6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
21 #define THREAD __thread
23 /* This struct is used to hold certain information about the image.
24 * Basically, it replicates in user space what would be certain
25 * task_struct fields in the kernel
37 abi_ulong start_stack
;
38 abi_ulong stack_limit
;
40 abi_ulong code_offset
;
41 abi_ulong data_offset
;
48 #ifdef CONFIG_USE_FDPIC
49 abi_ulong loadmap_addr
;
52 abi_ulong pt_dynamic_addr
;
53 struct image_info
*other_info
;
58 /* Information about the current linux thread */
59 struct vm86_saved_state
{
60 uint32_t eax
; /* return code */
70 uint16_t cs
, ss
, ds
, es
, fs
, gs
;
74 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
76 #include "nwfpe/fpa11.h"
79 #define MAX_SIGQUEUE_SIZE 1024
81 struct emulated_sigtable
{
82 int pending
; /* true if signal is pending */
83 target_siginfo_t info
;
86 /* NOTE: we force a big alignment so that the stack stored after is
88 typedef struct TaskState
{
89 pid_t ts_tid
; /* tid (or pid) of this task */
97 #ifdef TARGET_UNICORE32
100 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
101 abi_ulong target_v86
;
102 struct vm86_saved_state vm86_saved_regs
;
103 struct target_vm86plus_struct vm86plus
;
107 abi_ulong child_tidptr
;
112 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
113 /* Extra fields for semihosted binaries. */
118 int used
; /* non zero if used */
119 struct image_info
*info
;
120 struct linux_binprm
*bprm
;
122 struct emulated_sigtable sync_signal
;
123 struct emulated_sigtable sigtab
[TARGET_NSIG
];
124 /* This thread's signal mask, as requested by the guest program.
125 * The actual signal mask of this thread may differ:
126 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
127 * + sometimes we block all signals to avoid races
129 sigset_t signal_mask
;
130 /* The signal mask imposed by a guest sigsuspend syscall, if we are
131 * currently in the middle of such a syscall
133 sigset_t sigsuspend_mask
;
134 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
137 /* Nonzero if process_pending_signals() needs to do something (either
138 * handle a pending signal or unblock signals).
139 * This flag is written from a signal handler so should be accessed via
140 * the atomic_read() and atomic_write() functions. (It is not accessed
141 * from multiple threads.)
145 } __attribute__((aligned(16))) TaskState
;
147 extern char *exec_path
;
148 void init_task_state(TaskState
*ts
);
149 void task_settid(TaskState
*);
150 void stop_all_tasks(void);
151 extern const char *qemu_uname_release
;
152 extern unsigned long mmap_min_addr
;
154 /* ??? See if we can avoid exposing so much of the loader internals. */
156 /* Read a good amount of data initially, to hopefully get all the
157 program headers loaded. */
158 #define BPRM_BUF_SIZE 1024
161 * This structure is used to hold the arguments that are
162 * used when loading binaries.
164 struct linux_binprm
{
165 char buf
[BPRM_BUF_SIZE
] __attribute__((aligned
));
172 char * filename
; /* Name of binary */
173 int (*core_dump
)(int, const CPUArchState
*); /* coredump routine */
176 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
);
177 abi_ulong
loader_build_argptr(int envc
, int argc
, abi_ulong sp
,
178 abi_ulong stringp
, int push_ptr
);
179 int loader_exec(int fdexec
, const char *filename
, char **argv
, char **envp
,
180 struct target_pt_regs
* regs
, struct image_info
*infop
,
181 struct linux_binprm
*);
183 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
184 int load_flt_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
186 abi_long
memcpy_to_target(abi_ulong dest
, const void *src
,
188 void target_set_brk(abi_ulong new_brk
);
189 abi_long
do_brk(abi_ulong new_brk
);
190 void syscall_init(void);
191 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
192 abi_long arg2
, abi_long arg3
, abi_long arg4
,
193 abi_long arg5
, abi_long arg6
, abi_long arg7
,
195 void gemu_log(const char *fmt
, ...) GCC_FMT_ATTR(1, 2);
196 extern THREAD CPUState
*thread_cpu
;
197 void cpu_loop(CPUArchState
*env
);
198 const char *target_strerror(int err
);
199 int get_osversion(void);
200 void init_qemu_uname_release(void);
201 void fork_start(void);
202 void fork_end(int child
);
204 /* Creates the initial guest address space in the host memory space using
205 * the given host start address hint and size. The guest_start parameter
206 * specifies the start address of the guest space. guest_base will be the
207 * difference between the host start address computed by this function and
208 * guest_start. If fixed is specified, then the mapped address space must
209 * start at host_start. The real start address of the mapped memory space is
210 * returned or -1 if there was an error.
