trivial: Make bios files and source files non-executable
[qemu.git] / linux-user / qemu.h
blobb4959e41c6e384f4523573049db4b56a22ee3880
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
21 /* This is the size of the host kernel's sigset_t, needed where we make
22 * direct system calls that take a sigset_t pointer and a size.
24 #define SIGSET_T_SIZE (_NSIG / 8)
26 /* This struct is used to hold certain information about the image.
27 * Basically, it replicates in user space what would be certain
28 * task_struct fields in the kernel
30 struct image_info {
31 abi_ulong load_bias;
32 abi_ulong load_addr;
33 abi_ulong start_code;
34 abi_ulong end_code;
35 abi_ulong start_data;
36 abi_ulong end_data;
37 abi_ulong start_brk;
38 abi_ulong brk;
39 abi_ulong start_mmap;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
52 uint32_t elf_flags;
53 int personality;
54 abi_ulong alignment;
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
61 abi_ulong interpreter_loadmap_addr;
62 abi_ulong interpreter_pt_dynamic_addr;
63 struct image_info *other_info;
66 #ifdef TARGET_I386
67 /* Information about the current linux thread */
68 struct vm86_saved_state {
69 uint32_t eax; /* return code */
70 uint32_t ebx;
71 uint32_t ecx;
72 uint32_t edx;
73 uint32_t esi;
74 uint32_t edi;
75 uint32_t ebp;
76 uint32_t esp;
77 uint32_t eflags;
78 uint32_t eip;
79 uint16_t cs, ss, ds, es, fs, gs;
81 #endif
83 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
84 /* FPU emulator */
85 #include "nwfpe/fpa11.h"
86 #endif
88 #define MAX_SIGQUEUE_SIZE 1024
90 struct emulated_sigtable {
91 int pending; /* true if signal is pending */
92 target_siginfo_t info;
95 /* NOTE: we force a big alignment so that the stack stored after is
96 aligned too */
97 typedef struct TaskState {
98 pid_t ts_tid; /* tid (or pid) of this task */
99 #ifdef TARGET_ARM
100 # ifdef TARGET_ABI32
101 /* FPA state */
102 FPA11 fpa;
103 # endif
104 int swi_errno;
105 #endif
106 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
107 abi_ulong target_v86;
108 struct vm86_saved_state vm86_saved_regs;
109 struct target_vm86plus_struct vm86plus;
110 uint32_t v86flags;
111 uint32_t v86mask;
112 #endif
113 abi_ulong child_tidptr;
114 #ifdef TARGET_M68K
115 int sim_syscalls;
116 abi_ulong tp_value;
117 #endif
118 #if defined(TARGET_ARM) || defined(TARGET_M68K)
119 /* Extra fields for semihosted binaries. */
120 abi_ulong heap_base;
121 abi_ulong heap_limit;
122 #endif
123 abi_ulong stack_base;
124 int used; /* non zero if used */
125 struct image_info *info;
126 struct linux_binprm *bprm;
128 struct emulated_sigtable sync_signal;
129 struct emulated_sigtable sigtab[TARGET_NSIG];
130 /* This thread's signal mask, as requested by the guest program.
131 * The actual signal mask of this thread may differ:
132 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
133 * + sometimes we block all signals to avoid races
135 sigset_t signal_mask;
136 /* The signal mask imposed by a guest sigsuspend syscall, if we are
137 * currently in the middle of such a syscall
139 sigset_t sigsuspend_mask;
140 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
141 int in_sigsuspend;
143 /* Nonzero if process_pending_signals() needs to do something (either
144 * handle a pending signal or unblock signals).
145 * This flag is written from a signal handler so should be accessed via
146 * the atomic_read() and atomic_write() functions. (It is not accessed
147 * from multiple threads.)
149 int signal_pending;
151 } __attribute__((aligned(16))) TaskState;
153 extern char *exec_path;
154 void init_task_state(TaskState *ts);
155 void task_settid(TaskState *);
156 void stop_all_tasks(void);
157 extern const char *qemu_uname_release;
158 extern unsigned long mmap_min_addr;
160 /* ??? See if we can avoid exposing so much of the loader internals. */
162 /* Read a good amount of data initially, to hopefully get all the
163 program headers loaded. */
164 #define BPRM_BUF_SIZE 1024
167 * This structure is used to hold the arguments that are
168 * used when loading binaries.
170 struct linux_binprm {
171 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
172 abi_ulong p;
173 int fd;
174 int e_uid, e_gid;
175 int argc, envc;
176 char **argv;
177 char **envp;
178 char * filename; /* Name of binary */
179 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
182 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
183 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
184 abi_ulong stringp, int push_ptr);
185 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
186 struct target_pt_regs * regs, struct image_info *infop,
187 struct linux_binprm *);
189 /* Returns true if the image uses the FDPIC ABI. If this is the case,
190 * we have to provide some information (loadmap, pt_dynamic_info) such
191 * that the program can be relocated adequately. This is also useful
192 * when handling signals.
