softfloat: Remove assertion preventing silencing of NaN in default-NaN mode
[qemu.git] / target / arm / cpu64.c
blob2f0cbddab568d657e1c01c4b65bb35a59ef7de8a
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "kvm_arm.h"
33 #include "qapi/visitor.h"
34 #include "hw/qdev-properties.h"
37 #ifndef CONFIG_USER_ONLY
38 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 ARMCPU *cpu = env_archcpu(env);
42 /* Number of cores is in [25:24]; otherwise we RAZ */
43 return (cpu->core_count - 1) << 24;
45 #endif
47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
48 #ifndef CONFIG_USER_ONLY
49 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
50 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
51 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
52 .writefn = arm_cp_write_ignore },
53 { .name = "L2CTLR",
54 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
55 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
56 .writefn = arm_cp_write_ignore },
57 #endif
58 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
59 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
60 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
61 { .name = "L2ECTLR",
62 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
63 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
65 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
68 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
69 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70 { .name = "CPUACTLR",
71 .cp = 15, .opc1 = 0, .crm = 15,
72 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
73 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
74 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
75 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76 { .name = "CPUECTLR",
77 .cp = 15, .opc1 = 1, .crm = 15,
78 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
80 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
81 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82 { .name = "CPUMERRSR",
83 .cp = 15, .opc1 = 2, .crm = 15,
84 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
86 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
87 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88 { .name = "L2MERRSR",
89 .cp = 15, .opc1 = 3, .crm = 15,
90 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91 REGINFO_SENTINEL
94 static void aarch64_a57_initfn(Object *obj)
96 ARMCPU *cpu = ARM_CPU(obj);
98 cpu->dtb_compatible = "arm,cortex-a57";
99 set_feature(&cpu->env, ARM_FEATURE_V8);
100 set_feature(&cpu->env, ARM_FEATURE_NEON);
101 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
102 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
103 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
104 set_feature(&cpu->env, ARM_FEATURE_EL2);
105 set_feature(&cpu->env, ARM_FEATURE_EL3);
106 set_feature(&cpu->env, ARM_FEATURE_PMU);
107 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
108 cpu->midr = 0x411fd070;
109 cpu->revidr = 0x00000000;
110 cpu->reset_fpsid = 0x41034070;
111 cpu->isar.mvfr0 = 0x10110222;
112 cpu->isar.mvfr1 = 0x12111111;
113 cpu->isar.mvfr2 = 0x00000043;
114 cpu->ctr = 0x8444c004;
115 cpu->reset_sctlr = 0x00c50838;
116 cpu->isar.id_pfr0 = 0x00000131;
117 cpu->isar.id_pfr1 = 0x00011011;
118 cpu->isar.id_dfr0 = 0x03010066;
119 cpu->id_afr0 = 0x00000000;
120 cpu->isar.id_mmfr0 = 0x10101105;
121 cpu->isar.id_mmfr1 = 0x40000000;
122 cpu->isar.id_mmfr2 = 0x01260000;
123 cpu->isar.id_mmfr3 = 0x02102211;
124 cpu->isar.id_isar0 = 0x02101110;
125 cpu->isar.id_isar1 = 0x13112111;
126 cpu->isar.id_isar2 = 0x21232042;
127 cpu->isar.id_isar3 = 0x01112131;
128 cpu->isar.id_isar4 = 0x00011142;
129 cpu->isar.id_isar5 = 0x00011121;
130 cpu->isar.id_isar6 = 0;
131 cpu->isar.id_aa64pfr0 = 0x00002222;
132 cpu->isar.id_aa64dfr0 = 0x10305106;
133 cpu->isar.id_aa64isar0 = 0x00011120;
134 cpu->isar.id_aa64mmfr0 = 0x00001124;
135 cpu->isar.dbgdidr = 0x3516d000;
136 cpu->clidr = 0x0a200023;
137 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
138 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
139 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
140 cpu->dcz_blocksize = 4; /* 64 bytes */
141 cpu->gic_num_lrs = 4;
142 cpu->gic_vpribits = 5;
143 cpu->gic_vprebits = 5;
144 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
147 static void aarch64_a53_initfn(Object *obj)
149 ARMCPU *cpu = ARM_CPU(obj);
151 cpu->dtb_compatible = "arm,cortex-a53";
152 set_feature(&cpu->env, ARM_FEATURE_V8);
