target/ppc: make power8-pmu.c CONFIG_TCG only
[qemu.git] / target / ppc / machine.c
blobe67394459792c08b8285e172aae90c572be64a70
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "qemu/main-loop.h"
11 #include "kvm_ppc.h"
12 #include "power8-pmu.h"
14 static void post_load_update_msr(CPUPPCState *env)
16 target_ulong msr = env->msr;
19 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
20 * before restoring. Note that this recomputes hflags.
22 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
23 ppc_store_msr(env, msr);
25 if (tcg_enabled()) {
26 pmu_update_summaries(env);
30 static int get_avr(QEMUFile *f, void *pv, size_t size,
31 const VMStateField *field)
33 ppc_avr_t *v = pv;
35 v->u64[0] = qemu_get_be64(f);
36 v->u64[1] = qemu_get_be64(f);
38 return 0;
41 static int put_avr(QEMUFile *f, void *pv, size_t size,
42 const VMStateField *field, JSONWriter *vmdesc)
44 ppc_avr_t *v = pv;
46 qemu_put_be64(f, v->u64[0]);
47 qemu_put_be64(f, v->u64[1]);
48 return 0;
51 static const VMStateInfo vmstate_info_avr = {
52 .name = "avr",
53 .get = get_avr,
54 .put = put_avr,
57 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
58 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
60 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
61 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
63 static int get_fpr(QEMUFile *f, void *pv, size_t size,
64 const VMStateField *field)
66 ppc_vsr_t *v = pv;
68 v->VsrD(0) = qemu_get_be64(f);
70 return 0;
73 static int put_fpr(QEMUFile *f, void *pv, size_t size,
74 const VMStateField *field, JSONWriter *vmdesc)
76 ppc_vsr_t *v = pv;
78 qemu_put_be64(f, v->VsrD(0));
79 return 0;
82 static const VMStateInfo vmstate_info_fpr = {
83 .name = "fpr",
84 .get = get_fpr,
85 .put = put_fpr,
88 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
89 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
91 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
92 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
94 static int get_vsr(QEMUFile *f, void *pv, size_t size,
95 const VMStateField *field)
97 ppc_vsr_t *v = pv;
99 v->VsrD(1) = qemu_get_be64(f);
101 return 0;
104 static int put_vsr(QEMUFile *f, void *pv, size_t size,
105 const VMStateField *field, JSONWriter *vmdesc)
107 ppc_vsr_t *v = pv;
109 qemu_put_be64(f, v->VsrD(1));
110 return 0;
113 static const VMStateInfo vmstate_info_vsr = {
114 .name = "vsr",
115 .get = get_vsr,
116 .put = put_vsr,
119 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
120 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
122 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
123 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
125 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
127 PowerPCCPU *cpu = opaque;
129 return cpu->pre_2_8_migration;
132 #if defined(TARGET_PPC64)
133 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
135 PowerPCCPU *cpu = opaque;
137 return cpu->pre_3_0_migration;
139 #endif
141 static int cpu_pre_save(void *opaque)
143 PowerPCCPU *cpu = opaque;
144 CPUPPCState *env = &cpu->env;
145 int i;
146 uint64_t insns_compat_mask =
147 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
148 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
149 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
150 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
151 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
152 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
153 | PPC_64B | PPC_64BX | PPC_ALTIVEC
154 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
155 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
156 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
157 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
158 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
159 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
160 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
162 env->spr[SPR_LR] = env->lr;
163 env->spr[SPR_CTR] = env->ctr;
164 env->spr[SPR_XER] = cpu_read_xer(env);
165 #if defined(TARGET_PPC64)
166 env->spr[SPR_CFAR] = env->cfar;
167 #endif
168 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
170 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
171 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
172 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
173 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
174 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
176 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
177 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
178 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
179 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
180 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
183 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
184 if (cpu->pre_2_8_migration) {
186 * Mask out bits that got added to msr_mask since the versions
187 * which stupidly included it in the migration stream.
189 target_ulong metamask = 0
190 #if defined(TARGET_PPC64)
191 | (1ULL << MSR_TS0)
192 | (1ULL << MSR_TS1)
193 #endif
195 cpu->mig_msr_mask = env->msr_mask & ~metamask;
196 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
198 * CPU models supported by old machines all have
199 * PPC_MEM_TLBIE, so we set it unconditionally to allow
200 * backward migration from a POWER9 host to a POWER8 host.
