pnv_phb4.c: change TYPE_PNV_PHB4_ROOT_BUS name
[qemu.git] / target / ppc / machine.c
blob756d8de5d8dde3f9eae4d857cca8fbe7caa3f09a
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
13 static void post_load_update_msr(CPUPPCState *env)
15 target_ulong msr = env->msr;
18 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
19 * before restoring. Note that this recomputes hflags.
21 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
22 ppc_store_msr(env, msr);
23 pmu_update_summaries(env);
26 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
28 PowerPCCPU *cpu = opaque;
29 CPUPPCState *env = &cpu->env;
30 unsigned int i, j;
31 target_ulong sdr1;
32 uint32_t fpscr, vscr;
33 #if defined(TARGET_PPC64)
34 int32_t slb_nr;
35 #endif
36 target_ulong xer;
38 for (i = 0; i < 32; i++) {
39 qemu_get_betls(f, &env->gpr[i]);
41 #if !defined(TARGET_PPC64)
42 for (i = 0; i < 32; i++) {
43 qemu_get_betls(f, &env->gprh[i]);
45 #endif
46 qemu_get_betls(f, &env->lr);
47 qemu_get_betls(f, &env->ctr);
48 for (i = 0; i < 8; i++) {
49 qemu_get_be32s(f, &env->crf[i]);
51 qemu_get_betls(f, &xer);
52 cpu_write_xer(env, xer);
53 qemu_get_betls(f, &env->reserve_addr);
54 qemu_get_betls(f, &env->msr);
55 for (i = 0; i < 4; i++) {
56 qemu_get_betls(f, &env->tgpr[i]);
58 for (i = 0; i < 32; i++) {
59 union {
60 float64 d;
61 uint64_t l;
62 } u;
63 u.l = qemu_get_be64(f);
64 *cpu_fpr_ptr(env, i) = u.d;
66 qemu_get_be32s(f, &fpscr);
67 env->fpscr = fpscr;
68 qemu_get_sbe32s(f, &env->access_type);
69 #if defined(TARGET_PPC64)
70 qemu_get_betls(f, &env->spr[SPR_ASR]);
71 qemu_get_sbe32s(f, &slb_nr);
72 #endif
73 qemu_get_betls(f, &sdr1);
74 for (i = 0; i < 32; i++) {
75 qemu_get_betls(f, &env->sr[i]);
77 for (i = 0; i < 2; i++) {
78 for (j = 0; j < 8; j++) {
79 qemu_get_betls(f, &env->DBAT[i][j]);
82 for (i = 0; i < 2; i++) {
83 for (j = 0; j < 8; j++) {
84 qemu_get_betls(f, &env->IBAT[i][j]);
87 qemu_get_sbe32s(f, &env->nb_tlb);
88 qemu_get_sbe32s(f, &env->tlb_per_way);
89 qemu_get_sbe32s(f, &env->nb_ways);
90 qemu_get_sbe32s(f, &env->last_way);
91 qemu_get_sbe32s(f, &env->id_tlbs);
92 qemu_get_sbe32s(f, &env->nb_pids);
93 if (env->tlb.tlb6) {
94 /* XXX assumes 6xx */
95 for (i = 0; i < env->nb_tlb; i++) {
96 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
97 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
98 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
101 for (i = 0; i < 4; i++) {
102 qemu_get_betls(f, &env->pb[i]);
104 for (i = 0; i < 1024; i++) {
105 qemu_get_betls(f, &env->spr[i]);
107 if (!cpu->vhyp) {
108 ppc_store_sdr1(env, sdr1);
110 qemu_get_be32s(f, &vscr);
111 ppc_store_vscr(env, vscr);
112 qemu_get_be64s(f, &env->spe_acc);
113 qemu_get_be32s(f, &env->spe_fscr);
114 qemu_get_betls(f, &env->msr_mask);
115 qemu_get_be32s(f, &env->flags);
116 qemu_get_sbe32s(f, &env->error_code);
117 qemu_get_be32s(f, &env->pending_interrupts);
118 qemu_get_be32s(f, &env->irq_input_state);
119 for (i = 0; i < POWERPC_EXCP_NB; i++) {
120 qemu_get_betls(f, &env->excp_vectors[i]);
122 qemu_get_betls(f, &env->excp_prefix);
123 qemu_get_betls(f, &env->ivor_mask);
124 qemu_get_betls(f, &env->ivpr_mask);
125 qemu_get_betls(f, &env->hreset_vector);
126 qemu_get_betls(f, &env->nip);
127 qemu_get_sbetl(f); /* Discard unused hflags */
128 qemu_get_sbetl(f); /* Discard unused hflags_nmsr */
129 qemu_get_sbe32(f); /* Discard unused mmu_idx */
130 qemu_get_sbe32(f); /* Discard unused power_mode */
132 post_load_update_msr(env);
134 return 0;
137 static int get_avr(QEMUFile *f, void *pv, size_t size,
138 const VMStateField *field)
140 ppc_avr_t *v = pv;
142 v->u64[0] = qemu_get_be64(f);
143 v->u64[1] = qemu_get_be64(f);
145 return 0;
148 static int put_avr(QEMUFile *f, void *pv, size_t size,
149 const VMStateField *field, JSONWriter *vmdesc)
151 ppc_avr_t *v = pv;
153 qemu_put_be64(f, v->u64[0]);
154 qemu_put_be64(f, v->u64[1]);
155 return 0;
158 static const VMStateInfo vmstate_info_avr = {
159 .name = "avr",
160 .get = get_avr,
161 .put = put_avr,
164 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
165 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
167 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
168 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
170 static int get_fpr(QEMUFile *f, void *pv, size_t size,
171 const VMStateField *field)
173 ppc_vsr_t *v = pv;
175 v->VsrD(0) = qemu_get_be64(f);
177 return 0;
180 static int put_fpr(QEMUFile *f, void *pv, size_t size,
181 const VMStateField *field, JSONWriter *vmdesc)
183 ppc_vsr_t *v = pv;
185 qemu_put_be64(f, v->VsrD(0));
186 return 0;
189 static const VMStateInfo vmstate_info_fpr = {
190 .name = "fpr",
