migration/postcopy: remove redundant cpu_synchronize_all_post_init
[qemu.git] / linux-user / qemu.h
blobfab287b7ec50d9735f8d359a42dcc741fe65dc0b
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
21 /* This is the size of the host kernel's sigset_t, needed where we make
22 * direct system calls that take a sigset_t pointer and a size.
24 #define SIGSET_T_SIZE (_NSIG / 8)
26 /* This struct is used to hold certain information about the image.
27 * Basically, it replicates in user space what would be certain
28 * task_struct fields in the kernel
30 struct image_info {
31 abi_ulong load_bias;
32 abi_ulong load_addr;
33 abi_ulong start_code;
34 abi_ulong end_code;
35 abi_ulong start_data;
36 abi_ulong end_data;
37 abi_ulong start_brk;
38 abi_ulong brk;
39 abi_ulong start_mmap;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
52 uint32_t elf_flags;
53 int personality;
54 abi_ulong alignment;
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
61 abi_ulong interpreter_loadmap_addr;
62 abi_ulong interpreter_pt_dynamic_addr;
63 struct image_info *other_info;
64 #ifdef TARGET_MIPS
65 int fp_abi;
66 int interp_fp_abi;
67 #endif
70 #ifdef TARGET_I386
71 /* Information about the current linux thread */
72 struct vm86_saved_state {
73 uint32_t eax; /* return code */
74 uint32_t ebx;
75 uint32_t ecx;
76 uint32_t edx;
77 uint32_t esi;
78 uint32_t edi;
79 uint32_t ebp;
80 uint32_t esp;
81 uint32_t eflags;
82 uint32_t eip;
83 uint16_t cs, ss, ds, es, fs, gs;
85 #endif
87 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
88 /* FPU emulator */
89 #include "nwfpe/fpa11.h"
90 #endif
92 #define MAX_SIGQUEUE_SIZE 1024
94 struct emulated_sigtable {
95 int pending; /* true if signal is pending */
96 target_siginfo_t info;
99 /* NOTE: we force a big alignment so that the stack stored after is
100 aligned too */
101 typedef struct TaskState {
102 pid_t ts_tid; /* tid (or pid) of this task */
103 #ifdef TARGET_ARM
104 # ifdef TARGET_ABI32
105 /* FPA state */
106 FPA11 fpa;
107 # endif
108 int swi_errno;
109 #endif
110 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
111 abi_ulong target_v86;
112 struct vm86_saved_state vm86_saved_regs;
113 struct target_vm86plus_struct vm86plus;
114 uint32_t v86flags;
115 uint32_t v86mask;
116 #endif
117 abi_ulong child_tidptr;
118 #ifdef TARGET_M68K
119 abi_ulong tp_value;
120 #endif
121 #if defined(TARGET_ARM) || defined(TARGET_M68K)
122 /* Extra fields for semihosted binaries. */
123 abi_ulong heap_base;
124 abi_ulong heap_limit;
125 #endif
126 abi_ulong stack_base;
127 int used; /* non zero if used */
128 struct image_info *info;
129 struct linux_binprm *bprm;
131 struct emulated_sigtable sync_signal;
132 struct emulated_sigtable sigtab[TARGET_NSIG];
133 /* This thread's signal mask, as requested by the guest program.
134 * The actual signal mask of this thread may differ:
135 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
136 * + sometimes we block all signals to avoid races
138 sigset_t signal_mask;
139 /* The signal mask imposed by a guest sigsuspend syscall, if we are
140 * currently in the middle of such a syscall
142 sigset_t sigsuspend_mask;
143 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
144 int in_sigsuspend;
146 /* Nonzero if process_pending_signals() needs to do something (either
147 * handle a pending signal or unblock signals).
148 * This flag is written from a signal handler so should be accessed via
149 * the atomic_read() and atomic_set() functions. (It is not accessed
150 * from multiple threads.)
