1 #include "qemu/osdep.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
11 #include "exec/helper-proto.h"
13 static int cpu_load_old(QEMUFile
*f
, void *opaque
, int version_id
)
15 PowerPCCPU
*cpu
= opaque
;
16 CPUPPCState
*env
= &cpu
->env
;
20 #if defined(TARGET_PPC64)
25 for (i
= 0; i
< 32; i
++) {
26 qemu_get_betls(f
, &env
->gpr
[i
]);
28 #if !defined(TARGET_PPC64)
29 for (i
= 0; i
< 32; i
++) {
30 qemu_get_betls(f
, &env
->gprh
[i
]);
33 qemu_get_betls(f
, &env
->lr
);
34 qemu_get_betls(f
, &env
->ctr
);
35 for (i
= 0; i
< 8; i
++) {
36 qemu_get_be32s(f
, &env
->crf
[i
]);
38 qemu_get_betls(f
, &xer
);
39 cpu_write_xer(env
, xer
);
40 qemu_get_betls(f
, &env
->reserve_addr
);
41 qemu_get_betls(f
, &env
->msr
);
42 for (i
= 0; i
< 4; i
++) {
43 qemu_get_betls(f
, &env
->tgpr
[i
]);
45 for (i
= 0; i
< 32; i
++) {
50 u
.l
= qemu_get_be64(f
);
51 *cpu_fpr_ptr(env
, i
) = u
.d
;
53 qemu_get_be32s(f
, &fpscr
);
55 qemu_get_sbe32s(f
, &env
->access_type
);
56 #if defined(TARGET_PPC64)
57 qemu_get_betls(f
, &env
->spr
[SPR_ASR
]);
58 qemu_get_sbe32s(f
, &slb_nr
);
60 qemu_get_betls(f
, &sdr1
);
61 for (i
= 0; i
< 32; i
++) {
62 qemu_get_betls(f
, &env
->sr
[i
]);
64 for (i
= 0; i
< 2; i
++) {
65 for (j
= 0; j
< 8; j
++) {
66 qemu_get_betls(f
, &env
->DBAT
[i
][j
]);
69 for (i
= 0; i
< 2; i
++) {
70 for (j
= 0; j
< 8; j
++) {
71 qemu_get_betls(f
, &env
->IBAT
[i
][j
]);
74 qemu_get_sbe32s(f
, &env
->nb_tlb
);
75 qemu_get_sbe32s(f
, &env
->tlb_per_way
);
76 qemu_get_sbe32s(f
, &env
->nb_ways
);
77 qemu_get_sbe32s(f
, &env
->last_way
);
78 qemu_get_sbe32s(f
, &env
->id_tlbs
);
79 qemu_get_sbe32s(f
, &env
->nb_pids
);
82 for (i
= 0; i
< env
->nb_tlb
; i
++) {
83 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte0
);
84 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte1
);
85 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].EPN
);
88 for (i
= 0; i
< 4; i
++) {
89 qemu_get_betls(f
, &env
->pb
[i
]);
91 for (i
= 0; i
< 1024; i
++) {
92 qemu_get_betls(f
, &env
->spr
[i
]);
95 ppc_store_sdr1(env
, sdr1
);
97 qemu_get_be32s(f
, &vscr
);
98 helper_mtvscr(env
, vscr
);
99 qemu_get_be64s(f
, &env
->spe_acc
);
100 qemu_get_be32s(f
, &env
->spe_fscr
);
101 qemu_get_betls(f
, &env
->msr_mask
);
102 qemu_get_be32s(f
, &env
->flags
);
103 qemu_get_sbe32s(f
, &env
->error_code
);
104 qemu_get_be32s(f
, &env
->pending_interrupts
);
105 qemu_get_be32s(f
, &env
->irq_input_state
);
106 for (i
= 0; i
< POWERPC_EXCP_NB
; i
++) {
107 qemu_get_betls(f
, &env
->excp_vectors
[i
]);
109 qemu_get_betls(f
, &env
->excp_prefix
);
110 qemu_get_betls(f
, &env
->ivor_mask
);
111 qemu_get_betls(f
, &env
->ivpr_mask
);
112 qemu_get_betls(f
, &env
->hreset_vector
);
113 qemu_get_betls(f
, &env
->nip
);
114 qemu_get_betls(f
, &env
->hflags
);
115 qemu_get_betls(f
, &env
->hflags_nmsr
);
116 qemu_get_sbe32(f
); /* Discard unused mmu_idx */
117 qemu_get_sbe32(f
); /* Discard unused power_mode */
119 /* Recompute mmu indices */
120 hreg_compute_mem_idx(env
);
125 static int get_avr(QEMUFile
*f
, void *pv
, size_t size
,
126 const VMStateField
*field
)
130 v
->u64
[0] = qemu_get_be64(f
);