212 unsigned long init_guest_space(unsigned long host_start
,
213 unsigned long host_size
,
214 unsigned long guest_start
,
217 #include "qemu/log.h"
223 * @int number: number of system call to make
224 * ...: arguments to the system call
226 * Call a system call if guest signal not pending.
227 * This has the same API as the libc syscall() function, except that it
228 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
230 * Returns: the system call result, or -1 with an error code in errno
231 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
232 * with any of the host errno values.)
235 /* A guide to using safe_syscall() to handle interactions between guest
236 * syscalls and guest signals:
238 * Guest syscalls come in two flavours:
240 * (1) Non-interruptible syscalls
242 * These are guest syscalls that never get interrupted by signals and
243 * so never return EINTR. They can be implemented straightforwardly in
244 * QEMU: just make sure that if the implementation code has to make any
245 * blocking calls that those calls are retried if they return EINTR.
246 * It's also OK to implement these with safe_syscall, though it will be
247 * a little less efficient if a signal is delivered at the 'wrong' moment.
249 * Some non-interruptible syscalls need to be handled using block_signals()
250 * to block signals for the duration of the syscall. This mainly applies
251 * to code which needs to modify the data structures used by the
252 * host_signal_handler() function and the functions it calls, including
253 * all syscalls which change the thread's signal mask.
255 * (2) Interruptible syscalls
257 * These are guest syscalls that can be interrupted by signals and
258 * for which we need to either return EINTR or arrange for the guest
259 * syscall to be restarted. This category includes both syscalls which
260 * always restart (and in the kernel return -ERESTARTNOINTR), ones
261 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
262 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
263 * if the handler was registered with SA_RESTART (kernel returns
264 * -ERESTARTSYS). System calls which are only interruptible in some
265 * situations (like 'open') also need to be handled this way.
267 * Here it is important that the host syscall is made
268 * via this safe_syscall() function, and *not* via the host libc.
269 * If the host libc is used then the implementation will appear to work
270 * most of the time, but there will be a race condition where a
271 * signal could arrive just before we make the host syscall inside libc,
272 * and then then guest syscall will not correctly be interrupted.
273 * Instead the implementation of the guest syscall can use the safe_syscall
274 * function but otherwise just return the result or errno in the usual
275 * way; the main loop code will take care of restarting the syscall
278 * (If the implementation needs to make multiple host syscalls this is
279 * OK; any which might really block must be via safe_syscall(); for those
280 * which are only technically blocking (ie which we know in practice won't
281 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
282 * You must be able to cope with backing out correctly if some safe_syscall
283 * you make in the implementation returns either -TARGET_ERESTARTSYS or
286 * block_signals() cannot be used for interruptible syscalls.
289 * How and why the safe_syscall implementation works:
291 * The basic setup is that we make the host syscall via a known
292 * section of host native assembly. If a signal occurs, our signal
293 * handler checks the interrupted host PC against the addresse of that
294 * known section. If the PC is before or at the address of the syscall
295 * instruction then we change the PC to point at a "return
296 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
297 * (causing the safe_syscall() call to immediately return that value).
298 * Then in the main.c loop if we see this magic return value we adjust
299 * the guest PC to wind it back to before the system call, and invoke
300 * the guest signal handler as usual.
302 * This winding-back will happen in two cases:
303 * (1) signal came in just before we took the host syscall (a race);
304 * in this case we'll take the guest signal and have another go
305 * at the syscall afterwards, and this is indistinguishable for the
306 * guest from the timing having been different such that the guest
307 * signal really did win the race
308 * (2) signal came in while the host syscall was blocking, and the
309 * host kernel decided the syscall should be restarted;
310 * in this case we want to restart the guest syscall also, and so
311 * rewinding is the right thing. (Note that "restart" semantics mean
312 * "first call the signal handler, then reattempt the syscall".)
