 ret = ioctl(s->vmfd, type, arg);
2042 if (ret == -1) {
2043 ret = -errno;
2045 return ret;
2048 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2050 int ret;
2051 void *arg;
2052 va_list ap;
2054 va_start(ap, type);
2055 arg = va_arg(ap, void *);
2056 va_end(ap);
2058 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2059 ret = ioctl(cpu->kvm_fd, type, arg);
2060 if (ret == -1) {
2061 ret = -errno;
2063 return ret;
2066 int kvm_device_ioctl(int fd, int type, ...)
2068 int ret;
2069 void *arg;
2070 va_list ap;
2072 va_start(ap, type);
2073 arg = va_arg(ap, void *);
2074 va_end(ap);
2076 trace_kvm_device_ioctl(fd, type, arg);
2077 ret = ioctl(fd, type, arg);
2078 if (ret == -1) {
2079 ret = -errno;
2081 return ret;
2084 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2086 int ret;
2087 struct kvm_device_attr attribute = {
2088 .group = group,
2089 .attr = attr,
2092 if (!kvm_vm_attributes_allowed) {
2093 return 0;
2096 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2097 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2098 return ret ? 0 : 1;
2101 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2103 struct kvm_device_attr attribute = {
2104 .group = group,
2105 .attr = attr,
2106 .flags = 0,
2109 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2112 int kvm_device_access(int fd, int group, uint64_t attr,
2113 void *val, bool write, Error **errp)
2115 struct kvm_device_attr kvmattr;
2116 int err;
2118 kvmattr.flags = 0;
2119 kvmattr.group = group;
2120 kvmattr.attr = attr;
2121 kvmattr.addr = (uintptr_t)val;
2123 err = kvm_device_ioctl(fd,
2124 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2125 &kvmattr);
2126 if (err < 0) {
2127 error_setg_errno(errp, -err,
2128 "KVM_%s_DEVICE_ATTR failed: Group %d "
2129 "attr 0x%016" PRIx64,
2130 write ? "SET" : "GET", group, attr);
2132 return err;
2135 /* Return 1 on success, 0 on failure */
2136 int kvm_has_sync_mmu(void)
2138 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2141 int kvm_has_vcpu_events(void)
2143 return kvm_state->vcpu_events;
2146 int kvm_has_robust_singlestep(void)
2148 return kvm_state->robust_singlestep;
2151 int kvm_has_debugregs(void)
2153 return kvm_state->debugregs;
2156 int kvm_has_many_ioeventfds(void)
2158 if (!kvm_enabled()) {
2159 return 0;
2161 return kvm_state->many_ioeventfds;
2164 int kvm_has_gsi_routing(void)
2166 #ifdef KVM_CAP_IRQ_ROUTING
2167 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2168 #else
2169 return false;
2170 #endif
2173 int kvm_has_intx_set_mask(void)
2175 return kvm_state->intx_set_mask;
2178 bool kvm_arm_supports_user_irq(void)
2180 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2183 #ifdef KVM_CAP_SET_GUEST_DEBUG
2184 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2185 target_ulong pc)
2187 struct kvm_sw_breakpoint *bp;
2189 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2190 if (bp->pc == pc) {
2191 return bp;
2194 return NULL;
2197 int kvm_sw_breakpoints_active(CPUState *cpu)
2199 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2202 struct kvm_set_guest_debug_data {
2203 struct kvm_guest_debug dbg;
2204 int err;
2207 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2209 struct kvm_set_guest_debug_data *dbg_data =
2210 (struct kvm_set_guest_debug_data *) data.host_ptr;
2212 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2213 &dbg_data->dbg);
2216 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2218 struct kvm_set_guest_debug_data data;
2220 data.dbg.control = reinject_trap;
2222 if (cpu->singlestep_enabled) {
2223 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2225 kvm_arch_update_guest_debug(cpu, &data.dbg);
2227 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2228 RUN_ON_CPU_HOST_PTR(&data));
2229 return data.err;
2232 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2233 target_ulong len, int type)
2235 struct kvm_sw_breakpoint *bp;
2236 int err;
2238 if (type == GDB_BREAKPOINT_SW) {
2239 bp = kvm_find_sw_breakpoint(cpu, addr);
2240 if (bp) {
2241 bp->use_count++;
2242 return 0;
2245 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2246 bp->pc = addr;
2247 bp->use_count = 1;
2248 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2249 if (err) {
2250 g_free(bp);
2251 return err;
2254 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2255 } else {
2256 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2257 if (err) {
2258 return err;
2262 CPU_FOREACH(cpu) {
2263 err = kvm_update_guest_debug(cpu, 0);
2264 if (err) {
2265 return err;
2268 return 0;
2271 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2272 target_ulong len, int type)
2274 struct kvm_sw_breakpoint *bp;
2275 int err;
2277 if (type == GDB_BREAKPOINT_SW) {
2278 bp = kvm_find_sw_breakpoint(cpu, addr);
2279 if (!bp) {
2280 return -ENOENT;
2283 if (bp->use_count > 1) {
2284 bp->use_count--;
2285 return 0;
2288 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2289 if (err) {
2290 return err;
2293 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2294 g_free(bp);
2295 } else {
2296 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2297 if (err) {