131 v
->u64
[1] = qemu_get_be64(f
);
136 static int put_avr(QEMUFile
*f
, void *pv
, size_t size
,
137 const VMStateField
*field
, JSONWriter
*vmdesc
)
141 qemu_put_be64(f
, v
->u64
[0]);
142 qemu_put_be64(f
, v
->u64
[1]);
146 static const VMStateInfo vmstate_info_avr
= {
152 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
153 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
155 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
156 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
158 static int get_fpr(QEMUFile
*f
, void *pv
, size_t size
,
159 const VMStateField
*field
)
163 v
->VsrD(0) = qemu_get_be64(f
);
168 static int put_fpr(QEMUFile
*f
, void *pv
, size_t size
,
169 const VMStateField
*field
, JSONWriter
*vmdesc
)
173 qemu_put_be64(f
, v
->VsrD(0));
177 static const VMStateInfo vmstate_info_fpr
= {
183 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
184 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
186 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
187 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
189 static int get_vsr(QEMUFile
*f
, void *pv
, size_t size
,
190 const VMStateField
*field
)
194 v
->VsrD(1) = qemu_get_be64(f
);
199 static int put_vsr(QEMUFile
*f
, void *pv
, size_t size
,
200 const VMStateField
*field
, JSONWriter
*vmdesc
)
204 qemu_put_be64(f
, v
->VsrD(1));
208 static const VMStateInfo vmstate_info_vsr
= {
214 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
215 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
217 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
218 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
220 static bool cpu_pre_2_8_migration(void *opaque
, int version_id
)
222 PowerPCCPU
*cpu
= opaque
;
224 return cpu
->pre_2_8_migration
;
227 #if defined(TARGET_PPC64)
228 static bool cpu_pre_3_0_migration(void *opaque
, int version_id
)
230 PowerPCCPU
*cpu
= opaque
;
232 return cpu
->pre_3_0_migration
;
236 static int cpu_pre_save(void *opaque
)
238 PowerPCCPU
*cpu
= opaque
;
239 CPUPPCState
*env
= &cpu
->env
;
241 uint64_t insns_compat_mask
=
242 PPC_INSNS_BASE
| PPC_ISEL
| PPC_STRING
| PPC_MFTB
243 | PPC_FLOAT
| PPC_FLOAT_FSEL
| PPC_FLOAT_FRES
244 | PPC_FLOAT_FSQRT
| PPC_FLOAT_FRSQRTE
| PPC_FLOAT_FRSQRTES
245 | PPC_FLOAT_STFIWX
| PPC_FLOAT_EXT
246 | PPC_CACHE
| PPC_CACHE_ICBI
| PPC_CACHE_DCBZ
247 | PPC_MEM_SYNC
| PPC_MEM_EIEIO
| PPC_MEM_TLBIE
| PPC_MEM_TLBSYNC
248 | PPC_64B
| PPC_64BX
| PPC_ALTIVEC
249 | PPC_SEGMENT_64B
| PPC_SLBI
| PPC_POPCNTB
| PPC_POPCNTWD
;
250 uint64_t insns_compat_mask2
= PPC2_VSX
| PPC2_VSX207
| PPC2_DFP
| PPC2_DBRX
251 | PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
252 | PPC2_ATOMIC_ISA206
| PPC2_FP_CVT_ISA206
253 | PPC2_FP_TST_ISA206
| PPC2_BCTAR_ISA207
254 | PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
255 | PPC2_ISA205
| PPC2_ISA207S
| PPC2_FP_CVT_S64
| PPC2_TM
;
257 env
->spr
[SPR_LR
] = env
->lr
;
258 env
->spr
[SPR_CTR
] = env
->ctr
;
259 env
->spr
[SPR_XER
] = cpu_read_xer(env
);
260 #if defined(TARGET_PPC64)
261 env
->spr
[SPR_CFAR
] = env
->cfar
;
263 env
->spr
[SPR_BOOKE_SPEFSCR
] = env
->spe_fscr
;
