Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / target / ppc / machine.c
blobbe6eb3d9684367c1341a2a70ed27eefff8a6a88c
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "qemu/main-loop.h"
11 #include "kvm_ppc.h"
12 #include "power8-pmu.h"
14 static void post_load_update_msr(CPUPPCState *env)
16 target_ulong msr = env->msr;
19 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
20 * before restoring. Note that this recomputes hflags.
22 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
23 ppc_store_msr(env, msr);
25 if (tcg_enabled()) {
26 pmu_update_summaries(env);
30 static int get_avr(QEMUFile *f, void *pv, size_t size,
31 const VMStateField *field)
33 ppc_avr_t *v = pv;
35 v->u64[0] = qemu_get_be64(f);
36 v->u64[1] = qemu_get_be64(f);
38 return 0;
41 static int put_avr(QEMUFile *f, void *pv, size_t size,
42 const VMStateField *field, JSONWriter *vmdesc)
44 ppc_avr_t *v = pv;
46 qemu_put_be64(f, v->u64[0]);
47 qemu_put_be64(f, v->u64[1]);
48 return 0;
51 static const VMStateInfo vmstate_info_avr = {
52 .name = "avr",
53 .get = get_avr,
54 .put = put_avr,
57 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
58 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
60 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
61 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
63 static int get_fpr(QEMUFile *f, void *pv, size_t size,
64 const VMStateField *field)
66 ppc_vsr_t *v = pv;
68 v->VsrD(0) = qemu_get_be64(f);
70 return 0;
73 static int put_fpr(QEMUFile *f, void *pv, size_t size,
74 const VMStateField *field, JSONWriter *vmdesc)
76 ppc_vsr_t *v = pv;
78 qemu_put_be64(f, v->VsrD(0));
79 return 0;
82 static const VMStateInfo vmstate_info_fpr = {
83 .name = "fpr",
84 .get = get_fpr,
85 .put = put_fpr,
88 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
89 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
91 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
92 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
94 static int get_vsr(QEMUFile *f, void *pv, size_t size,
95 const VMStateField *field)
97 ppc_vsr_t *v = pv;
99 v->VsrD(1) = qemu_get_be64(f);
101 return 0;
104 static int put_vsr(QEMUFile *f, void *pv, size_t size,
105 const VMStateField *field, JSONWriter *vmdesc)
107 ppc_vsr_t *v = pv;
109 qemu_put_be64(f, v->VsrD(1));
110 return 0;
113 static const VMStateInfo vmstate_info_vsr = {
114 .name = "vsr",
115 .get = get_vsr,
116 .put = put_vsr,
119 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
120 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
122 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
123 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
125 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
127 PowerPCCPU *cpu = opaque;
129 return cpu->pre_2_8_migration;
132 #if defined(TARGET_PPC64)
133 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
135 PowerPCCPU *cpu = opaque;
137 return cpu->pre_3_0_migration;
139 #endif
141 static int cpu_pre_save(void *opaque)
143 PowerPCCPU *cpu = opaque;
144 CPUPPCState *env = &cpu->env;
145 int i;
146 uint64_t insns_compat_mask =
147 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
148 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
149 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
150 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
151 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
152 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
153 | PPC_64B | PPC_64BX | PPC_ALTIVEC
154 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
155 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
156 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
157 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
158 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
159 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
160 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM
161 | PPC2_MEM_LWSYNC;
163 env->spr[SPR_LR] = env->lr;
164 env->spr[SPR_CTR] = env->ctr;
165 env->spr[SPR_XER] = cpu_read_xer(env);
166 #if defined(TARGET_PPC64)
167 env->spr[SPR_CFAR] = env->cfar;
168 #endif
169 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
171 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
172 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
173 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
174 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
175 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
177 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
178 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
179 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
180 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
181 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
184 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
185 if (cpu->pre_2_8_migration) {
187 * Mask out bits that got added to msr_mask since the versions
188 * which stupidly included it in the migration stream.
190 target_ulong metamask = 0
191 #if defined(TARGET_PPC64)
192 | (1ULL << MSR_TS0)
193 | (1ULL << MSR_TS1)
194 #endif
196 cpu->mig_msr_mask = env->msr_mask & ~metamask;
197 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
199 * CPU models supported by old machines all have
200 * PPC_MEM_TLBIE, so we set it unconditionally to allow
201 * backward migration from a POWER9 host to a POWER8 host.