202 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
203 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
204 cpu->mig_nb_BATs = env->nb_BATs;
206 if (cpu->pre_3_0_migration) {
207 if (cpu->hash64_opts) {
208 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
212 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
213 env->hflags_compat_nmsr = 0;
215 return 0;
219 * Determine if a given PVR is a "close enough" match to the CPU
220 * object. For TCG and KVM PR it would probably be sufficient to
221 * require an exact PVR match. However for KVM HV the user is
222 * restricted to a PVR exactly matching the host CPU. The correct way
223 * to handle this is to put the guest into an architected
224 * compatibility mode. However, to allow a more forgiving transition
225 * and migration from before this was widely done, we allow migration
226 * between sufficiently similar PVRs, as determined by the CPU class's
227 * pvr_match() hook.
229 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
231 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
233 if (pvr == pcc->pvr) {
234 return true;
236 return pcc->pvr_match(pcc, pvr);
239 static int cpu_post_load(void *opaque, int version_id)
241 PowerPCCPU *cpu = opaque;
242 CPUPPCState *env = &cpu->env;
243 int i;
246 * If we're operating in compat mode, we should be ok as long as
247 * the destination supports the same compatibility mode.
249 * Otherwise, however, we require that the destination has exactly
250 * the same CPU model as the source.
253 #if defined(TARGET_PPC64)
254 if (cpu->compat_pvr) {
255 uint32_t compat_pvr = cpu->compat_pvr;
256 Error *local_err = NULL;
257 int ret;
259 cpu->compat_pvr = 0;
260 ret = ppc_set_compat(cpu, compat_pvr, &local_err);
261 if (ret < 0) {
262 error_report_err(local_err);
263 return ret;
265 } else
266 #endif
268 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
269 return -EINVAL;
274 * If we're running with KVM HV, there is a chance that the guest
275 * is running with KVM HV and its kernel does not have the
276 * capability of dealing with a different PVR other than this
277 * exact host PVR in KVM_SET_SREGS. If that happens, the
278 * guest freezes after migration.
280 * The function kvmppc_pvr_workaround_required does this verification
281 * by first checking if the kernel has the cap, returning true immediately
282 * if that is the case. Otherwise, it checks if we're running in KVM PR.
283 * If the guest kernel does not have the cap and we're not running KVM-PR
284 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
285 * receive the PVR it expects as a workaround.
288 if (kvmppc_pvr_workaround_required(cpu)) {
289 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
292 env->lr = env->spr[SPR_LR];
293 env->ctr = env->spr[SPR_CTR];
294 cpu_write_xer(env, env->spr[SPR_XER]);
295 #if defined(TARGET_PPC64)
296 env->cfar = env->spr[SPR_CFAR];
297 #endif
298 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
300 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
301 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
302 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
303 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
304 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
306 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
307 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
308 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
309 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
310 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
313 if (!cpu->vhyp) {
314 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
317 post_load_update_msr(env);
319 return 0;
322 static bool fpu_needed(void *opaque)
324 PowerPCCPU *cpu = opaque;
326 return cpu->env.insns_flags & PPC_FLOAT;
329 static const VMStateDescription vmstate_fpu = {
330 .name = "cpu/fpu",
331 .version_id = 1,
332 .minimum_version_id = 1,
333 .needed = fpu_needed,
334 .fields = (VMStateField[]) {
335 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
336 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
337 VMSTATE_END_OF_LIST()
341 static bool altivec_needed(void *opaque)
343 PowerPCCPU *cpu = opaque;
345 return cpu->env.insns_flags & PPC_ALTIVEC;
348 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
349 const VMStateField *field)
351 PowerPCCPU *cpu = opaque;
352 ppc_store_vscr(&cpu->env, qemu_get_be32(f));
353 return 0;
356 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
357 const VMStateField *field, JSONWriter *vmdesc)
359 PowerPCCPU *cpu = opaque;
360 qemu_put_be32(f, ppc_get_vscr(&cpu->env));
361 return 0;
364 static const VMStateInfo vmstate_vscr = {
365 .name = "cpu/altivec/vscr",
366 .get = get_vscr,
367 .put = put_vscr,
370 static const VMStateDescription vmstate_altivec = {
371 .name = "cpu/altivec",
372 .version_id = 1,
373 .minimum_version_id = 1,
374 .needed = altivec_needed,
375 .fields = (VMStateField[]) {
376 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
378 * Save the architecture value of the vscr, not the internally
379 * expanded version. Since this architecture value does not
380 * exist in memory to be stored, this requires a but of hoop
381 * jumping. We want OFFSET=0 so that we effectively pass CPU
382 * to the helper functions.