265 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
266 env
->spr
[SPR_DBAT0U
+ 2 * i
] = env
->DBAT
[0][i
];
267 env
->spr
[SPR_DBAT0U
+ 2 * i
+ 1] = env
->DBAT
[1][i
];
268 env
->spr
[SPR_IBAT0U
+ 2 * i
] = env
->IBAT
[0][i
];
269 env
->spr
[SPR_IBAT0U
+ 2 * i
+ 1] = env
->IBAT
[1][i
];
271 for (i
= 0; (i
< 4) && ((i
+ 4) < env
->nb_BATs
); i
++) {
272 env
->spr
[SPR_DBAT4U
+ 2 * i
] = env
->DBAT
[0][i
+ 4];
273 env
->spr
[SPR_DBAT4U
+ 2 * i
+ 1] = env
->DBAT
[1][i
+ 4];
274 env
->spr
[SPR_IBAT4U
+ 2 * i
] = env
->IBAT
[0][i
+ 4];
275 env
->spr
[SPR_IBAT4U
+ 2 * i
+ 1] = env
->IBAT
[1][i
+ 4];
278 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
279 if (cpu
->pre_2_8_migration
) {
281 * Mask out bits that got added to msr_mask since the versions
282 * which stupidly included it in the migration stream.
284 target_ulong metamask
= 0
285 #if defined(TARGET_PPC64)
290 cpu
->mig_msr_mask
= env
->msr_mask
& ~metamask
;
291 cpu
->mig_insns_flags
= env
->insns_flags
& insns_compat_mask
;
293 * CPU models supported by old machines all have
294 * PPC_MEM_TLBIE, so we set it unconditionally to allow
295 * backward migration from a POWER9 host to a POWER8 host.
297 cpu
->mig_insns_flags
|= PPC_MEM_TLBIE
;
298 cpu
->mig_insns_flags2
= env
->insns_flags2
& insns_compat_mask2
;
299 cpu
->mig_nb_BATs
= env
->nb_BATs
;
301 if (cpu
->pre_3_0_migration
) {
302 if (cpu
->hash64_opts
) {
303 cpu
->mig_slb_nr
= cpu
->hash64_opts
->slb_size
;
311 * Determine if a given PVR is a "close enough" match to the CPU
312 * object. For TCG and KVM PR it would probably be sufficient to
313 * require an exact PVR match. However for KVM HV the user is
314 * restricted to a PVR exactly matching the host CPU. The correct way
315 * to handle this is to put the guest into an architected
316 * compatibility mode. However, to allow a more forgiving transition
317 * and migration from before this was widely done, we allow migration
318 * between sufficiently similar PVRs, as determined by the CPU class's
321 static bool pvr_match(PowerPCCPU
*cpu
, uint32_t pvr
)
323 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
325 if (pvr
== pcc
->pvr
) {
328 return pcc
->pvr_match(pcc
, pvr
);
331 static int cpu_post_load(void *opaque
, int version_id
)
333 PowerPCCPU
*cpu
= opaque
;
334 CPUPPCState
*env
= &cpu
->env
;
339 * If we're operating in compat mode, we should be ok as long as
340 * the destination supports the same compatibility mode.
342 * Otherwise, however, we require that the destination has exactly
343 * the same CPU model as the source.
346 #if defined(TARGET_PPC64)
347 if (cpu
->compat_pvr
) {
348 uint32_t compat_pvr
= cpu
->compat_pvr
;
349 Error
*local_err
= NULL
;
353 ret
= ppc_set_compat(cpu
, compat_pvr
, &local_err
);
355 error_report_err(local_err
);
361 if (!pvr_match(cpu
, env
->spr
[SPR_PVR
])) {
367 * If we're running with KVM HV, there is a chance that the guest
368 * is running with KVM HV and its kernel does not have the
369 * capability of dealing with a different PVR other than this
370 * exact host PVR in KVM_SET_SREGS. If that happens, the
371 * guest freezes after migration.