191 .get = get_fpr,
192 .put = put_fpr,
195 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
196 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
198 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
199 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
201 static int get_vsr(QEMUFile *f, void *pv, size_t size,
202 const VMStateField *field)
204 ppc_vsr_t *v = pv;
206 v->VsrD(1) = qemu_get_be64(f);
208 return 0;
211 static int put_vsr(QEMUFile *f, void *pv, size_t size,
212 const VMStateField *field, JSONWriter *vmdesc)
214 ppc_vsr_t *v = pv;
216 qemu_put_be64(f, v->VsrD(1));
217 return 0;
220 static const VMStateInfo vmstate_info_vsr = {
221 .name = "vsr",
222 .get = get_vsr,
223 .put = put_vsr,
226 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
227 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
229 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
230 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
232 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
234 PowerPCCPU *cpu = opaque;
236 return cpu->pre_2_8_migration;
239 #if defined(TARGET_PPC64)
240 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
242 PowerPCCPU *cpu = opaque;
244 return cpu->pre_3_0_migration;
246 #endif
248 static int cpu_pre_save(void *opaque)
250 PowerPCCPU *cpu = opaque;
251 CPUPPCState *env = &cpu->env;
252 int i;
253 uint64_t insns_compat_mask =
254 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
255 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
256 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
257 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
258 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
259 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
260 | PPC_64B | PPC_64BX | PPC_ALTIVEC
261 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
262 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
263 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
264 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
265 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
266 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
267 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
269 env->spr[SPR_LR] = env->lr;
270 env->spr[SPR_CTR] = env->ctr;
271 env->spr[SPR_XER] = cpu_read_xer(env);
272 #if defined(TARGET_PPC64)
273 env->spr[SPR_CFAR] = env->cfar;
274 #endif
275 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
277 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
278 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
279 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
280 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
281 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
283 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
284 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
285 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
286 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
287 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
290 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
291 if (cpu->pre_2_8_migration) {
293 * Mask out bits that got added to msr_mask since the versions
294 * which stupidly included it in the migration stream.
296 target_ulong metamask = 0
297 #if defined(TARGET_PPC64)
298 | (1ULL << MSR_TS0)
299 | (1ULL << MSR_TS1)
300 #endif
302 cpu->mig_msr_mask = env->msr_mask & ~metamask;
303 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
305 * CPU models supported by old machines all have
306 * PPC_MEM_TLBIE, so we set it unconditionally to allow
307 * backward migration from a POWER9 host to a POWER8 host.
309 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
310 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
311 cpu->mig_nb_BATs = env->nb_BATs;
313 if (cpu->pre_3_0_migration) {
314 if (cpu->hash64_opts) {
315 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
319 /* Retain migration compatibility for pre 6.0 for 601 machines. */
320 env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE
321 ? env->hflags & MSR_LE : 0);
323 return 0;
327 * Determine if a given PVR is a "close enough" match to the CPU
328 * object. For TCG and KVM PR it would probably be sufficient to
329 * require an exact PVR match. However for KVM HV the user is
330 * restricted to a PVR exactly matching the host CPU. The correct way
331 * to handle this is to put the guest into an architected
332 * compatibility mode. However, to allow a more forgiving transition
333 * and migration from before this was widely done, we allow migration
334 * between sufficiently similar PVRs, as determined by the CPU class's
335 * pvr_match() hook.