194 int info_is_fdpic(struct image_info *info);
196 uint32_t get_elf_eflags(int fd);
197 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
198 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
200 abi_long memcpy_to_target(abi_ulong dest, const void *src,
201 unsigned long len);
202 void target_set_brk(abi_ulong new_brk);
203 abi_long do_brk(abi_ulong new_brk);
204 void syscall_init(void);
205 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
206 abi_long arg2, abi_long arg3, abi_long arg4,
207 abi_long arg5, abi_long arg6, abi_long arg7,
208 abi_long arg8);
209 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
210 extern __thread CPUState *thread_cpu;
211 void cpu_loop(CPUArchState *env);
212 const char *target_strerror(int err);
213 int get_osversion(void);
214 void init_qemu_uname_release(void);
215 void fork_start(void);
216 void fork_end(int child);
218 /* Creates the initial guest address space in the host memory space using
219 * the given host start address hint and size. The guest_start parameter
220 * specifies the start address of the guest space. guest_base will be the
221 * difference between the host start address computed by this function and
222 * guest_start. If fixed is specified, then the mapped address space must
223 * start at host_start. The real start address of the mapped memory space is
224 * returned or -1 if there was an error.
226 unsigned long init_guest_space(unsigned long host_start,
227 unsigned long host_size,
228 unsigned long guest_start,
229 bool fixed);
231 #include "qemu/log.h"
233 /* safe_syscall.S */
236 * safe_syscall:
237 * @int number: number of system call to make
238 * ...: arguments to the system call
240 * Call a system call if guest signal not pending.
241 * This has the same API as the libc syscall() function, except that it
242 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
244 * Returns: the system call result, or -1 with an error code in errno
245 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
246 * with any of the host errno values.)
249 /* A guide to using safe_syscall() to handle interactions between guest
250 * syscalls and guest signals:
252 * Guest syscalls come in two flavours:
254 * (1) Non-interruptible syscalls
256 * These are guest syscalls that never get interrupted by signals and
257 * so never return EINTR. They can be implemented straightforwardly in
258 * QEMU: just make sure that if the implementation code has to make any
259 * blocking calls that those calls are retried if they return EINTR.
260 * It's also OK to implement these with safe_syscall, though it will be
261 * a little less efficient if a signal is delivered at the 'wrong' moment.
263 * Some non-interruptible syscalls need to be handled using block_signals()
264 * to block signals for the duration of the syscall. This mainly applies
265 * to code which needs to modify the data structures used by the
266 * host_signal_handler() function and the functions it calls, including
267 * all syscalls which change the thread's signal mask.
269 * (2) Interruptible syscalls
271 * These are guest syscalls that can be interrupted by signals and
272 * for which we need to either return EINTR or arrange for the guest
273 * syscall to be restarted. This category includes both syscalls which
274 * always restart (and in the kernel return -ERESTARTNOINTR), ones
275 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
276 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
277 * if the handler was registered with SA_RESTART (kernel returns
278 * -ERESTARTSYS). System calls which are only interruptible in some
279 * situations (like 'open') also need to be handled this way.
281 * Here it is important that the host syscall is made
282 * via this safe_syscall() function, and *not* via the host libc.
283 * If the host libc is used then the implementation will appear to work
284 * most of the time, but there will be a race condition where a
285 * signal could arrive just before we make the host syscall inside libc,
286 * and then then guest syscall will not correctly be interrupted.
287 * Instead the implementation of the guest syscall can use the safe_syscall
288 * function but otherwise just return the result or errno in the usual
289 * way; the main loop code will take care of restarting the syscall
290 * if appropriate.
292 * (If the implementation needs to make multiple host syscalls this is
293 * OK; any which might really block must be via safe_syscall(); for those
294 * which are only technically blocking (ie which we know in practice won't
295 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
296 * You must be able to cope with backing out correctly if some safe_syscall
297 * you make in the implementation returns either -TARGET_ERESTARTSYS or
298 * EINTR though.)
300 * block_signals() cannot be used for interruptible syscalls.
303 * How and why the safe_syscall implementation works:
305 * The basic setup is that we make the host syscall via a known
306 * section of host native assembly. If a signal occurs, our signal
307 * handler checks the interrupted host PC against the addresse of that
308 * known section. If the PC is before or at the address of the syscall
309 * instruction then we change the PC to point at a "return
310 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
311 * (causing the safe_syscall() call to immediately return that value).
312 * Then in the main.c loop if we see this magic return value we adjust
313 * the guest PC to wind it back to before the system call, and invoke
314 * the guest signal handler as usual.