385 .name = "vscr",
386 .version_id = 0,
387 .size = sizeof(uint32_t),
388 .info = &vmstate_vscr,
389 .flags = VMS_SINGLE,
390 .offset = 0
392 VMSTATE_END_OF_LIST()
396 static bool vsx_needed(void *opaque)
398 PowerPCCPU *cpu = opaque;
400 return cpu->env.insns_flags2 & PPC2_VSX;
403 static const VMStateDescription vmstate_vsx = {
404 .name = "cpu/vsx",
405 .version_id = 1,
406 .minimum_version_id = 1,
407 .needed = vsx_needed,
408 .fields = (VMStateField[]) {
409 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
410 VMSTATE_END_OF_LIST()
414 #ifdef TARGET_PPC64
415 /* Transactional memory state */
416 static bool tm_needed(void *opaque)
418 PowerPCCPU *cpu = opaque;
419 CPUPPCState *env = &cpu->env;
420 return msr_ts;
423 static const VMStateDescription vmstate_tm = {
424 .name = "cpu/tm",
425 .version_id = 1,
426 .minimum_version_id = 1,
427 .needed = tm_needed,
428 .fields = (VMStateField []) {
429 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
430 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
431 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
432 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
433 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
434 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
435 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
436 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
437 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
438 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
439 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
440 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
441 VMSTATE_END_OF_LIST()
444 #endif
446 static bool sr_needed(void *opaque)
448 #ifdef TARGET_PPC64
449 PowerPCCPU *cpu = opaque;
451 return !mmu_is_64bit(cpu->env.mmu_model);
452 #else
453 return true;
454 #endif
457 static const VMStateDescription vmstate_sr = {
458 .name = "cpu/sr",
459 .version_id = 1,
460 .minimum_version_id = 1,
461 .needed = sr_needed,
462 .fields = (VMStateField[]) {
463 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
464 VMSTATE_END_OF_LIST()
468 #ifdef TARGET_PPC64
469 static int get_slbe(QEMUFile *f, void *pv, size_t size,
470 const VMStateField *field)
472 ppc_slb_t *v = pv;
474 v->esid = qemu_get_be64(f);
475 v->vsid = qemu_get_be64(f);
477 return 0;
480 static int put_slbe(QEMUFile *f, void *pv, size_t size,
481 const VMStateField *field, JSONWriter *vmdesc)
483 ppc_slb_t *v = pv;
485 qemu_put_be64(f, v->esid);
486 qemu_put_be64(f, v->vsid);
487 return 0;
490 static const VMStateInfo vmstate_info_slbe = {
491 .name = "slbe",
492 .get = get_slbe,
493 .put = put_slbe,
496 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
497 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
499 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
500 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
502 static bool slb_needed(void *opaque)
504 PowerPCCPU *cpu = opaque;
506 /* We don't support any of the old segment table based 64-bit CPUs */
507 return mmu_is_64bit(cpu->env.mmu_model);
510 static int slb_post_load(void *opaque, int version_id)
512 PowerPCCPU *cpu = opaque;
513 CPUPPCState *env = &cpu->env;
514 int i;
517 * We've pulled in the raw esid and vsid values from the migration
518 * stream, but we need to recompute the page size pointers
520 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
521 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
522 /* Migration source had bad values in its SLB */
523 return -1;
527 return 0;
530 static const VMStateDescription vmstate_slb = {
531 .name = "cpu/slb",
532 .version_id = 1,
533 .minimum_version_id = 1,
534 .needed = slb_needed,
535 .post_load = slb_post_load,
536 .fields = (VMStateField[]) {
537 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
538 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
539 VMSTATE_END_OF_LIST()
542 #endif /* TARGET_PPC64 */
544 static const VMStateDescription vmstate_tlb6xx_entry = {
545 .name = "cpu/tlb6xx_entry",
546 .version_id = 1,
547 .minimum_version_id = 1,
548 .fields = (VMStateField[]) {
549 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
550 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
551 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
552 VMSTATE_END_OF_LIST()
556 static bool tlb6xx_needed(void *opaque)
558 PowerPCCPU *cpu = opaque;
559 CPUPPCState *env = &cpu->env;
561 return env->nb_tlb && (env->tlb_type == TLB_6XX);
564 static const VMStateDescription vmstate_tlb6xx = {