337 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
339 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
341 if (pvr == pcc->pvr) {
342 return true;
344 return pcc->pvr_match(pcc, pvr);
347 static int cpu_post_load(void *opaque, int version_id)
349 PowerPCCPU *cpu = opaque;
350 CPUPPCState *env = &cpu->env;
351 int i;
354 * If we're operating in compat mode, we should be ok as long as
355 * the destination supports the same compatibility mode.
357 * Otherwise, however, we require that the destination has exactly
358 * the same CPU model as the source.
361 #if defined(TARGET_PPC64)
362 if (cpu->compat_pvr) {
363 uint32_t compat_pvr = cpu->compat_pvr;
364 Error *local_err = NULL;
365 int ret;
367 cpu->compat_pvr = 0;
368 ret = ppc_set_compat(cpu, compat_pvr, &local_err);
369 if (ret < 0) {
370 error_report_err(local_err);
371 return ret;
373 } else
374 #endif
376 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
377 return -EINVAL;
382 * If we're running with KVM HV, there is a chance that the guest
383 * is running with KVM HV and its kernel does not have the
384 * capability of dealing with a different PVR other than this
385 * exact host PVR in KVM_SET_SREGS. If that happens, the
386 * guest freezes after migration.
388 * The function kvmppc_pvr_workaround_required does this verification
389 * by first checking if the kernel has the cap, returning true immediately
390 * if that is the case. Otherwise, it checks if we're running in KVM PR.
391 * If the guest kernel does not have the cap and we're not running KVM-PR
392 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
393 * receive the PVR it expects as a workaround.
396 if (kvmppc_pvr_workaround_required(cpu)) {
397 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
400 env->lr = env->spr[SPR_LR];
401 env->ctr = env->spr[SPR_CTR];
402 cpu_write_xer(env, env->spr[SPR_XER]);
403 #if defined(TARGET_PPC64)
404 env->cfar = env->spr[SPR_CFAR];
405 #endif
406 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
408 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
409 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
410 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
411 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
412 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
414 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
415 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
416 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
417 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
418 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
421 if (!cpu->vhyp) {
422 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
425 post_load_update_msr(env);
427 return 0;
430 static bool fpu_needed(void *opaque)
432 PowerPCCPU *cpu = opaque;
434 return cpu->env.insns_flags & PPC_FLOAT;
437 static const VMStateDescription vmstate_fpu = {
438 .name = "cpu/fpu",
439 .version_id = 1,
440 .minimum_version_id = 1,
441 .needed = fpu_needed,
442 .fields = (VMStateField[]) {
443 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
444 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
445 VMSTATE_END_OF_LIST()
449 static bool altivec_needed(void *opaque)
451 PowerPCCPU *cpu = opaque;
453 return cpu->env.insns_flags & PPC_ALTIVEC;
456 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
457 const VMStateField *field)
459 PowerPCCPU *cpu = opaque;
460 ppc_store_vscr(&cpu->env, qemu_get_be32(f));
461 return 0;
464 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
465 const VMStateField *field, JSONWriter *vmdesc)
467 PowerPCCPU *cpu = opaque;
468 qemu_put_be32(f, ppc_get_vscr(&cpu->env));
469 return 0;
472 static const VMStateInfo vmstate_vscr = {
473 .name = "cpu/altivec/vscr",
474 .get = get_vscr,
475 .put = put_vscr,
478 static const VMStateDescription vmstate_altivec = {
479 .name = "cpu/altivec",
480 .version_id = 1,
481 .minimum_version_id = 1,
482 .needed = altivec_needed,
483 .fields = (VMStateField[]) {
484 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
486 * Save the architecture value of the vscr, not the internally
487 * expanded version. Since this architecture value does not
488 * exist in memory to be stored, this requires a but of hoop
489 * jumping. We want OFFSET=0 so that we effectively pass CPU
490 * to the helper functions.