203 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
204 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
205 cpu->mig_nb_BATs = env->nb_BATs;
207 if (cpu->pre_3_0_migration) {
208 if (cpu->hash64_opts) {
209 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
213 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
214 env->hflags_compat_nmsr = 0;
216 return 0;
220 * Determine if a given PVR is a "close enough" match to the CPU
221 * object. For TCG and KVM PR it would probably be sufficient to
222 * require an exact PVR match. However for KVM HV the user is
223 * restricted to a PVR exactly matching the host CPU. The correct way
224 * to handle this is to put the guest into an architected
225 * compatibility mode. However, to allow a more forgiving transition
226 * and migration from before this was widely done, we allow migration
227 * between sufficiently similar PVRs, as determined by the CPU class's
228 * pvr_match() hook.
230 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
232 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
234 if (pvr == pcc->pvr) {
235 return true;
237 return pcc->pvr_match(pcc, pvr, true);
240 static int cpu_post_load(void *opaque, int version_id)
242 PowerPCCPU *cpu = opaque;
243 CPUPPCState *env = &cpu->env;
244 int i;
247 * If we're operating in compat mode, we should be ok as long as
248 * the destination supports the same compatibility mode.
250 * Otherwise, however, we require that the destination has exactly
251 * the same CPU model as the source.
254 #if defined(TARGET_PPC64)
255 if (cpu->compat_pvr) {
256 uint32_t compat_pvr = cpu->compat_pvr;
257 Error *local_err = NULL;
258 int ret;
260 cpu->compat_pvr = 0;
261 ret = ppc_set_compat(cpu, compat_pvr, &local_err);
262 if (ret < 0) {
263 error_report_err(local_err);
264 return ret;
266 } else
267 #endif
269 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
270 return -EINVAL;
275 * If we're running with KVM HV, there is a chance that the guest
276 * is running with KVM HV and its kernel does not have the
277 * capability of dealing with a different PVR other than this
278 * exact host PVR in KVM_SET_SREGS. If that happens, the
279 * guest freezes after migration.
281 * The function kvmppc_pvr_workaround_required does this verification
282 * by first checking if the kernel has the cap, returning true immediately
283 * if that is the case. Otherwise, it checks if we're running in KVM PR.
284 * If the guest kernel does not have the cap and we're not running KVM-PR
285 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
286 * receive the PVR it expects as a workaround.
289 if (kvmppc_pvr_workaround_required(cpu)) {
290 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
293 env->lr = env->spr[SPR_LR];
294 env->ctr = env->spr[SPR_CTR];
295 cpu_write_xer(env, env->spr[SPR_XER]);
296 #if defined(TARGET_PPC64)
297 env->cfar = env->spr[SPR_CFAR];
298 #endif
299 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
301 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
302 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
303 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
304 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
305 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
307 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
308 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
309 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
310 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
311 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
314 if (!cpu->vhyp) {
315 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
318 post_load_update_msr(env);
320 return 0;
323 static bool fpu_needed(void *opaque)
325 PowerPCCPU *cpu = opaque;
327 return cpu->env.insns_flags & PPC_FLOAT;
330 static const VMStateDescription vmstate_fpu = {
331 .name = "cpu/fpu",
332 .version_id = 1,
333 .minimum_version_id = 1,
334 .needed = fpu_needed,
335 .fields = (VMStateField[]) {
336 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
337 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
338 VMSTATE_END_OF_LIST()
342 static bool altivec_needed(void *opaque)
344 PowerPCCPU *cpu = opaque;
346 return cpu->env.insns_flags & PPC_ALTIVEC;
349 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
350 const VMStateField *field)
352 PowerPCCPU *cpu = opaque;
353 ppc_store_vscr(&cpu->env, qemu_get_be32(f));
354 return 0;
357 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
358 const VMStateField *field, JSONWriter *vmdesc)
360 PowerPCCPU *cpu = opaque;
361 qemu_put_be32(f, ppc_get_vscr(&cpu->env));
362 return 0;
365 static const VMStateInfo vmstate_vscr = {
366 .name = "cpu/altivec/vscr",
367 .get = get_vscr,
368 .put = put_vscr,
371 static const VMStateDescription vmstate_altivec = {
372 .name = "cpu/altivec",
373 .version_id = 1,
374 .minimum_version_id = 1,
375 .needed = altivec_needed,
376 .fields = (VMStateField[]) {
377 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
379 * Save the architecture value of the vscr, not the internally
380 * expanded version. Since this architecture value does not
381 * exist in memory to be stored, this requires a but of hoop
382 * jumping. We want OFFSET=0 so that we effectively pass CPU
383 * to the helper functions.