153 set_feature(&cpu->env, ARM_FEATURE_NEON);
154 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
155 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
156 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
157 set_feature(&cpu->env, ARM_FEATURE_EL2);
158 set_feature(&cpu->env, ARM_FEATURE_EL3);
159 set_feature(&cpu->env, ARM_FEATURE_PMU);
160 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
161 cpu->midr = 0x410fd034;
162 cpu->revidr = 0x00000000;
163 cpu->reset_fpsid = 0x41034070;
164 cpu->isar.mvfr0 = 0x10110222;
165 cpu->isar.mvfr1 = 0x12111111;
166 cpu->isar.mvfr2 = 0x00000043;
167 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
168 cpu->reset_sctlr = 0x00c50838;
169 cpu->isar.id_pfr0 = 0x00000131;
170 cpu->isar.id_pfr1 = 0x00011011;
171 cpu->isar.id_dfr0 = 0x03010066;
172 cpu->id_afr0 = 0x00000000;
173 cpu->isar.id_mmfr0 = 0x10101105;
174 cpu->isar.id_mmfr1 = 0x40000000;
175 cpu->isar.id_mmfr2 = 0x01260000;
176 cpu->isar.id_mmfr3 = 0x02102211;
177 cpu->isar.id_isar0 = 0x02101110;
178 cpu->isar.id_isar1 = 0x13112111;
179 cpu->isar.id_isar2 = 0x21232042;
180 cpu->isar.id_isar3 = 0x01112131;
181 cpu->isar.id_isar4 = 0x00011142;
182 cpu->isar.id_isar5 = 0x00011121;
183 cpu->isar.id_isar6 = 0;
184 cpu->isar.id_aa64pfr0 = 0x00002222;
185 cpu->isar.id_aa64dfr0 = 0x10305106;
186 cpu->isar.id_aa64isar0 = 0x00011120;
187 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
188 cpu->isar.dbgdidr = 0x3516d000;
189 cpu->clidr = 0x0a200023;
190 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
191 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
192 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
193 cpu->dcz_blocksize = 4; /* 64 bytes */
194 cpu->gic_num_lrs = 4;
195 cpu->gic_vpribits = 5;
196 cpu->gic_vprebits = 5;
197 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
200 static void aarch64_a72_initfn(Object *obj)
202 ARMCPU *cpu = ARM_CPU(obj);
204 cpu->dtb_compatible = "arm,cortex-a72";
205 set_feature(&cpu->env, ARM_FEATURE_V8);
206 set_feature(&cpu->env, ARM_FEATURE_NEON);
207 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
208 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
209 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
210 set_feature(&cpu->env, ARM_FEATURE_EL2);
211 set_feature(&cpu->env, ARM_FEATURE_EL3);
212 set_feature(&cpu->env, ARM_FEATURE_PMU);
213 cpu->midr = 0x410fd083;
214 cpu->revidr = 0x00000000;
215 cpu->reset_fpsid = 0x41034080;
216 cpu->isar.mvfr0 = 0x10110222;
217 cpu->isar.mvfr1 = 0x12111111;
218 cpu->isar.mvfr2 = 0x00000043;
219 cpu->ctr = 0x8444c004;
220 cpu->reset_sctlr = 0x00c50838;
221 cpu->isar.id_pfr0 = 0x00000131;
222 cpu->isar.id_pfr1 = 0x00011011;
223 cpu->isar.id_dfr0 = 0x03010066;
224 cpu->id_afr0 = 0x00000000;
225 cpu->isar.id_mmfr0 = 0x10201105;
226 cpu->isar.id_mmfr1 = 0x40000000;
227 cpu->isar.id_mmfr2 = 0x01260000;
228 cpu->isar.id_mmfr3 = 0x02102211;
229 cpu->isar.id_isar0 = 0x02101110;
230 cpu->isar.id_isar1 = 0x13112111;
231 cpu->isar.id_isar2 = 0x21232042;
232 cpu->isar.id_isar3 = 0x01112131;
233 cpu->isar.id_isar4 = 0x00011142;
234 cpu->isar.id_isar5 = 0x00011121;
235 cpu->isar.id_aa64pfr0 = 0x00002222;
236 cpu->isar.id_aa64dfr0 = 0x10305106;
237 cpu->isar.id_aa64isar0 = 0x00011120;
238 cpu->isar.id_aa64mmfr0 = 0x00001124;
239 cpu->isar.dbgdidr = 0x3516d000;
240 cpu->clidr = 0x0a200023;
241 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
242 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
243 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
244 cpu->dcz_blocksize = 4; /* 64 bytes */
245 cpu->gic_num_lrs = 4;
246 cpu->gic_vpribits = 5;
247 cpu->gic_vprebits = 5;
248 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
251 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
254 * If any vector lengths are explicitly enabled with sve<N> properties,
255 * then all other lengths are implicitly disabled. If sve-max-vq is
256 * specified then it is the same as explicitly enabling all lengths
257 * up to and including the specified maximum, which means all larger
258 * lengths will be implicitly disabled. If no sve<N> properties
259 * are enabled and sve-max-vq is not specified, then all lengths not
260 * explicitly disabled will be enabled. Additionally, all power-of-two
261 * vector lengths less than the maximum enabled length will be
262 * automatically enabled and all vector lengths larger than the largest
263 * disabled power-of-two vector length will be automatically disabled.