152 int signal_pending;
154 } __attribute__((aligned(16))) TaskState;
156 extern char *exec_path;
157 void init_task_state(TaskState *ts);
158 void task_settid(TaskState *);
159 void stop_all_tasks(void);
160 extern const char *qemu_uname_release;
161 extern unsigned long mmap_min_addr;
163 /* ??? See if we can avoid exposing so much of the loader internals. */
165 /* Read a good amount of data initially, to hopefully get all the
166 program headers loaded. */
167 #define BPRM_BUF_SIZE 1024
170 * This structure is used to hold the arguments that are
171 * used when loading binaries.
173 struct linux_binprm {
174 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
175 abi_ulong p;
176 int fd;
177 int e_uid, e_gid;
178 int argc, envc;
179 char **argv;
180 char **envp;
181 char * filename; /* Name of binary */
182 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
185 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
186 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
187 abi_ulong stringp, int push_ptr);
188 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
189 struct target_pt_regs * regs, struct image_info *infop,
190 struct linux_binprm *);
192 /* Returns true if the image uses the FDPIC ABI. If this is the case,
193 * we have to provide some information (loadmap, pt_dynamic_info) such
194 * that the program can be relocated adequately. This is also useful
195 * when handling signals.
197 int info_is_fdpic(struct image_info *info);
199 uint32_t get_elf_eflags(int fd);
200 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
201 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
203 abi_long memcpy_to_target(abi_ulong dest, const void *src,
204 unsigned long len);
205 void target_set_brk(abi_ulong new_brk);
206 abi_long do_brk(abi_ulong new_brk);
207 void syscall_init(void);
208 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
209 abi_long arg2, abi_long arg3, abi_long arg4,
210 abi_long arg5, abi_long arg6, abi_long arg7,
211 abi_long arg8);
212 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
213 extern __thread CPUState *thread_cpu;
214 void cpu_loop(CPUArchState *env);
215 const char *target_strerror(int err);
216 int get_osversion(void);
217 void init_qemu_uname_release(void);
218 void fork_start(void);
219 void fork_end(int child);
221 /* Creates the initial guest address space in the host memory space using
222 * the given host start address hint and size. The guest_start parameter
223 * specifies the start address of the guest space. guest_base will be the
224 * difference between the host start address computed by this function and
225 * guest_start. If fixed is specified, then the mapped address space must
226 * start at host_start. The real start address of the mapped memory space is
227 * returned or -1 if there was an error.
229 unsigned long init_guest_space(unsigned long host_start,
230 unsigned long host_size,
231 unsigned long guest_start,
232 bool fixed);
234 #include "qemu/log.h"
236 /* safe_syscall.S */
239 * safe_syscall:
240 * @int number: number of system call to make
241 * ...: arguments to the system call
243 * Call a system call if guest signal not pending.
244 * This has the same API as the libc syscall() function, except that it
245 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
247 * Returns: the system call result, or -1 with an error code in errno
248 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
249 * with any of the host errno values.)
252 /* A guide to using safe_syscall() to handle interactions between guest
253 * syscalls and guest signals:
255 * Guest syscalls come in two flavours:
257 * (1) Non-interruptible syscalls
259 * These are guest syscalls that never get interrupted by signals and
260 * so never return EINTR. They can be implemented straightforwardly in
261 * QEMU: just make sure that if the implementation code has to make any
262 * blocking calls that those calls are retried if they return EINTR.
263 * It's also OK to implement these with safe_syscall, though it will be
264 * a little less efficient if a signal is delivered at the 'wrong' moment.
266 * Some non-interruptible syscalls need to be handled using block_signals()
267 * to block signals for the duration of the syscall. This mainly applies
268 * to code which needs to modify the data structures used by the
269 * host_signal_handler() function and the functions it calls, including
270 * all syscalls which change the thread's signal mask.
272 * (2) Interruptible syscalls
274 * These are guest syscalls that can be interrupted by signals and
275 * for which we need to either return EINTR or arrange for the guest
276 * syscall to be restarted. This category includes both syscalls which
277 * always restart (and in the kernel return -ERESTARTNOINTR), ones
278 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
279 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
280 * if the handler was registered with SA_RESTART (kernel returns
281 * -ERESTARTSYS). System calls which are only interruptible in some
282 * situations (like 'open') also need to be handled this way.