386 .name = "vscr",
387 .version_id = 0,
388 .size = sizeof(uint32_t),
389 .info = &vmstate_vscr,
390 .flags = VMS_SINGLE,
391 .offset = 0
393 VMSTATE_END_OF_LIST()
397 static bool vsx_needed(void *opaque)
399 PowerPCCPU *cpu = opaque;
401 return cpu->env.insns_flags2 & PPC2_VSX;
404 static const VMStateDescription vmstate_vsx = {
405 .name = "cpu/vsx",
406 .version_id = 1,
407 .minimum_version_id = 1,
408 .needed = vsx_needed,
409 .fields = (VMStateField[]) {
410 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
411 VMSTATE_END_OF_LIST()
415 #ifdef TARGET_PPC64
416 /* Transactional memory state */
417 static bool tm_needed(void *opaque)
419 PowerPCCPU *cpu = opaque;
420 CPUPPCState *env = &cpu->env;
421 return FIELD_EX64(env->msr, MSR, TS);
424 static const VMStateDescription vmstate_tm = {
425 .name = "cpu/tm",
426 .version_id = 1,
427 .minimum_version_id = 1,
428 .needed = tm_needed,
429 .fields = (VMStateField []) {
430 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
431 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
432 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
433 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
434 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
435 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
436 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
437 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
438 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
439 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
440 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
441 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
442 VMSTATE_END_OF_LIST()
445 #endif
447 static bool sr_needed(void *opaque)
449 #ifdef TARGET_PPC64
450 PowerPCCPU *cpu = opaque;
452 return !mmu_is_64bit(cpu->env.mmu_model);
453 #else
454 return true;
455 #endif
458 static const VMStateDescription vmstate_sr = {
459 .name = "cpu/sr",
460 .version_id = 1,
461 .minimum_version_id = 1,
462 .needed = sr_needed,
463 .fields = (VMStateField[]) {
464 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
465 VMSTATE_END_OF_LIST()
469 #ifdef TARGET_PPC64
470 static int get_slbe(QEMUFile *f, void *pv, size_t size,
471 const VMStateField *field)
473 ppc_slb_t *v = pv;
475 v->esid = qemu_get_be64(f);
476 v->vsid = qemu_get_be64(f);
478 return 0;
481 static int put_slbe(QEMUFile *f, void *pv, size_t size,
482 const VMStateField *field, JSONWriter *vmdesc)
484 ppc_slb_t *v = pv;
486 qemu_put_be64(f, v->esid);
487 qemu_put_be64(f, v->vsid);
488 return 0;
491 static const VMStateInfo vmstate_info_slbe = {
492 .name = "slbe",
493 .get = get_slbe,
494 .put = put_slbe,
497 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
498 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
500 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
501 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
503 static bool slb_needed(void *opaque)
505 PowerPCCPU *cpu = opaque;
507 /* We don't support any of the old segment table based 64-bit CPUs */
508 return mmu_is_64bit(cpu->env.mmu_model);
511 static int slb_post_load(void *opaque, int version_id)
513 PowerPCCPU *cpu = opaque;
514 CPUPPCState *env = &cpu->env;
515 int i;
518 * We've pulled in the raw esid and vsid values from the migration
519 * stream, but we need to recompute the page size pointers
521 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
522 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
523 /* Migration source had bad values in its SLB */
524 return -1;
528 return 0;
531 static const VMStateDescription vmstate_slb = {
532 .name = "cpu/slb",
533 .version_id = 1,
534 .minimum_version_id = 1,
535 .needed = slb_needed,
536 .post_load = slb_post_load,
537 .fields = (VMStateField[]) {
538 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
539 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
540 VMSTATE_END_OF_LIST()
543 #endif /* TARGET_PPC64 */
545 static const VMStateDescription vmstate_tlb6xx_entry = {
546 .name = "cpu/tlb6xx_entry",
547 .version_id = 1,
548 .minimum_version_id = 1,
549 .fields = (VMStateField[]) {
550 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
551 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
552 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
553 VMSTATE_END_OF_LIST()
557 static bool tlb6xx_needed(void *opaque)
559 PowerPCCPU *cpu = opaque;
560 CPUPPCState *env = &cpu->env;
562 return env->nb_tlb && (env->tlb_type == TLB_6XX);
565 static const VMStateDescription vmstate_tlb6xx = {