493 .name = "vscr",
494 .version_id = 0,
495 .size = sizeof(uint32_t),
496 .info = &vmstate_vscr,
497 .flags = VMS_SINGLE,
498 .offset = 0
500 VMSTATE_END_OF_LIST()
504 static bool vsx_needed(void *opaque)
506 PowerPCCPU *cpu = opaque;
508 return cpu->env.insns_flags2 & PPC2_VSX;
511 static const VMStateDescription vmstate_vsx = {
512 .name = "cpu/vsx",
513 .version_id = 1,
514 .minimum_version_id = 1,
515 .needed = vsx_needed,
516 .fields = (VMStateField[]) {
517 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
518 VMSTATE_END_OF_LIST()
522 #ifdef TARGET_PPC64
523 /* Transactional memory state */
524 static bool tm_needed(void *opaque)
526 PowerPCCPU *cpu = opaque;
527 CPUPPCState *env = &cpu->env;
528 return msr_ts;
531 static const VMStateDescription vmstate_tm = {
532 .name = "cpu/tm",
533 .version_id = 1,
534 .minimum_version_id = 1,
535 .minimum_version_id_old = 1,
536 .needed = tm_needed,
537 .fields = (VMStateField []) {
538 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
539 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
540 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
541 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
542 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
543 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
544 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
545 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
546 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
547 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
548 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
549 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
550 VMSTATE_END_OF_LIST()
553 #endif
555 static bool sr_needed(void *opaque)
557 #ifdef TARGET_PPC64
558 PowerPCCPU *cpu = opaque;
560 return !mmu_is_64bit(cpu->env.mmu_model);
561 #else
562 return true;
563 #endif
566 static const VMStateDescription vmstate_sr = {
567 .name = "cpu/sr",
568 .version_id = 1,
569 .minimum_version_id = 1,
570 .needed = sr_needed,
571 .fields = (VMStateField[]) {
572 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
573 VMSTATE_END_OF_LIST()
577 #ifdef TARGET_PPC64
578 static int get_slbe(QEMUFile *f, void *pv, size_t size,
579 const VMStateField *field)
581 ppc_slb_t *v = pv;
583 v->esid = qemu_get_be64(f);
584 v->vsid = qemu_get_be64(f);
586 return 0;
589 static int put_slbe(QEMUFile *f, void *pv, size_t size,
590 const VMStateField *field, JSONWriter *vmdesc)
592 ppc_slb_t *v = pv;
594 qemu_put_be64(f, v->esid);
595 qemu_put_be64(f, v->vsid);
596 return 0;
599 static const VMStateInfo vmstate_info_slbe = {
600 .name = "slbe",
601 .get = get_slbe,
602 .put = put_slbe,
605 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
606 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
608 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
609 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
611 static bool slb_needed(void *opaque)
613 PowerPCCPU *cpu = opaque;
615 /* We don't support any of the old segment table based 64-bit CPUs */
616 return mmu_is_64bit(cpu->env.mmu_model);
619 static int slb_post_load(void *opaque, int version_id)
621 PowerPCCPU *cpu = opaque;
622 CPUPPCState *env = &cpu->env;
623 int i;
626 * We've pulled in the raw esid and vsid values from the migration
627 * stream, but we need to recompute the page size pointers
629 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
630 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
631 /* Migration source had bad values in its SLB */
632 return -1;
636 return 0;
639 static const VMStateDescription vmstate_slb = {
640 .name = "cpu/slb",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .needed = slb_needed,
644 .post_load = slb_post_load,
645 .fields = (VMStateField[]) {
646 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
647 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
648 VMSTATE_END_OF_LIST()
651 #endif /* TARGET_PPC64 */
653 static const VMStateDescription vmstate_tlb6xx_entry = {
654 .name = "cpu/tlb6xx_entry",
655 .version_id = 1,
656 .minimum_version_id = 1,
657 .fields = (VMStateField[]) {
658 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
659 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
660 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
661 VMSTATE_END_OF_LIST()
665 static bool tlb6xx_needed(void *opaque)
667 PowerPCCPU *cpu = opaque;
668 CPUPPCState *env = &cpu->env;
670 return env->nb_tlb && (env->tlb_type == TLB_6XX);
673 static const VMStateDescription vmstate_tlb6xx = {
674 .name = "cpu/tlb6xx",
675 .version_id = 1,
676 .minimum_version_id = 1,
677 .needed = tlb6xx_needed,
678 .fields = (VMStateField[]) {
679 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
680 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
681 env.nb_tlb,
682 vmstate_tlb6xx_entry,