284 * Here it is important that the host syscall is made
285 * via this safe_syscall() function, and *not* via the host libc.
286 * If the host libc is used then the implementation will appear to work
287 * most of the time, but there will be a race condition where a
288 * signal could arrive just before we make the host syscall inside libc,
289 * and then then guest syscall will not correctly be interrupted.
290 * Instead the implementation of the guest syscall can use the safe_syscall
291 * function but otherwise just return the result or errno in the usual
292 * way; the main loop code will take care of restarting the syscall
293 * if appropriate.
295 * (If the implementation needs to make multiple host syscalls this is
296 * OK; any which might really block must be via safe_syscall(); for those
297 * which are only technically blocking (ie which we know in practice won't
298 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
299 * You must be able to cope with backing out correctly if some safe_syscall
300 * you make in the implementation returns either -TARGET_ERESTARTSYS or
301 * EINTR though.)
303 * block_signals() cannot be used for interruptible syscalls.
306 * How and why the safe_syscall implementation works:
308 * The basic setup is that we make the host syscall via a known
309 * section of host native assembly. If a signal occurs, our signal
310 * handler checks the interrupted host PC against the addresse of that
311 * known section. If the PC is before or at the address of the syscall
312 * instruction then we change the PC to point at a "return
313 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
314 * (causing the safe_syscall() call to immediately return that value).
315 * Then in the main.c loop if we see this magic return value we adjust
316 * the guest PC to wind it back to before the system call, and invoke
317 * the guest signal handler as usual.
319 * This winding-back will happen in two cases:
320 * (1) signal came in just before we took the host syscall (a race);
321 * in this case we'll take the guest signal and have another go
322 * at the syscall afterwards, and this is indistinguishable for the
323 * guest from the timing having been different such that the guest
324 * signal really did win the race
325 * (2) signal came in while the host syscall was blocking, and the
326 * host kernel decided the syscall should be restarted;
327 * in this case we want to restart the guest syscall also, and so
328 * rewinding is the right thing. (Note that "restart" semantics mean
329 * "first call the signal handler, then reattempt the syscall".)
330 * The other situation to consider is when a signal came in while the
331 * host syscall was blocking, and the host kernel decided that the syscall
332 * should not be restarted; in this case QEMU's host signal handler will
333 * be invoked with the PC pointing just after the syscall instruction,
334 * with registers indicating an EINTR return; the special code in the
335 * handler will not kick in, and we will return EINTR to the guest as
336 * we should.
338 * Notice that we can leave the host kernel to make the decision for
339 * us about whether to do a restart of the syscall or not; we do not
340 * need to check SA_RESTART flags in QEMU or distinguish the various
341 * kinds of restartability.
343 #ifdef HAVE_SAFE_SYSCALL
344 /* The core part of this function is implemented in assembly */
345 extern long safe_syscall_base(int *pending, long number, ...);
347 #define safe_syscall(...) \
348 ({ \
349 long ret_; \
350 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
351 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
352 if (is_error(ret_)) { \
353 errno = -ret_; \
354 ret_ = -1; \
356 ret_; \
359 #else
361 /* Fallback for architectures which don't yet provide a safe-syscall assembly
362 * fragment; note that this is racy!
363 * This should go away when all host architectures have been updated.
365 #define safe_syscall syscall
367 #endif
369 /* syscall.c */
370 int host_to_target_waitstatus(int status);
372 /* strace.c */
373 void print_syscall(int num,
374 abi_long arg1, abi_long arg2, abi_long arg3,
375 abi_long arg4, abi_long arg5, abi_long arg6);
376 void print_syscall_ret(int num, abi_long arg1);
378 * print_taken_signal:
379 * @target_signum: target signal being taken
380 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
382 * Print strace output indicating that this signal is being taken by the guest,
383 * in a format similar to:
384 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
386 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
387 extern int do_strace;
389 /* signal.c */
390 void process_pending_signals(CPUArchState *cpu_env);
391 void signal_init(void);
392 int queue_signal(CPUArchState *env, int sig, int si_type,
393 target_siginfo_t *info);
394 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
395 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
396 int target_to_host_signal(int sig);
397 int host_to_target_signal(int sig);
398 long do_sigreturn(CPUArchState *env);
399 long do_rt_sigreturn(CPUArchState *env);
400 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
401 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
402 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
403 abi_ulong unew_ctx, abi_long ctx_size);
405 * block_signals: block all signals while handling this guest syscall
407 * Block all signals, and arrange that the signal mask is returned to
408 * its correct value for the guest before we resume execution of guest code.