565 .name = "cpu/tlb6xx",
566 .version_id = 1,
567 .minimum_version_id = 1,
568 .needed = tlb6xx_needed,
569 .fields = (VMStateField[]) {
570 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
571 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
572 env.nb_tlb,
573 vmstate_tlb6xx_entry,
574 ppc6xx_tlb_t),
575 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
576 VMSTATE_END_OF_LIST()
580 static const VMStateDescription vmstate_tlbemb_entry = {
581 .name = "cpu/tlbemb_entry",
582 .version_id = 1,
583 .minimum_version_id = 1,
584 .fields = (VMStateField[]) {
585 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
586 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
587 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
588 VMSTATE_UINTTL(size, ppcemb_tlb_t),
589 VMSTATE_UINT32(prot, ppcemb_tlb_t),
590 VMSTATE_UINT32(attr, ppcemb_tlb_t),
591 VMSTATE_END_OF_LIST()
595 static bool tlbemb_needed(void *opaque)
597 PowerPCCPU *cpu = opaque;
598 CPUPPCState *env = &cpu->env;
600 return env->nb_tlb && (env->tlb_type == TLB_EMB);
603 static const VMStateDescription vmstate_tlbemb = {
604 .name = "cpu/tlb6xx",
605 .version_id = 1,
606 .minimum_version_id = 1,
607 .needed = tlbemb_needed,
608 .fields = (VMStateField[]) {
609 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
610 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
611 env.nb_tlb,
612 vmstate_tlbemb_entry,
613 ppcemb_tlb_t),
614 VMSTATE_END_OF_LIST()
618 static const VMStateDescription vmstate_tlbmas_entry = {
619 .name = "cpu/tlbmas_entry",
620 .version_id = 1,
621 .minimum_version_id = 1,
622 .fields = (VMStateField[]) {
623 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
624 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
625 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
626 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
627 VMSTATE_END_OF_LIST()
631 static bool tlbmas_needed(void *opaque)
633 PowerPCCPU *cpu = opaque;
634 CPUPPCState *env = &cpu->env;
636 return env->nb_tlb && (env->tlb_type == TLB_MAS);
639 static const VMStateDescription vmstate_tlbmas = {
640 .name = "cpu/tlbmas",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .needed = tlbmas_needed,
644 .fields = (VMStateField[]) {
645 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
646 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
647 env.nb_tlb,
648 vmstate_tlbmas_entry,
649 ppcmas_tlb_t),
650 VMSTATE_END_OF_LIST()
654 static bool compat_needed(void *opaque)
656 PowerPCCPU *cpu = opaque;
658 assert(!(cpu->compat_pvr && !cpu->vhyp));
659 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
662 static const VMStateDescription vmstate_compat = {
663 .name = "cpu/compat",
664 .version_id = 1,
665 .minimum_version_id = 1,
666 .needed = compat_needed,
667 .fields = (VMStateField[]) {
668 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
669 VMSTATE_END_OF_LIST()
673 const VMStateDescription vmstate_ppc_cpu = {
674 .name = "cpu",
675 .version_id = 5,
676 .minimum_version_id = 5,
677 .pre_save = cpu_pre_save,
678 .post_load = cpu_post_load,
679 .fields = (VMStateField[]) {
680 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
682 /* User mode architected state */
683 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
684 #if !defined(TARGET_PPC64)
685 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
686 #endif
687 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
688 VMSTATE_UINTTL(env.nip, PowerPCCPU),
690 /* SPRs */
691 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
692 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
694 /* Reservation */
695 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
697 /* Supervisor mode architected state */
698 VMSTATE_UINTTL(env.msr, PowerPCCPU),
700 /* Backward compatible internal state */
701 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
703 /* Sanity checking */
704 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
705 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
706 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
707 cpu_pre_2_8_migration),
708 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
709 VMSTATE_END_OF_LIST()
711 .subsections = (const VMStateDescription*[]) {
712 &vmstate_fpu,
713 &vmstate_altivec,
714 &vmstate_vsx,
715 &vmstate_sr,
716 #ifdef TARGET_PPC64
717 &vmstate_tm,
718 &vmstate_slb,
719 #endif /* TARGET_PPC64 */
720 &vmstate_tlb6xx,
721 &vmstate_tlbemb,
722 &vmstate_tlbmas,
723 &vmstate_compat,
724 NULL