373 * The function kvmppc_pvr_workaround_required does this verification
374 * by first checking if the kernel has the cap, returning true immediately
375 * if that is the case. Otherwise, it checks if we're running in KVM PR.
376 * If the guest kernel does not have the cap and we're not running KVM-PR
377 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
378 * receive the PVR it expects as a workaround.
381 if (kvmppc_pvr_workaround_required(cpu
)) {
382 env
->spr
[SPR_PVR
] = env
->spr_cb
[SPR_PVR
].default_value
;
385 env
->lr
= env
->spr
[SPR_LR
];
386 env
->ctr
= env
->spr
[SPR_CTR
];
387 cpu_write_xer(env
, env
->spr
[SPR_XER
]);
388 #if defined(TARGET_PPC64)
389 env
->cfar
= env
->spr
[SPR_CFAR
];
391 env
->spe_fscr
= env
->spr
[SPR_BOOKE_SPEFSCR
];
393 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
394 env
->DBAT
[0][i
] = env
->spr
[SPR_DBAT0U
+ 2 * i
];
395 env
->DBAT
[1][i
] = env
->spr
[SPR_DBAT0U
+ 2 * i
+ 1];
396 env
->IBAT
[0][i
] = env
->spr
[SPR_IBAT0U
+ 2 * i
];
397 env
->IBAT
[1][i
] = env
->spr
[SPR_IBAT0U
+ 2 * i
+ 1];
399 for (i
= 0; (i
< 4) && ((i
+ 4) < env
->nb_BATs
); i
++) {
400 env
->DBAT
[0][i
+ 4] = env
->spr
[SPR_DBAT4U
+ 2 * i
];
401 env
->DBAT
[1][i
+ 4] = env
->spr
[SPR_DBAT4U
+ 2 * i
+ 1];
402 env
->IBAT
[0][i
+ 4] = env
->spr
[SPR_IBAT4U
+ 2 * i
];
403 env
->IBAT
[1][i
+ 4] = env
->spr
[SPR_IBAT4U
+ 2 * i
+ 1];
407 ppc_store_sdr1(env
, env
->spr
[SPR_SDR1
]);
411 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
415 env
->msr
^= env
->msr_mask
& ~((1ULL << MSR_TGPR
) | MSR_HVB
);
416 ppc_store_msr(env
, msr
);
418 hreg_compute_mem_idx(env
);
423 static bool fpu_needed(void *opaque
)
425 PowerPCCPU
*cpu
= opaque
;
427 return cpu
->env
.insns_flags
& PPC_FLOAT
;
430 static const VMStateDescription vmstate_fpu
= {
433 .minimum_version_id
= 1,
434 .needed
= fpu_needed
,
435 .fields
= (VMStateField
[]) {
436 VMSTATE_FPR_ARRAY(env
.vsr
, PowerPCCPU
, 32),
437 VMSTATE_UINTTL(env
.fpscr
, PowerPCCPU
),
438 VMSTATE_END_OF_LIST()
442 static bool altivec_needed(void *opaque
)
444 PowerPCCPU
*cpu
= opaque
;
446 return cpu
->env
.insns_flags
& PPC_ALTIVEC
;
449 static int get_vscr(QEMUFile
*f
, void *opaque
, size_t size
,
450 const VMStateField
*field
)
452 PowerPCCPU
*cpu
= opaque
;
453 helper_mtvscr(&cpu
->env
, qemu_get_be32(f
));
457 static int put_vscr(QEMUFile
*f
, void *opaque
, size_t size
,
458 const VMStateField
*field
, JSONWriter
*vmdesc
)
460 PowerPCCPU
*cpu
= opaque
;
461 qemu_put_be32(f
, helper_mfvscr(&cpu
->env
));
465 static const VMStateInfo vmstate_vscr
= {
466 .name
= "cpu/altivec/vscr",
471 static const VMStateDescription vmstate_altivec
= {
472 .name
= "cpu/altivec",
474 .minimum_version_id
= 1,
475 .needed
= altivec_needed
,
476 .fields
= (VMStateField
[]) {
477 VMSTATE_AVR_ARRAY(env
.vsr
, PowerPCCPU
, 32),
479 * Save the architecture value of the vscr, not the internally
480 * expanded version. Since this architecture value does not
481 * exist in memory to be stored, this requires a but of hoop
482 * jumping. We want OFFSET=0 so that we effectively pass CPU
483 * to the helper functions.