409 * If this function returns non-zero, then the caller should immediately
410 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
411 * signal and restart execution of the syscall.
412 * If block_signals() returns zero, then the caller can continue with
413 * emulation of the system call knowing that no signals can be taken
414 * (and therefore that no race conditions will result).
415 * This should only be called once, because if it is called a second time
416 * it will always return non-zero. (Think of it like a mutex that can't
417 * be recursively locked.)
418 * Signals will be unblocked again by process_pending_signals().
420 * Return value: non-zero if there was a pending signal, zero if not.
422 int block_signals(void); /* Returns non zero if signal pending */
424 #ifdef TARGET_I386
425 /* vm86.c */
426 void save_v86_state(CPUX86State *env);
427 void handle_vm86_trap(CPUX86State *env, int trapno);
428 void handle_vm86_fault(CPUX86State *env);
429 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
430 #elif defined(TARGET_SPARC64)
431 void sparc64_set_context(CPUSPARCState *env);
432 void sparc64_get_context(CPUSPARCState *env);
433 #endif
435 /* mmap.c */
436 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
437 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
438 int flags, int fd, abi_ulong offset);
439 int target_munmap(abi_ulong start, abi_ulong len);
440 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
441 abi_ulong new_size, unsigned long flags,
442 abi_ulong new_addr);
443 extern unsigned long last_brk;
444 extern abi_ulong mmap_next_start;
445 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
446 void mmap_fork_start(void);
447 void mmap_fork_end(int child);
449 /* main.c */
450 extern unsigned long guest_stack_size;
452 /* user access */
454 #define VERIFY_READ 0
455 #define VERIFY_WRITE 1 /* implies read access */
457 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
459 return page_check_range((target_ulong)addr, size,
460 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
463 /* NOTE __get_user and __put_user use host pointers and don't check access.
464 These are usually used to access struct data members once the struct has
465 been locked - usually with lock_user_struct. */
468 * Tricky points:
469 * - Use __builtin_choose_expr to avoid type promotion from ?:,
470 * - Invalid sizes result in a compile time error stemming from
471 * the fact that abort has no parameters.
472 * - It's easier to use the endian-specific unaligned load/store
473 * functions than host-endian unaligned load/store plus tswapN.
474 * - The pragmas are necessary only to silence a clang false-positive
475 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
476 * - gcc has bugs in its _Pragma() support in some versions, eg
477 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
478 * include the warning-suppression pragmas for clang
480 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
481 #define PRAGMA_DISABLE_PACKED_WARNING \
482 _Pragma("GCC diagnostic push"); \
483 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
485 #define PRAGMA_REENABLE_PACKED_WARNING \
486 _Pragma("GCC diagnostic pop")
488 #else
489 #define PRAGMA_DISABLE_PACKED_WARNING
490 #define PRAGMA_REENABLE_PACKED_WARNING
491 #endif
493 #define __put_user_e(x, hptr, e) \
494 do { \
495 PRAGMA_DISABLE_PACKED_WARNING; \
496 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
497 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
498 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
499 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
500 ((hptr), (x)), (void)0); \
501 PRAGMA_REENABLE_PACKED_WARNING; \
502 } while (0)
504 #define __get_user_e(x, hptr, e) \
505 do { \
506 PRAGMA_DISABLE_PACKED_WARNING; \
507 ((x) = (typeof(*hptr))( \
508 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
509 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
510 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
511 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
512 (hptr)), (void)0); \
513 PRAGMA_REENABLE_PACKED_WARNING; \
514 } while (0)
517 #ifdef TARGET_WORDS_BIGENDIAN
518 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
519 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
520 #else
521 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
522 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
523 #endif
525 /* put_user()/get_user() take a guest address and check access */
526 /* These are usually used to access an atomic data type, such as an int,
527 * that has been passed by address. These internally perform locking
528 * and unlocking on the data type.
