2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState
*bs
, int min_size
, bool exact_size
)
33 BDRVQcowState
*s
= bs
->opaque
;
34 int new_l1_size
, new_l1_size2
, ret
, i
;
35 uint64_t *new_l1_table
;
36 int64_t new_l1_table_offset
;
39 if (min_size
<= s
->l1_size
)
43 new_l1_size
= min_size
;
45 /* Bump size up to reduce the number of times we have to grow */
46 new_l1_size
= s
->l1_size
;
47 if (new_l1_size
== 0) {
50 while (min_size
> new_l1_size
) {
51 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
56 printf("grow l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
59 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
60 new_l1_table
= g_malloc0(align_offset(new_l1_size2
, 512));
61 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
63 /* write new table (align to cluster) */
64 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
65 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
66 if (new_l1_table_offset
< 0) {
68 return new_l1_table_offset
;
71 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
76 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
77 for(i
= 0; i
< s
->l1_size
; i
++)
78 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
79 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
82 for(i
= 0; i
< s
->l1_size
; i
++)
83 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
86 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
87 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
88 cpu_to_be64wu((uint64_t*)(data
+ 4), new_l1_table_offset
);
89 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
94 qcow2_free_clusters(bs
, s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t));
95 s
->l1_table_offset
= new_l1_table_offset
;
96 s
->l1_table
= new_l1_table
;
97 s
->l1_size
= new_l1_size
;
100 g_free(new_l1_table
);
101 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
);
108 * Loads a L2 table into memory. If the table is in the cache, the cache
109 * is used; otherwise the L2 table is loaded from the image file.
111 * Returns a pointer to the L2 table on success, or NULL if the read from
112 * the image file failed.
115 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
118 BDRVQcowState
*s
= bs
->opaque
;
121 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
127 * Writes one sector of the L1 table to the disk (can't update single entries
128 * and we really don't want bdrv_pread to perform a read-modify-write)
130 #define L1_ENTRIES_PER_SECTOR (512 / 8)
131 static int write_l1_entry(BlockDriverState
*bs
, int l1_index
)
133 BDRVQcowState
*s
= bs
->opaque
;
134 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
138 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
139 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
140 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
143 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
144 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
156 * Allocate a new l2 entry in the file. If l1_index points to an already
157 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
158 * table) copy the contents of the old L2 table into the newly allocated one.
159 * Otherwise the new table is initialized with zeros.
163 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
165 BDRVQcowState
*s
= bs
->opaque
;
166 uint64_t old_l2_offset
;
171 old_l2_offset
= s
->l1_table
[l1_index
];
173 /* allocate a new l2 entry */
175 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
180 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
185 /* allocate a new entry in the l2 cache */
187 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
194 if (old_l2_offset
== 0) {
195 /* if there was no old l2 table, clear the new table */
196 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
200 /* if there was an old l2 table, read it from the disk */
201 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
202 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_offset
,
203 (void**) &old_table
);
208 memcpy(l2_table
, old_table
, s
->cluster_size
);
210 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &old_table
);
216 /* write the l2 table to the file */
217 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
219 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
220 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
225 /* update the L1 entry */
226 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
227 ret
= write_l1_entry(bs
, l1_index
);
236 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
237 s
->l1_table
[l1_index
] = old_l2_offset
;
241 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
242 uint64_t *l2_table
, uint64_t start
, uint64_t mask
)
245 uint64_t offset
= be64_to_cpu(l2_table
[0]) & ~mask
;
250 for (i
= start
; i
< start
+ nb_clusters
; i
++)
251 if (offset