316 * This winding-back will happen in two cases:
317 * (1) signal came in just before we took the host syscall (a race);
318 * in this case we'll take the guest signal and have another go
319 * at the syscall afterwards, and this is indistinguishable for the
320 * guest from the timing having been different such that the guest
321 * signal really did win the race
322 * (2) signal came in while the host syscall was blocking, and the
323 * host kernel decided the syscall should be restarted;
324 * in this case we want to restart the guest syscall also, and so
325 * rewinding is the right thing. (Note that "restart" semantics mean
326 * "first call the signal handler, then reattempt the syscall".)
327 * The other situation to consider is when a signal came in while the
328 * host syscall was blocking, and the host kernel decided that the syscall
329 * should not be restarted; in this case QEMU's host signal handler will
330 * be invoked with the PC pointing just after the syscall instruction,
331 * with registers indicating an EINTR return; the special code in the
332 * handler will not kick in, and we will return EINTR to the guest as
333 * we should.
335 * Notice that we can leave the host kernel to make the decision for
336 * us about whether to do a restart of the syscall or not; we do not
337 * need to check SA_RESTART flags in QEMU or distinguish the various
338 * kinds of restartability.
340 #ifdef HAVE_SAFE_SYSCALL
341 /* The core part of this function is implemented in assembly */
342 extern long safe_syscall_base(int *pending, long number, ...);
344 #define safe_syscall(...) \
345 ({ \
346 long ret_; \
347 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
348 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
349 if (is_error(ret_)) { \
350 errno = -ret_; \
351 ret_ = -1; \
353 ret_; \
356 #else
358 /* Fallback for architectures which don't yet provide a safe-syscall assembly
359 * fragment; note that this is racy!
360 * This should go away when all host architectures have been updated.
362 #define safe_syscall syscall
364 #endif
366 /* syscall.c */
367 int host_to_target_waitstatus(int status);
369 /* strace.c */
370 void print_syscall(int num,
371 abi_long arg1, abi_long arg2, abi_long arg3,
372 abi_long arg4, abi_long arg5, abi_long arg6);
373 void print_syscall_ret(int num, abi_long arg1);
375 * print_taken_signal:
376 * @target_signum: target signal being taken
377 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
379 * Print strace output indicating that this signal is being taken by the guest,
380 * in a format similar to:
381 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
383 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
384 extern int do_strace;
386 /* signal.c */
387 void process_pending_signals(CPUArchState *cpu_env);
388 void signal_init(void);
389 int queue_signal(CPUArchState *env, int sig, int si_type,
390 target_siginfo_t *info);
391 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
392 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
393 int target_to_host_signal(int sig);
394 int host_to_target_signal(int sig);
395 long do_sigreturn(CPUArchState *env);
396 long do_rt_sigreturn(CPUArchState *env);
397 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
398 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
399 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
400 abi_ulong unew_ctx, abi_long ctx_size);
402 * block_signals: block all signals while handling this guest syscall
404 * Block all signals, and arrange that the signal mask is returned to
405 * its correct value for the guest before we resume execution of guest code.
406 * If this function returns non-zero, then the caller should immediately
407 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
408 * signal and restart execution of the syscall.
409 * If block_signals() returns zero, then the caller can continue with
410 * emulation of the system call knowing that no signals can be taken
411 * (and therefore that no race conditions will result).
412 * This should only be called once, because if it is called a second time
413 * it will always return non-zero. (Think of it like a mutex that can't
414 * be recursively locked.)
415 * Signals will be unblocked again by process_pending_signals().
417 * Return value: non-zero if there was a pending signal, zero if not.
419 int block_signals(void); /* Returns non zero if signal pending */
421 #ifdef TARGET_I386
422 /* vm86.c */
423 void save_v86_state(CPUX86State *env);
424 void handle_vm86_trap(CPUX86State *env, int trapno);
425 void handle_vm86_fault(CPUX86State *env);
426 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
427 #elif defined(TARGET_SPARC64)
428 void sparc64_set_context(CPUSPARCState *env);
429 void sparc64_get_context(CPUSPARCState *env);
430 #endif
432 /* mmap.c */
433 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
434 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
435 int flags, int fd, abi_ulong offset);
436 int target_munmap(abi_ulong start, abi_ulong len);
437 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
438 abi_ulong new_size, unsigned long flags,
439 abi_ulong new_addr);
440 extern unsigned long last_brk;
441 extern abi_ulong mmap_next_start;
442 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
443 void mmap_fork_start(void);
444 void mmap_fork_end(int child);
446 /* main.c */
447 extern unsigned long guest_stack_size;
449 /* user access */
451 #define VERIFY_READ 0
452 #define VERIFY_WRITE 1 /* implies read access */
454 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
456 return page_check_range((target_ulong)addr, size,
457 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
460 /* NOTE __get_user and __put_user use host pointers and don't check access.