530 #define put_user(x, gaddr, target_type) \
531 ({ \
532 abi_ulong __gaddr = (gaddr); \
533 target_type *__hptr; \
534 abi_long __ret = 0; \
535 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
536 __put_user((x), __hptr); \
537 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
538 } else \
539 __ret = -TARGET_EFAULT; \
540 __ret; \
543 #define get_user(x, gaddr, target_type) \
544 ({ \
545 abi_ulong __gaddr = (gaddr); \
546 target_type *__hptr; \
547 abi_long __ret = 0; \
548 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
549 __get_user((x), __hptr); \
550 unlock_user(__hptr, __gaddr, 0); \
551 } else { \
552 /* avoid warning */ \
553 (x) = 0; \
554 __ret = -TARGET_EFAULT; \
556 __ret; \
559 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
560 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
561 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
562 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
563 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
564 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
565 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
566 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
567 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
568 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
570 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
571 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
572 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
573 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
574 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
575 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
576 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
577 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
578 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
579 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
581 /* copy_from_user() and copy_to_user() are usually used to copy data
582 * buffers between the target and host. These internally perform
583 * locking/unlocking of the memory.
585 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
586 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
588 /* Functions for accessing guest memory. The tget and tput functions
589 read/write single values, byteswapping as necessary. The lock_user function
590 gets a pointer to a contiguous area of guest memory, but does not perform
591 any byteswapping. lock_user may return either a pointer to the guest
592 memory, or a temporary buffer. */
594 /* Lock an area of guest memory into the host. If copy is true then the
595 host area will have the same contents as the guest. */
596 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
598 if (!access_ok(type, guest_addr, len))
599 return NULL;
600 #ifdef DEBUG_REMAP
602 void *addr;
603 addr = g_malloc(len);
604 if (copy)
605 memcpy(addr, g2h(guest_addr), len);
606 else
607 memset(addr, 0, len);
608 return addr;
610 #else
611 return g2h(guest_addr);
612 #endif
615 /* Unlock an area of guest memory. The first LEN bytes must be
616 flushed back to guest memory. host_ptr = NULL is explicitly
617 allowed and does nothing. */
618 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
619 long len)
622 #ifdef DEBUG_REMAP
623 if (!host_ptr)
624 return;
625 if (host_ptr == g2h(guest_addr))
626 return;
627 if (len > 0)
628 memcpy(g2h(guest_addr), host_ptr, len);
629 g_free(host_ptr);
630 #endif
633 /* Return the length of a string in target memory or -TARGET_EFAULT if
634 access error. */
635 abi_long target_strlen(abi_ulong gaddr);
637 /* Like lock_user but for null terminated strings. */
638 static inline void *lock_user_string(abi_ulong guest_addr)
640 abi_long len;
641 len = target_strlen(guest_addr);
642 if (len < 0)
643 return NULL;
644 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
647 /* Helper macros for locking/unlocking a target struct. */
648 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
649 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
650 #define unlock_user_struct(host_ptr, guest_addr, copy) \
651 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
653 #include <pthread.h>
655 static inline int is_error(abi_long ret)
657 return (abi_ulong)ret >= (abi_ulong)(-4096);
661 * preexit_cleanup: housekeeping before the guest exits
663 * env: the CPU state
664 * code: the exit code
666 void preexit_cleanup(CPUArchState *env, int code);
668 /* Include target-specific struct and function definitions;
669 * they may need access to the target-independent structures
670 * above, so include them last.
672 #include "target_cpu.h"
673 #include "target_structs.h"
675 #endif /* QEMU_H */