+ (uint64_t) i
* cluster_size
!= (be64_to_cpu(l2_table
[i
]) & ~mask
))
257 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
261 while(nb_clusters
-- && l2_table
[i
] == 0)
267 /* The crypt function is compatible with the linux cryptoloop
268 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
270 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
271 uint8_t *out_buf
, const uint8_t *in_buf
,
272 int nb_sectors
, int enc
,
281 for(i
= 0; i
< nb_sectors
; i
++) {
282 ivec
.ll
[0] = cpu_to_le64(sector_num
);
284 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
293 static int qcow2_read(BlockDriverState
*bs
, int64_t sector_num
,
294 uint8_t *buf
, int nb_sectors
)
296 BDRVQcowState
*s
= bs
->opaque
;
297 int ret
, index_in_cluster
, n
, n1
;
298 uint64_t cluster_offset
;
302 while (nb_sectors
> 0) {
305 ret
= qcow2_get_cluster_offset(bs
, sector_num
<< 9, &n
,
311 index_in_cluster
= sector_num
& (s
->cluster_sectors
- 1);
312 if (!cluster_offset
) {
313 if (bs
->backing_hd
) {
314 /* read from the base image */
316 iov
.iov_len
= n
* 512;
317 qemu_iovec_init_external(&qiov
, &iov
, 1);
319 n1
= qcow2_backing_read1(bs
->backing_hd
, &qiov
, sector_num
, n
);
321 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_BACKING
);
322 ret
= bdrv_read(bs
->backing_hd
, sector_num
, buf
, n1
);
327 memset(buf
, 0, 512 * n
);
329 } else if (cluster_offset
& QCOW_OFLAG_COMPRESSED
) {
330 if (qcow2_decompress_cluster(bs
, cluster_offset
) < 0)
332 memcpy(buf
, s
->cluster_cache
+ index_in_cluster
* 512, 512 * n
);
334 BLKDBG_EVENT(bs
->file
, BLKDBG_READ
);
335 ret
= bdrv_pread(bs
->file
, cluster_offset
+ index_in_cluster
* 512, buf
, n
* 512);
338 if (s
->crypt_method
) {
339 qcow2_encrypt_sectors(s
, sector_num
, buf
, buf
, n
, 0,
340 &s
->aes_decrypt_key
);
350 static int copy_sectors(BlockDriverState
*bs
, uint64_t start_sect
,
351 uint64_t cluster_offset
, int n_start
, int n_end
)
353 BDRVQcowState
*s
= bs
->opaque
;
359 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
360 ret
= qcow2_read(bs
, start_sect
+ n_start
, s
->cluster_data
, n
);
363 if (s
->crypt_method
) {
364 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
366 s
->cluster_data
, n
, 1,
367 &s
->aes_encrypt_key
);
369 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
370 ret
= bdrv_write(bs
->file
, (cluster_offset
>> 9) + n_start
,
381 * For a given offset of the disk image, find the cluster offset in
382 * qcow2 file. The offset is stored in *cluster_offset.
384 * on entry, *num is the number of contiguous clusters we'd like to
385 * access following offset.
387 * on exit, *num is the number of contiguous clusters we can read.
389 * Return 0, if the offset is found
390 * Return -errno, otherwise.
394 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
395 int *num
, uint64_t *cluster_offset
)
397 BDRVQcowState
*s
= bs
->opaque
;
398 unsigned int l1_index
, l2_index
;
399 uint64_t l2_offset
, *l2_table
;
401 unsigned int index_in_cluster
, nb_clusters
;
402 uint64_t nb_available
, nb_needed
;
405 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
406 nb_needed
= *num
+ index_in_cluster
;
408 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
410 /* compute how many bytes there are between the offset and
411 * the end of the l1 entry
414 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
416 /* compute the number of available sectors */
418 nb_available
= (nb_available
>> 9) + index_in_cluster
;
420 if (nb_needed
> nb_available
) {
421 nb_needed
= nb_available
;
426 /* seek the the l2 offset in the l1 table */
428 l1_index
= offset
>> l1_bits
;
429 if (l1_index
>= s
->l1_size
)
432 l2_offset
= s
->l1_table
[l1_index
];
434 /* seek the l2 table of the given l2 offset */
439 /* load the l2 table in memory */
441 l2_offset
&= ~QCOW_OFLAG_COPIED
;
442 ret
= l2_load(bs
, l2_offset
, &l2_table
);
447 /* find the cluster offset for the given disk offset */
449 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
450 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
451 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
453 if (!*cluster_offset
) {
454 /* how many empty clusters ? */
455 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
457 /* how many allocated clusters ? */
458 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
459 &l2_table
[l2_index
], 0, QCOW_OFLAG_COPIED
);
462 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
464 nb_available
= (c
* s
->cluster_sectors
);
466 if (nb_available
> nb_needed
)
467 nb_available
= nb_needed
;
469 *num
= nb_available
- index_in_cluster
;
471 *cluster_offset
&=~QCOW_OFLAG_COPIED
;
478 * for a given disk offset, load (and allocate if needed)
481 * the l2 table offset in the qcow2 file and the cluster index
482 * in the l2 table are given to the caller.