461 These are usually used to access struct data members once the struct has
462 been locked - usually with lock_user_struct. */
464 /* Tricky points:
465 - Use __builtin_choose_expr to avoid type promotion from ?:,
466 - Invalid sizes result in a compile time error stemming from
467 the fact that abort has no parameters.
468 - It's easier to use the endian-specific unaligned load/store
469 functions than host-endian unaligned load/store plus tswapN. */
471 #define __put_user_e(x, hptr, e) \
472 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
473 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
474 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
475 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
476 ((hptr), (x)), (void)0)
478 #define __get_user_e(x, hptr, e) \
479 ((x) = (typeof(*hptr))( \
480 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
481 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
482 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
483 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
484 (hptr)), (void)0)
486 #ifdef TARGET_WORDS_BIGENDIAN
487 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
488 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
489 #else
490 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
491 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
492 #endif
494 /* put_user()/get_user() take a guest address and check access */
495 /* These are usually used to access an atomic data type, such as an int,
496 * that has been passed by address. These internally perform locking
497 * and unlocking on the data type.
499 #define put_user(x, gaddr, target_type) \
500 ({ \
501 abi_ulong __gaddr = (gaddr); \
502 target_type *__hptr; \
503 abi_long __ret = 0; \
504 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
505 __put_user((x), __hptr); \
506 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
507 } else \
508 __ret = -TARGET_EFAULT; \
509 __ret; \
512 #define get_user(x, gaddr, target_type) \
513 ({ \
514 abi_ulong __gaddr = (gaddr); \
515 target_type *__hptr; \
516 abi_long __ret = 0; \
517 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
518 __get_user((x), __hptr); \
519 unlock_user(__hptr, __gaddr, 0); \
520 } else { \
521 /* avoid warning */ \
522 (x) = 0; \
523 __ret = -TARGET_EFAULT; \
525 __ret; \
528 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
529 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
530 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
531 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
532 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
533 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
534 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
535 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
536 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
537 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
539 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
540 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
541 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
542 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
543 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
544 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
545 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
546 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
547 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
548 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
550 /* copy_from_user() and copy_to_user() are usually used to copy data
551 * buffers between the target and host. These internally perform
552 * locking/unlocking of the memory.
554 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
555 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
557 /* Functions for accessing guest memory. The tget and tput functions
558 read/write single values, byteswapping as necessary. The lock_user function
559 gets a pointer to a contiguous area of guest memory, but does not perform
560 any byteswapping. lock_user may return either a pointer to the guest
561 memory, or a temporary buffer. */
563 /* Lock an area of guest memory into the host. If copy is true then the
564 host area will have the same contents as the guest. */
565 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
567 if (!access_ok(type, guest_addr, len))
568 return NULL;
569 #ifdef DEBUG_REMAP
571 void *addr;
572 addr = g_malloc(len);
573 if (copy)
574 memcpy(addr, g2h(guest_addr), len);
575 else
576 memset(addr, 0, len);
577 return addr;
579 #else
580 return g2h(guest_addr);
581 #endif
584 /* Unlock an area of guest memory. The first LEN bytes must be
585 flushed back to guest memory. host_ptr = NULL is explicitly
586 allowed and does nothing. */
587 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
588 long len)
591 #ifdef DEBUG_REMAP
592 if (!host_ptr)
593 return;
594 if (host_ptr == g2h(guest_addr))
595 return;
596 if (len > 0)
597 memcpy(g2h(guest_addr), host_ptr, len);
598 g_free(host_ptr);
599 #endif
602 /* Return the length of a string in target memory or -TARGET_EFAULT if
603 access error. */
604 abi_long target_strlen(abi_ulong gaddr);
606 /* Like lock_user but for null terminated strings. */
607 static inline void *lock_user_string(abi_ulong guest_addr)
609 abi_long len;
610 len = target_strlen(guest_addr);
611 if (len < 0)
612 return NULL;
613 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
616 /* Helper macros for locking/unlocking a target struct. */
617 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
618 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
619 #define unlock_user_struct(host_ptr, guest_addr, copy) \
620 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
622 #include <pthread.h>
624 static inline int is_error(abi_long ret)
626 return (abi_ulong)ret >= (abi_ulong)(-4096);
630 * preexit_cleanup: housekeeping before the guest exits
632 * env: the CPU state
633 * code: the exit code
635 void preexit_cleanup(CPUArchState *env, int code);
637 /* Include target-specific struct and function definitions;
638 * they may need access to the target-independent structures
639 * above, so include them last.
641 #include "target_cpu.h"
642 #include "target_structs.h"
644 #endif /* QEMU_H */