488 .size
= sizeof(uint32_t),
489 .info
= &vmstate_vscr
,
493 VMSTATE_END_OF_LIST()
497 static bool vsx_needed(void *opaque
)
499 PowerPCCPU
*cpu
= opaque
;
501 return cpu
->env
.insns_flags2
& PPC2_VSX
;
504 static const VMStateDescription vmstate_vsx
= {
507 .minimum_version_id
= 1,
508 .needed
= vsx_needed
,
509 .fields
= (VMStateField
[]) {
510 VMSTATE_VSR_ARRAY(env
.vsr
, PowerPCCPU
, 32),
511 VMSTATE_END_OF_LIST()
516 /* Transactional memory state */
517 static bool tm_needed(void *opaque
)
519 PowerPCCPU
*cpu
= opaque
;
520 CPUPPCState
*env
= &cpu
->env
;
524 static const VMStateDescription vmstate_tm
= {
527 .minimum_version_id
= 1,
528 .minimum_version_id_old
= 1,
530 .fields
= (VMStateField
[]) {
531 VMSTATE_UINTTL_ARRAY(env
.tm_gpr
, PowerPCCPU
, 32),
532 VMSTATE_AVR_ARRAY(env
.tm_vsr
, PowerPCCPU
, 64),
533 VMSTATE_UINT64(env
.tm_cr
, PowerPCCPU
),
534 VMSTATE_UINT64(env
.tm_lr
, PowerPCCPU
),
535 VMSTATE_UINT64(env
.tm_ctr
, PowerPCCPU
),
536 VMSTATE_UINT64(env
.tm_fpscr
, PowerPCCPU
),
537 VMSTATE_UINT64(env
.tm_amr
, PowerPCCPU
),
538 VMSTATE_UINT64(env
.tm_ppr
, PowerPCCPU
),
539 VMSTATE_UINT64(env
.tm_vrsave
, PowerPCCPU
),
540 VMSTATE_UINT32(env
.tm_vscr
, PowerPCCPU
),
541 VMSTATE_UINT64(env
.tm_dscr
, PowerPCCPU
),
542 VMSTATE_UINT64(env
.tm_tar
, PowerPCCPU
),
543 VMSTATE_END_OF_LIST()
548 static bool sr_needed(void *opaque
)
551 PowerPCCPU
*cpu
= opaque
;
553 return !mmu_is_64bit(cpu
->env
.mmu_model
);
559 static const VMStateDescription vmstate_sr
= {
562 .minimum_version_id
= 1,
564 .fields
= (VMStateField
[]) {
565 VMSTATE_UINTTL_ARRAY(env
.sr
, PowerPCCPU
, 32),
566 VMSTATE_END_OF_LIST()
571 static int get_slbe(QEMUFile
*f
, void *pv
, size_t size
,
572 const VMStateField
*field
)
576 v
->esid
= qemu_get_be64(f
);
577 v
->vsid
= qemu_get_be64(f
);
582 static int put_slbe(QEMUFile
*f
, void *pv
, size_t size
,
583 const VMStateField
*field
, JSONWriter
*vmdesc
)
587 qemu_put_be64(f
, v
->esid
);
588 qemu_put_be64(f
, v
->vsid
);
592 static const VMStateInfo vmstate_info_slbe
= {
598 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
599 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
601 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
602 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
604 static bool slb_needed(void *opaque
)
606 PowerPCCPU
*cpu
= opaque
;
608 /* We don't support any of the old segment table based 64-bit CPUs */
609 return mmu_is_64bit(cpu
->env
.mmu_model
);
612 static int slb_post_load(void *opaque
, int version_id
)
614 PowerPCCPU
*cpu
= opaque
;
615 CPUPPCState
*env
= &cpu
->env
;
619 * We've pulled in the raw esid and vsid values from the migration
620 * stream, but we need to recompute the page size pointers
622 for (i
= 0; i
< cpu
->hash64_opts
->slb_size
; i