484 * Returns 0 on success, -errno in failure case
486 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
487 uint64_t **new_l2_table
,
488 uint64_t *new_l2_offset
,
491 BDRVQcowState
*s
= bs
->opaque
;
492 unsigned int l1_index
, l2_index
;
494 uint64_t *l2_table
= NULL
;
497 /* seek the the l2 offset in the l1 table */
499 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
500 if (l1_index
>= s
->l1_size
) {
501 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
506 l2_offset
= s
->l1_table
[l1_index
];
508 /* seek the l2 table of the given l2 offset */
510 if (l2_offset
& QCOW_OFLAG_COPIED
) {
511 /* load the l2 table in memory */
512 l2_offset
&= ~QCOW_OFLAG_COPIED
;
513 ret
= l2_load(bs
, l2_offset
, &l2_table
);
518 /* First allocate a new L2 table (and do COW if needed) */
519 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
524 /* Then decrease the refcount of the old table */
526 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t));
528 l2_offset
= s
->l1_table
[l1_index
] & ~QCOW_OFLAG_COPIED
;
531 /* find the cluster offset for the given disk offset */
533 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
535 *new_l2_table
= l2_table
;
536 *new_l2_offset
= l2_offset
;
537 *new_l2_index
= l2_index
;
543 * alloc_compressed_cluster_offset
545 * For a given offset of the disk image, return cluster offset in
548 * If the offset is not found, allocate a new compressed cluster.
550 * Return the cluster offset if successful,
551 * Return 0, otherwise.
555 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
559 BDRVQcowState
*s
= bs
->opaque
;
561 uint64_t l2_offset
, *l2_table
;
562 int64_t cluster_offset
;
565 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
570 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
571 if (cluster_offset
& QCOW_OFLAG_COPIED
)
572 return cluster_offset
& ~QCOW_OFLAG_COPIED
;
575 qcow2_free_any_clusters(bs
, cluster_offset
, 1);
577 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
578 if (cluster_offset
< 0) {
579 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
583 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
584 (cluster_offset
>> 9);
586 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
587 ((uint64_t)nb_csectors
<< s
->csize_shift
);
589 /* update L2 table */
591 /* compressed clusters never have the copied flag */
593 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
594 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
595 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
596 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
601 return cluster_offset
;
604 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
606 BDRVQcowState
*s
= bs
->opaque
;
607 int i
, j
= 0, l2_index
, ret
;
608 uint64_t *old_cluster
, start_sect
, l2_offset
, *l2_table
;
609 uint64_t cluster_offset
= m
->cluster_offset
;
612 if (m
->nb_clusters
== 0)
615 old_cluster
= g_malloc(m
->nb_clusters
* sizeof(uint64_t));
617 /* copy content of unmodified sectors */
618 start_sect
= (m
->offset
& ~(s
->cluster_size
- 1)) >> 9;
621 ret
= copy_sectors(bs
, start_sect
, cluster_offset
, 0, m
->n_start
);
626 if (m
->nb_available
& (s
->cluster_sectors
- 1)) {
627 uint64_t end
= m
->nb_available
& ~(uint64_t)(s
->cluster_sectors
- 1);
629 ret
= copy_sectors(bs
, start_sect
+ end
, cluster_offset
+ (end
<< 9),
630 m
->nb_available
- end
, s
->cluster_sectors
);
638 * Before we update the L2 table to actually point to the new cluster, we
639 * need to be sure that the refcounts have been increased and COW was
643 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
646 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
, s
->refcount_block_cache
);
647 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_offset
, &l2_index
);
651 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
653 for (i
= 0; i
< m
->nb_clusters
; i
++) {
654 /* if two concurrent writes happen to the same unallocated cluster
655 * each write allocates separate cluster and writes data concurrently.