313 * The other situation to consider is when a signal came in while the
314 * host syscall was blocking, and the host kernel decided that the syscall
315 * should not be restarted; in this case QEMU's host signal handler will
316 * be invoked with the PC pointing just after the syscall instruction,
317 * with registers indicating an EINTR return; the special code in the
318 * handler will not kick in, and we will return EINTR to the guest as
321 * Notice that we can leave the host kernel to make the decision for
322 * us about whether to do a restart of the syscall or not; we do not
323 * need to check SA_RESTART flags in QEMU or distinguish the various
324 * kinds of restartability.
326 #ifdef HAVE_SAFE_SYSCALL
327 /* The core part of this function is implemented in assembly */
328 extern long safe_syscall_base(int *pending
, long number
, ...);
330 #define safe_syscall(...) \
333 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
334 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
335 if (is_error(ret_)) { \
344 /* Fallback for architectures which don't yet provide a safe-syscall assembly
345 * fragment; note that this is racy!
346 * This should go away when all host architectures have been updated.
348 #define safe_syscall syscall
353 int host_to_target_waitstatus(int status
);
356 void print_syscall(int num
,
357 abi_long arg1
, abi_long arg2
, abi_long arg3
,
358 abi_long arg4
, abi_long arg5
, abi_long arg6
);
359 void print_syscall_ret(int num
, abi_long arg1
);
360 extern int do_strace
;
363 void process_pending_signals(CPUArchState
*cpu_env
);
364 void signal_init(void);
365 int queue_signal(CPUArchState
*env
, int sig
, target_siginfo_t
*info
);
366 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
);
367 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
);
368 int target_to_host_signal(int sig
);
369 int host_to_target_signal(int sig
);
370 long do_sigreturn(CPUArchState
*env
);
371 long do_rt_sigreturn(CPUArchState
*env
);
372 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
);
373 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
);
375 * block_signals: block all signals while handling this guest syscall
377 * Block all signals, and arrange that the signal mask is returned to
378 * its correct value for the guest before we resume execution of guest code.
379 * If this function returns non-zero, then the caller should immediately
380 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
381 * signal and restart execution of the syscall.
382 * If block_signals() returns zero, then the caller can continue with
383 * emulation of the system call knowing that no signals can be taken
384 * (and therefore that no race conditions will result).
385 * This should only be called once, because if it is called a second time
386 * it will always return non-zero. (Think of it like a mutex that can't
387 * be recursively locked.)
388 * Signals will be unblocked again by process_pending_signals().
390 * Return value: non-zero if there was a pending signal, zero if not.
392 int block_signals(void); /* Returns non zero if signal pending */
396 void save_v86_state(CPUX86State
*env
);
397 void handle_vm86_trap(CPUX86State
*env
, int trapno
);
398 void handle_vm86_fault(CPUX86State
*env
);
399 int do_vm86(CPUX86State
*env
, long subfunction
, abi_ulong v86_addr
);
400 #elif defined(TARGET_SPARC64)
401 void sparc64_set_context(CPUSPARCState
*env
);
402 void sparc64_get_context(CPUSPARCState
*env
);
406 int target_mprotect(abi_ulong start
, abi_ulong len
, int prot
);
407 abi_long
target_mmap(abi_ulong start
, abi_ulong len
, int prot
,
408 int flags
, int fd
, abi_ulong offset
);
409 int target_munmap(abi_ulong start
, abi_ulong len
);
410 abi_long
target_mremap(abi_ulong old_addr
, abi_ulong old_size
,
411 abi_ulong new_size
, unsigned long flags
,
413 int target_msync(abi_ulong start
, abi_ulong len
, int flags
);
414 extern unsigned long last_brk
;
415 extern abi_ulong mmap_next_start
;
416 abi_ulong
mmap_find_vma(abi_ulong
, abi_ulong
);
417 void cpu_list_lock(void);
418 void cpu_list_unlock(void);
419 void mmap_fork_start(void);
420 void mmap_fork_end(int child
);
423 extern unsigned long guest_stack_size
;
427 #define VERIFY_READ 0
428 #define VERIFY_WRITE 1 /* implies read access */
430 static inline int access_ok(int type
, abi_ulong addr
, abi_ulong size
)
432 return page_check_range((target_ulong
)addr
, size
,
433 (type
== VERIFY_READ
) ? PAGE_READ
: (PAGE_READ
| PAGE_WRITE
)) == 0;
436 /* NOTE __get_user and __put_user use host pointers and don't check access.