++) {
623 if (ppc_store_slb(cpu
, i
, env
->slb
[i
].esid
, env
->slb
[i
].vsid
) < 0) {
624 /* Migration source had bad values in its SLB */
632 static const VMStateDescription vmstate_slb
= {
635 .minimum_version_id
= 1,
636 .needed
= slb_needed
,
637 .post_load
= slb_post_load
,
638 .fields
= (VMStateField
[]) {
639 VMSTATE_INT32_TEST(mig_slb_nr
, PowerPCCPU
, cpu_pre_3_0_migration
),
640 VMSTATE_SLB_ARRAY(env
.slb
, PowerPCCPU
, MAX_SLB_ENTRIES
),
641 VMSTATE_END_OF_LIST()
644 #endif /* TARGET_PPC64 */
646 static const VMStateDescription vmstate_tlb6xx_entry
= {
647 .name
= "cpu/tlb6xx_entry",
649 .minimum_version_id
= 1,
650 .fields
= (VMStateField
[]) {
651 VMSTATE_UINTTL(pte0
, ppc6xx_tlb_t
),
652 VMSTATE_UINTTL(pte1
, ppc6xx_tlb_t
),
653 VMSTATE_UINTTL(EPN
, ppc6xx_tlb_t
),
654 VMSTATE_END_OF_LIST()
658 static bool tlb6xx_needed(void *opaque
)
660 PowerPCCPU
*cpu
= opaque
;
661 CPUPPCState
*env
= &cpu
->env
;
663 return env
->nb_tlb
&& (env
->tlb_type
== TLB_6XX
);
666 static const VMStateDescription vmstate_tlb6xx
= {
667 .name
= "cpu/tlb6xx",
669 .minimum_version_id
= 1,
670 .needed
= tlb6xx_needed
,
671 .fields
= (VMStateField
[]) {
672 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
673 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlb6
, PowerPCCPU
,
675 vmstate_tlb6xx_entry
,
677 VMSTATE_UINTTL_ARRAY(env
.tgpr
, PowerPCCPU
, 4),
678 VMSTATE_END_OF_LIST()
682 static const VMStateDescription vmstate_tlbemb_entry
= {
683 .name
= "cpu/tlbemb_entry",
685 .minimum_version_id
= 1,
686 .fields
= (VMStateField
[]) {
687 VMSTATE_UINT64(RPN
, ppcemb_tlb_t
),
688 VMSTATE_UINTTL(EPN
, ppcemb_tlb_t
),
689 VMSTATE_UINTTL(PID
, ppcemb_tlb_t
),
690 VMSTATE_UINTTL(size
, ppcemb_tlb_t
),
691 VMSTATE_UINT32(prot
, ppcemb_tlb_t
),
692 VMSTATE_UINT32(attr
, ppcemb_tlb_t
),
693 VMSTATE_END_OF_LIST()
697 static bool tlbemb_needed(void *opaque
)
699 PowerPCCPU
*cpu
= opaque
;
700 CPUPPCState
*env
= &cpu
->env
;
702 return env
->nb_tlb
&& (env
->tlb_type
== TLB_EMB
);
705 static bool pbr403_needed(void *opaque
)
707 PowerPCCPU
*cpu
= opaque
;
708 uint32_t pvr
= cpu
->env
.spr
[SPR_PVR
];
710 return (pvr
& 0xffff0000) == 0x00200000;
713 static const VMStateDescription vmstate_pbr403
= {
714 .name
= "cpu/pbr403",
716 .minimum_version_id
= 1,
717 .needed
= pbr403_needed
,
718 .fields
= (VMStateField
[]) {
719 VMSTATE_UINTTL_ARRAY(env
.pb
, PowerPCCPU
, 4),
720 VMSTATE_END_OF_LIST()
724 static const VMStateDescription vmstate_tlbemb
= {
725 .name
= "cpu/tlb6xx",
727 .minimum_version_id
= 1,
728 .needed
= tlbemb_needed
,
729 .fields
= (VMStateField
[]) {
730 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
731 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbe
, PowerPCCPU
,
733 vmstate_tlbemb_entry
,
735 /* 403 protection registers */