683 ppc6xx_tlb_t),
684 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
685 VMSTATE_END_OF_LIST()
689 static const VMStateDescription vmstate_tlbemb_entry = {
690 .name = "cpu/tlbemb_entry",
691 .version_id = 1,
692 .minimum_version_id = 1,
693 .fields = (VMStateField[]) {
694 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
695 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
696 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
697 VMSTATE_UINTTL(size, ppcemb_tlb_t),
698 VMSTATE_UINT32(prot, ppcemb_tlb_t),
699 VMSTATE_UINT32(attr, ppcemb_tlb_t),
700 VMSTATE_END_OF_LIST()
704 static bool tlbemb_needed(void *opaque)
706 PowerPCCPU *cpu = opaque;
707 CPUPPCState *env = &cpu->env;
709 return env->nb_tlb && (env->tlb_type == TLB_EMB);
712 static bool pbr403_needed(void *opaque)
714 PowerPCCPU *cpu = opaque;
715 uint32_t pvr = cpu->env.spr[SPR_PVR];
717 return (pvr & 0xffff0000) == 0x00200000;
720 static const VMStateDescription vmstate_pbr403 = {
721 .name = "cpu/pbr403",
722 .version_id = 1,
723 .minimum_version_id = 1,
724 .needed = pbr403_needed,
725 .fields = (VMStateField[]) {
726 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
727 VMSTATE_END_OF_LIST()
731 static const VMStateDescription vmstate_tlbemb = {
732 .name = "cpu/tlb6xx",
733 .version_id = 1,
734 .minimum_version_id = 1,
735 .needed = tlbemb_needed,
736 .fields = (VMStateField[]) {
737 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
738 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
739 env.nb_tlb,
740 vmstate_tlbemb_entry,
741 ppcemb_tlb_t),
742 /* 403 protection registers */
743 VMSTATE_END_OF_LIST()
745 .subsections = (const VMStateDescription*[]) {
746 &vmstate_pbr403,
747 NULL
751 static const VMStateDescription vmstate_tlbmas_entry = {
752 .name = "cpu/tlbmas_entry",
753 .version_id = 1,
754 .minimum_version_id = 1,
755 .fields = (VMStateField[]) {
756 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
757 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
758 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
759 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
760 VMSTATE_END_OF_LIST()
764 static bool tlbmas_needed(void *opaque)
766 PowerPCCPU *cpu = opaque;
767 CPUPPCState *env = &cpu->env;
769 return env->nb_tlb && (env->tlb_type == TLB_MAS);
772 static const VMStateDescription vmstate_tlbmas = {
773 .name = "cpu/tlbmas",
774 .version_id = 1,
775 .minimum_version_id = 1,
776 .needed = tlbmas_needed,
777 .fields = (VMStateField[]) {
778 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
779 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
780 env.nb_tlb,
781 vmstate_tlbmas_entry,
782 ppcmas_tlb_t),
783 VMSTATE_END_OF_LIST()
787 static bool compat_needed(void *opaque)
789 PowerPCCPU *cpu = opaque;
791 assert(!(cpu->compat_pvr && !cpu->vhyp));
792 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
795 static const VMStateDescription vmstate_compat = {
796 .name = "cpu/compat",
797 .version_id = 1,
798 .minimum_version_id = 1,
799 .needed = compat_needed,
800 .fields = (VMStateField[]) {
801 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
802 VMSTATE_END_OF_LIST()
806 const VMStateDescription vmstate_ppc_cpu = {
807 .name = "cpu",
808 .version_id = 5,
809 .minimum_version_id = 5,
810 .minimum_version_id_old = 4,
811 .load_state_old = cpu_load_old,
812 .pre_save = cpu_pre_save,
813 .post_load = cpu_post_load,
814 .fields = (VMStateField[]) {
815 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
817 /* User mode architected state */
818 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
819 #if !defined(TARGET_PPC64)
820 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
821 #endif
822 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
823 VMSTATE_UINTTL(env.nip, PowerPCCPU),
825 /* SPRs */
826 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
827 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
829 /* Reservation */
830 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
832 /* Supervisor mode architected state */
833 VMSTATE_UINTTL(env.msr, PowerPCCPU),
835 /* Backward compatible internal state */
836 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
838 /* Sanity checking */
839 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
840 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
841 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
842 cpu_pre_2_8_migration),
843 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
844 VMSTATE_END_OF_LIST()
846 .subsections = (const VMStateDescription*[]) {
847 &vmstate_fpu,
848 &vmstate_altivec,
849 &vmstate_vsx,
850 &vmstate_sr,
851 #ifdef TARGET_PPC64
852 &vmstate_tm,
853 &vmstate_slb,
854 #endif /* TARGET_PPC64 */
855 &vmstate_tlb6xx,
856 &vmstate_tlbemb,
857 &vmstate_tlbmas,
858 &vmstate_compat,
859 NULL