437 These are usually used to access struct data members once the struct has
438 been locked - usually with lock_user_struct. */
441 - Use __builtin_choose_expr to avoid type promotion from ?:,
442 - Invalid sizes result in a compile time error stemming from
443 the fact that abort has no parameters.
444 - It's easier to use the endian-specific unaligned load/store
445 functions than host-endian unaligned load/store plus tswapN. */
447 #define __put_user_e(x, hptr, e) \
448 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
449 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
450 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
451 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
452 ((hptr), (x)), (void)0)
454 #define __get_user_e(x, hptr, e) \
455 ((x) = (typeof(*hptr))( \
456 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
457 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
458 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
459 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
462 #ifdef TARGET_WORDS_BIGENDIAN
463 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
464 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
466 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
467 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
470 /* put_user()/get_user() take a guest address and check access */
471 /* These are usually used to access an atomic data type, such as an int,
472 * that has been passed by address. These internally perform locking
473 * and unlocking on the data type.
475 #define put_user(x, gaddr, target_type) \
477 abi_ulong __gaddr = (gaddr); \
478 target_type *__hptr; \
479 abi_long __ret = 0; \
480 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
481 __put_user((x), __hptr); \
482 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
484 __ret = -TARGET_EFAULT; \
488 #define get_user(x, gaddr, target_type) \
490 abi_ulong __gaddr = (gaddr); \
491 target_type *__hptr; \
492 abi_long __ret = 0; \
493 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
494 __get_user((x), __hptr); \
495 unlock_user(__hptr, __gaddr, 0); \
497 /* avoid warning */ \
499 __ret = -TARGET_EFAULT; \
504 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
505 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
506 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
507 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
508 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
509 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
510 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
511 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
512 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
513 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
515 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
516 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
517 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
518 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
519 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
520 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
521 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
522 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
523 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
524 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
526 /* copy_from_user() and copy_to_user() are usually used to copy data
527 * buffers between the target and host. These internally perform
528 * locking/unlocking of the memory.
530 abi_long
copy_from_user(void *hptr
, abi_ulong gaddr
, size_t len
);
531 abi_long
copy_to_user(abi_ulong gaddr
, void *hptr
, size_t len
);
533 /* Functions for accessing guest memory. The tget and tput functions
534 read/write single values, byteswapping as necessary. The lock_user function
535 gets a pointer to a contiguous area of guest memory, but does not perform
536 any byteswapping. lock_user may return either a pointer to the guest
537 memory, or a temporary buffer. */
539 /* Lock an area of guest memory into the host. If copy is true then the
540 host area will have the same contents as the guest. */
541 static inline void *lock_user(int type
, abi_ulong guest_addr
, long len
, int copy
)
543 if (!access_ok(type
, guest_addr
, len
))
550 memcpy(addr
, g2h(guest_addr
), len
);
552 memset(addr
, 0, len
);
556 return g2h(guest_addr
);
560 /* Unlock an area of guest memory. The first LEN bytes must be
561 flushed back to guest memory. host_ptr = NULL is explicitly
562 allowed and does nothing. */
563 static inline void unlock_user(void *host_ptr
, abi_ulong guest_addr
,
570 if (host_ptr
== g2h(guest_addr
))
573 memcpy(g2h(guest_addr
), host_ptr
, len
);
578 /* Return the length of a string in target memory or -TARGET_EFAULT if
580 abi_long
target_strlen(abi_ulong gaddr
);
582 /* Like lock_user but for null terminated strings. */
583 static inline void *lock_user_string(abi_ulong guest_addr
)
586 len
= target_strlen(guest_addr
);
589 return lock_user(VERIFY_READ
, guest_addr
, (long)(len
+ 1), 1);
592 /* Helper macros for locking/unlocking a target struct. */
593 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
594 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
595 #define unlock_user_struct(host_ptr, guest_addr, copy) \
596 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
600 /* Include target-specific struct and function definitions;
601 * they may need access to the target-independent structures
602 * above, so include them last.
604 #include "target_cpu.h"
605 #include "target_signal.h"
606 #include "target_structs.h"