566 .name = "cpu/tlb6xx",
567 .version_id = 1,
568 .minimum_version_id = 1,
569 .needed = tlb6xx_needed,
570 .fields = (VMStateField[]) {
571 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
572 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
573 env.nb_tlb,
574 vmstate_tlb6xx_entry,
575 ppc6xx_tlb_t),
576 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
577 VMSTATE_END_OF_LIST()
581 static const VMStateDescription vmstate_tlbemb_entry = {
582 .name = "cpu/tlbemb_entry",
583 .version_id = 1,
584 .minimum_version_id = 1,
585 .fields = (VMStateField[]) {
586 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
587 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
588 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
589 VMSTATE_UINTTL(size, ppcemb_tlb_t),
590 VMSTATE_UINT32(prot, ppcemb_tlb_t),
591 VMSTATE_UINT32(attr, ppcemb_tlb_t),
592 VMSTATE_END_OF_LIST()
596 static bool tlbemb_needed(void *opaque)
598 PowerPCCPU *cpu = opaque;
599 CPUPPCState *env = &cpu->env;
601 return env->nb_tlb && (env->tlb_type == TLB_EMB);
604 static const VMStateDescription vmstate_tlbemb = {
605 .name = "cpu/tlb6xx",
606 .version_id = 1,
607 .minimum_version_id = 1,
608 .needed = tlbemb_needed,
609 .fields = (VMStateField[]) {
610 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
611 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
612 env.nb_tlb,
613 vmstate_tlbemb_entry,
614 ppcemb_tlb_t),
615 VMSTATE_END_OF_LIST()
619 static const VMStateDescription vmstate_tlbmas_entry = {
620 .name = "cpu/tlbmas_entry",
621 .version_id = 1,
622 .minimum_version_id = 1,
623 .fields = (VMStateField[]) {
624 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
625 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
626 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
627 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
628 VMSTATE_END_OF_LIST()
632 static bool tlbmas_needed(void *opaque)
634 PowerPCCPU *cpu = opaque;
635 CPUPPCState *env = &cpu->env;
637 return env->nb_tlb && (env->tlb_type == TLB_MAS);
640 static const VMStateDescription vmstate_tlbmas = {
641 .name = "cpu/tlbmas",
642 .version_id = 1,
643 .minimum_version_id = 1,
644 .needed = tlbmas_needed,
645 .fields = (VMStateField[]) {
646 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
647 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
648 env.nb_tlb,
649 vmstate_tlbmas_entry,
650 ppcmas_tlb_t),
651 VMSTATE_END_OF_LIST()
655 static bool compat_needed(void *opaque)
657 PowerPCCPU *cpu = opaque;
659 assert(!(cpu->compat_pvr && !cpu->vhyp));
660 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
663 static const VMStateDescription vmstate_compat = {
664 .name = "cpu/compat",
665 .version_id = 1,
666 .minimum_version_id = 1,
667 .needed = compat_needed,
668 .fields = (VMStateField[]) {
669 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
670 VMSTATE_END_OF_LIST()
674 const VMStateDescription vmstate_ppc_cpu = {
675 .name = "cpu",
676 .version_id = 5,
677 .minimum_version_id = 5,
678 .pre_save = cpu_pre_save,
679 .post_load = cpu_post_load,
680 .fields = (VMStateField[]) {
681 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
683 /* User mode architected state */
684 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
685 #if !defined(TARGET_PPC64)
686 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
687 #endif
688 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
689 VMSTATE_UINTTL(env.nip, PowerPCCPU),
691 /* SPRs */
692 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
693 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
695 /* Reservation */
696 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
698 /* Supervisor mode architected state */
699 VMSTATE_UINTTL(env.msr, PowerPCCPU),
701 /* Backward compatible internal state */
702 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
704 /* Sanity checking */
705 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
706 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
707 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
708 cpu_pre_2_8_migration),
709 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
710 VMSTATE_END_OF_LIST()
712 .subsections = (const VMStateDescription*[]) {
713 &vmstate_fpu,
714 &vmstate_altivec,
715 &vmstate_vsx,
716 &vmstate_sr,
717 #ifdef TARGET_PPC64
718 &vmstate_tm,
719 &vmstate_slb,
720 #endif /* TARGET_PPC64 */
721 &vmstate_tlb6xx,
722 &vmstate_tlbemb,
723 &vmstate_tlbmas,
724 &vmstate_compat,
725 NULL