656 * The first one to complete updates l2 table with pointer to its
657 * cluster the second one has to do RMW (which is done above by
658 * copy_sectors()), update l2 table with its cluster pointer and free
659 * old cluster. This is what this loop does */
660 if(l2_table
[l2_index
+ i
] != 0)
661 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
663 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
664 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
668 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
674 * If this was a COW, we need to decrease the refcount of the old cluster.
675 * Also flush bs->file to get the right order for L2 and refcount update.
678 for (i
= 0; i
< j
; i
++) {
679 qcow2_free_any_clusters(bs
,
680 be64_to_cpu(old_cluster
[i
]) & ~QCOW_OFLAG_COPIED
, 1);
691 * alloc_cluster_offset
693 * For a given offset of the disk image, return cluster offset in qcow2 file.
694 * If the offset is not found, allocate a new cluster.
696 * If the cluster was already allocated, m->nb_clusters is set to 0,
697 * m->depends_on is set to NULL and the other fields in m are meaningless.
699 * If the cluster is newly allocated, m->nb_clusters is set to the number of
700 * contiguous clusters that have been allocated. In this case, the other
701 * fields of m are valid and contain information about the first allocated
704 * If the request conflicts with another write request in flight, the coroutine
705 * is queued and will be reentered when the dependency has completed.
707 * Return 0 on success and -errno in error cases
709 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
710 int n_start
, int n_end
, int *num
, QCowL2Meta
*m
)
712 BDRVQcowState
*s
= bs
->opaque
;
714 uint64_t l2_offset
, *l2_table
;
715 int64_t cluster_offset
;
716 unsigned int nb_clusters
, i
= 0;
717 QCowL2Meta
*old_alloc
;
719 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
725 nb_clusters
= size_to_clusters(s
, n_end
<< 9);
727 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
729 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
731 /* We keep all QCOW_OFLAG_COPIED clusters */
733 if (cluster_offset
& QCOW_OFLAG_COPIED
) {
734 nb_clusters
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
735 &l2_table
[l2_index
], 0, 0);
737 cluster_offset
&= ~QCOW_OFLAG_COPIED
;
739 m
->depends_on
= NULL
;
744 /* for the moment, multiple compressed clusters are not managed */
746 if (cluster_offset
& QCOW_OFLAG_COMPRESSED
)
749 /* how many available clusters ? */
751 while (i
< nb_clusters
) {
752 i
+= count_contiguous_clusters(nb_clusters
- i
, s
->cluster_size
,
753 &l2_table
[l2_index
], i
, 0);
754 if ((i
>= nb_clusters
) || be64_to_cpu(l2_table
[l2_index
+ i
])) {
758 i
+= count_contiguous_free_clusters(nb_clusters
- i
,
759 &l2_table
[l2_index
+ i
]);
760 if (i
>= nb_clusters
) {
764 cluster_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
766 if ((cluster_offset
& QCOW_OFLAG_COPIED
) ||
767 (cluster_offset
& QCOW_OFLAG_COMPRESSED
))
770 assert(i
<= nb_clusters
);
774 * Check if there already is an AIO write request in flight which allocates
775 * the same cluster. In this case we need to wait until the previous
776 * request has completed and updated the L2 table accordingly.