736 VMSTATE_END_OF_LIST()
738 .subsections
= (const VMStateDescription
*[]) {
744 static const VMStateDescription vmstate_tlbmas_entry
= {
745 .name
= "cpu/tlbmas_entry",
747 .minimum_version_id
= 1,
748 .fields
= (VMStateField
[]) {
749 VMSTATE_UINT32(mas8
, ppcmas_tlb_t
),
750 VMSTATE_UINT32(mas1
, ppcmas_tlb_t
),
751 VMSTATE_UINT64(mas2
, ppcmas_tlb_t
),
752 VMSTATE_UINT64(mas7_3
, ppcmas_tlb_t
),
753 VMSTATE_END_OF_LIST()
757 static bool tlbmas_needed(void *opaque
)
759 PowerPCCPU
*cpu
= opaque
;
760 CPUPPCState
*env
= &cpu
->env
;
762 return env
->nb_tlb
&& (env
->tlb_type
== TLB_MAS
);
765 static const VMStateDescription vmstate_tlbmas
= {
766 .name
= "cpu/tlbmas",
768 .minimum_version_id
= 1,
769 .needed
= tlbmas_needed
,
770 .fields
= (VMStateField
[]) {
771 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
772 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbm
, PowerPCCPU
,
774 vmstate_tlbmas_entry
,
776 VMSTATE_END_OF_LIST()
780 static bool compat_needed(void *opaque
)
782 PowerPCCPU
*cpu
= opaque
;
784 assert(!(cpu
->compat_pvr
&& !cpu
->vhyp
));
785 return !cpu
->pre_2_10_migration
&& cpu
->compat_pvr
!= 0;
788 static const VMStateDescription vmstate_compat
= {
789 .name
= "cpu/compat",
791 .minimum_version_id
= 1,
792 .needed
= compat_needed
,
793 .fields
= (VMStateField
[]) {
794 VMSTATE_UINT32(compat_pvr
, PowerPCCPU
),
795 VMSTATE_END_OF_LIST()
799 const VMStateDescription vmstate_ppc_cpu
= {
802 .minimum_version_id
= 5,
803 .minimum_version_id_old
= 4,
804 .load_state_old
= cpu_load_old
,
805 .pre_save
= cpu_pre_save
,
806 .post_load
= cpu_post_load
,
807 .fields
= (VMStateField
[]) {
808 VMSTATE_UNUSED(sizeof(target_ulong
)), /* was _EQUAL(env.spr[SPR_PVR]) */
810 /* User mode architected state */
811 VMSTATE_UINTTL_ARRAY(env
.gpr
, PowerPCCPU
, 32),
812 #if !defined(TARGET_PPC64)
813 VMSTATE_UINTTL_ARRAY(env
.gprh
, PowerPCCPU
, 32),
815 VMSTATE_UINT32_ARRAY(env
.crf
, PowerPCCPU
, 8),
816 VMSTATE_UINTTL(env
.nip
, PowerPCCPU
),
819 VMSTATE_UINTTL_ARRAY(env
.spr
, PowerPCCPU
, 1024),
820 VMSTATE_UINT64(env
.spe_acc
, PowerPCCPU
),
823 VMSTATE_UINTTL(env
.reserve_addr
, PowerPCCPU
),
825 /* Supervisor mode architected state */
826 VMSTATE_UINTTL(env
.msr
, PowerPCCPU
),
829 VMSTATE_UINTTL(env
.hflags_nmsr
, PowerPCCPU
),
830 /* FIXME: access_type? */
832 /* Sanity checking */
833 VMSTATE_UINTTL_TEST(mig_msr_mask
, PowerPCCPU
, cpu_pre_2_8_migration
),
834 VMSTATE_UINT64_TEST(mig_insns_flags
, PowerPCCPU
, cpu_pre_2_8_migration
),
835 VMSTATE_UINT64_TEST(mig_insns_flags2
, PowerPCCPU
,
836 cpu_pre_2_8_migration
),
837 VMSTATE_UINT32_TEST(mig_nb_BATs
, PowerPCCPU
, cpu_pre_2_8_migration
),
838 VMSTATE_END_OF_LIST()
840 .subsections
= (const VMStateDescription
*[]) {
848 #endif /* TARGET_PPC64 */