2298 return err;
2302 CPU_FOREACH(cpu) {
2303 err = kvm_update_guest_debug(cpu, 0);
2304 if (err) {
2305 return err;
2308 return 0;
2311 void kvm_remove_all_breakpoints(CPUState *cpu)
2313 struct kvm_sw_breakpoint *bp, *next;
2314 KVMState *s = cpu->kvm_state;
2315 CPUState *tmpcpu;
2317 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2318 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2319 /* Try harder to find a CPU that currently sees the breakpoint. */
2320 CPU_FOREACH(tmpcpu) {
2321 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2322 break;
2326 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2327 g_free(bp);
2329 kvm_arch_remove_all_hw_breakpoints();
2331 CPU_FOREACH(cpu) {
2332 kvm_update_guest_debug(cpu, 0);
2336 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2338 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2340 return -EINVAL;
2343 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2344 target_ulong len, int type)
2346 return -EINVAL;
2349 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2350 target_ulong len, int type)
2352 return -EINVAL;
2355 void kvm_remove_all_breakpoints(CPUState *cpu)
2358 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2360 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2362 KVMState *s = kvm_state;
2363 struct kvm_signal_mask *sigmask;
2364 int r;
2366 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2368 sigmask->len = s->sigmask_len;
2369 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2370 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2371 g_free(sigmask);
2373 return r;
2376 static void kvm_ipi_signal(int sig)
2378 if (current_cpu) {
2379 assert(kvm_immediate_exit);
2380 kvm_cpu_kick(current_cpu);
2384 void kvm_init_cpu_signals(CPUState *cpu)
2386 int r;
2387 sigset_t set;
2388 struct sigaction sigact;
2390 memset(&sigact, 0, sizeof(sigact));
2391 sigact.sa_handler = kvm_ipi_signal;
2392 sigaction(SIG_IPI, &sigact, NULL);
2394 pthread_sigmask(SIG_BLOCK, NULL, &set);
2395 #if defined KVM_HAVE_MCE_INJECTION
2396 sigdelset(&set, SIGBUS);
2397 pthread_sigmask(SIG_SETMASK, &set, NULL);
2398 #endif
2399 sigdelset(&set, SIG_IPI);
2400 if (kvm_immediate_exit) {
2401 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2402 } else {
2403 r = kvm_set_signal_mask(cpu, &set);
2405 if (r) {
2406 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2407 exit(1);
2411 /* Called asynchronously in VCPU thread. */
2412 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2414 #ifdef KVM_HAVE_MCE_INJECTION
2415 if (have_sigbus_pending) {
2416 return 1;
2418 have_sigbus_pending = true;
2419 pending_sigbus_addr = addr;
2420 pending_sigbus_code = code;
2421 atomic_set(&cpu->exit_request, 1);
2422 return 0;
2423 #else
2424 return 1;
2425 #endif
2428 /* Called synchronously (via signalfd) in main thread. */
2429 int kvm_on_sigbus(int code, void *addr)
2431 #ifdef KVM_HAVE_MCE_INJECTION
2432 /* Action required MCE kills the process if SIGBUS is blocked. Because
2433 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2434 * we can only get action optional here.
2436 assert(code != BUS_MCEERR_AR);
2437 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2438 return 0;
2439 #else
2440 return 1;
2441 #endif
2444 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2446 int ret;
2447 struct kvm_create_device create_dev;
2449 create_dev.type = type;
2450 create_dev.fd = -1;
2451 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2453 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2454 return -ENOTSUP;
2457 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2458 if (ret) {
2459 return ret;
2462 return test ? 0 : create_dev.fd;
2465 bool kvm_device_supported(int vmfd, uint64_t type)
2467 struct kvm_create_device create_dev = {
2468 .type = type,
2469 .fd = -1,
2470 .flags = KVM_CREATE_DEVICE_TEST,
2473 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2474 return false;
2477 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2480 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2482 struct kvm_one_reg reg;
2483 int r;
2485 reg.id = id;
2486 reg.addr = (uintptr_t) source;
2487 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2488 if (r) {
2489 trace_kvm_failed_reg_set(id, strerror(-r));
2491 return r;
2494 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2496 struct kvm_one_reg reg;
2497 int r;
2499 reg.id = id;
2500 reg.addr = (uintptr_t) target;
2501 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2502 if (r) {
2503 trace_kvm_failed_reg_get(id, strerror(-r));
2505 return r;
2508 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2510 AccelClass *ac = ACCEL_CLASS(oc);
2511 ac->name = "KVM";
2512 ac->init_machine = kvm_init;
2513 ac->allowed = &kvm_allowed;
2516 static const TypeInfo kvm_accel_type = {
2517 .name = TYPE_KVM_ACCEL,
2518 .parent = TYPE_ACCEL,
2519 .class_init = kvm_accel_class_init,
2520 .instance_size = sizeof(KVMState),
2523 static void kvm_type_init(void)
2525 type_register_static(&kvm_accel_type);
2528 type_init(kvm_type_init);