778 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
780 uint64_t end_offset
= offset
+ nb_clusters
* s
->cluster_size
;
781 uint64_t old_offset
= old_alloc
->offset
;
782 uint64_t old_end_offset
= old_alloc
->offset
+
783 old_alloc
->nb_clusters
* s
->cluster_size
;
785 if (end_offset
< old_offset
|| offset
> old_end_offset
) {
786 /* No intersection */
788 if (offset
< old_offset
) {
789 /* Stop at the start of a running allocation */
790 nb_clusters
= (old_offset
- offset
) >> s
->cluster_bits
;
795 if (nb_clusters
== 0) {
796 /* Wait for the dependency to complete. We need to recheck
797 * the free/allocated clusters when we continue. */
798 qemu_co_mutex_unlock(&s
->lock
);
799 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
800 qemu_co_mutex_lock(&s
->lock
);
810 QLIST_INSERT_HEAD(&s
->cluster_allocs
, m
, next_in_flight
);
812 /* allocate a new cluster */
814 cluster_offset
= qcow2_alloc_clusters(bs
, nb_clusters
* s
->cluster_size
);
815 if (cluster_offset
< 0) {
816 ret
= cluster_offset
;
820 /* save info needed for meta data update */
822 m
->n_start
= n_start
;
823 m
->nb_clusters
= nb_clusters
;
826 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
831 m
->nb_available
= MIN(nb_clusters
<< (s
->cluster_bits
- 9), n_end
);
832 m
->cluster_offset
= cluster_offset
;
834 *num
= m
->nb_available
- n_start
;
839 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
841 QLIST_REMOVE(m
, next_in_flight
);
845 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
846 const uint8_t *buf
, int buf_size
)
848 z_stream strm1
, *strm
= &strm1
;
851 memset(strm
, 0, sizeof(*strm
));
853 strm
->next_in
= (uint8_t *)buf
;
854 strm
->avail_in
= buf_size
;
855 strm
->next_out
= out_buf
;
856 strm
->avail_out
= out_buf_size
;
858 ret
= inflateInit2(strm
, -12);
861 ret
= inflate(strm
, Z_FINISH
);
862 out_len
= strm
->next_out
- out_buf
;
863 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
864 out_len
!= out_buf_size
) {
872 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
874 BDRVQcowState
*s
= bs
->opaque
;
875 int ret
, csize
, nb_csectors
, sector_offset
;
878 coffset
= cluster_offset
& s
->cluster_offset_mask
;
879 if (s
->cluster_cache_offset
!= coffset
) {
880 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
881 sector_offset
= coffset
& 511;
882 csize
= nb_csectors
* 512 - sector_offset
;
883 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
884 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
888 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
889 s
->cluster_data
+ sector_offset
, csize
) < 0) {
892 s
->cluster_cache_offset
= coffset
;
898 * This discards as many clusters of nb_clusters as possible at once (i.e.
899 * all clusters in the same L2 table) and returns the number of discarded
902 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
903 unsigned int nb_clusters
)
905 BDRVQcowState
*s
= bs
->opaque
;
906 uint64_t l2_offset
, *l2_table
;
911 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
916 /* Limit nb_clusters to one L2 table */
917 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
919 for (i
= 0; i
< nb_clusters
; i
++) {
922 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
923 old_offset
&= ~QCOW_OFLAG_COPIED
;
925 if (old_offset
== 0) {
929 /* First remove L2 entries */
930 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
931 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
933 /* Then decrease the refcount */
934 qcow2_free_any_clusters(bs
, old_offset
, 1);
937 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
945 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
948 BDRVQcowState
*s
= bs
->opaque
;
950 unsigned int nb_clusters
;
953 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
955 /* Round start up and end down */
956 offset
= align_offset(offset
, s
->cluster_size
);
957 end_offset
&= ~(s
->cluster_size
- 1);
959 if (offset
> end_offset
) {
963 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
965 /* Each L2 table is handled by its own loop iteration */
966 while (nb_clusters
> 0) {
967 ret
= discard_single_l2(bs
, offset
, nb_clusters
);
973 offset
+= (ret
* s
->cluster_size
);