264 * Errors are generated if the user provided input that interferes with
265 * any of the above. Finally, if SVE is not disabled, then at least one
266 * vector length must be enabled.
268 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
269 uint32_t vq, max_vq = 0;
272 * CPU models specify a set of supported vector lengths which are
273 * enabled by default. Attempting to enable any vector length not set
274 * in the supported bitmap results in an error. When KVM is enabled we
275 * fetch the supported bitmap from the host.
277 if (kvm_enabled() && kvm_arm_sve_supported()) {
278 kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported);
279 } else if (kvm_enabled()) {
280 assert(!cpu_isar_feature(aa64_sve, cpu));
284 * Process explicit sve<N> properties.
285 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
286 * Check first for any sve<N> enabled.
288 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
289 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
291 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
292 error_setg(errp, "cannot enable sve%d", max_vq * 128);
293 error_append_hint(errp, "sve%d is larger than the maximum vector "
294 "length, sve-max-vq=%d (%d bits)\n",
295 max_vq * 128, cpu->sve_max_vq,
296 cpu->sve_max_vq * 128);
297 return;
300 if (kvm_enabled()) {
302 * For KVM we have to automatically enable all supported unitialized
303 * lengths, even when the smaller lengths are not all powers-of-two.
305 bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq);
306 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
307 } else {
308 /* Propagate enabled bits down through required powers-of-two. */
309 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
310 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
311 set_bit(vq - 1, cpu->sve_vq_map);
315 } else if (cpu->sve_max_vq == 0) {
317 * No explicit bits enabled, and no implicit bits from sve-max-vq.
319 if (!cpu_isar_feature(aa64_sve, cpu)) {
320 /* SVE is disabled and so are all vector lengths. Good. */
321 return;
324 if (kvm_enabled()) {
325 /* Disabling a supported length disables all larger lengths. */
326 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
327 if (test_bit(vq - 1, cpu->sve_vq_init) &&
328 test_bit(vq - 1, cpu->sve_vq_supported)) {
329 break;
332 } else {
333 /* Disabling a power-of-two disables all larger lengths. */
334 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
335 if (test_bit(vq - 1, cpu->sve_vq_init)) {
336 break;
341 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
342 bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported,
343 cpu->sve_vq_init, max_vq);
344 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
345 error_setg(errp, "cannot disable sve%d", vq * 128);
346 error_append_hint(errp, "Disabling sve%d results in all "
347 "vector lengths being disabled.\n",
348 vq * 128);
349 error_append_hint(errp, "With SVE enabled, at least one "
350 "vector length must be enabled.\n");
351 return;
354 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
358 * Process the sve-max-vq property.
359 * Note that we know from the above that no bit above
360 * sve-max-vq is currently set.
362 if (cpu->sve_max_vq != 0) {
363 max_vq = cpu->sve_max_vq;
365 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
366 test_bit(max_vq - 1, cpu->sve_vq_init)) {
367 error_setg(errp, "cannot disable sve%d", max_vq * 128);
368 error_append_hint(errp, "The maximum vector length must be "
369 "enabled, sve-max-vq=%d (%d bits)\n",
370 max_vq, max_vq * 128);
371 return;
374 /* Set all bits not explicitly set within sve-max-vq. */
375 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
376 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
380 * We should know what max-vq is now. Also, as we're done
381 * manipulating sve-vq-map, we ensure any bits above max-vq
382 * are clear, just in case anybody looks.
384 assert(max_vq != 0);
385 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
387 /* Ensure the set of lengths matches what is supported. */
388 bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq);
389 if (!bitmap_empty(tmp, max_vq)) {
390 vq = find_last_bit(tmp, max_vq) + 1;
391 if (test_bit(vq - 1, cpu->sve_vq_map)) {
392 if (cpu->sve_max_vq) {
393 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
394 error_append_hint(errp, "This CPU does not support "
395 "the vector length %d-bits.\n", vq * 128);
396 error_append_hint(errp, "It may not be possible to use "
397 "sve-max-vq with this CPU. Try "
398 "using only sve<N> properties.\n");
399 } else {
400 error_setg(errp, "cannot enable sve%d", vq * 128);
401 error_append_hint(errp, "This CPU does not support "
402 "the vector length %d-bits.\n", vq * 128);
404 return;
405 } else {
406 if (kvm_enabled()) {
407 error_setg(errp, "cannot disable sve%d", vq * 128);
408 error_append_hint(errp, "The KVM host requires all "
409 "supported vector lengths smaller "
410 "than %d bits to also be enabled.\n",
411 max_vq * 128);
412 return;
413 } else {
414 /* Ensure all required powers-of-two are enabled. */
415 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
416 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
417 error_setg(errp, "cannot disable sve%d", vq * 128);
418 error_append_hint(errp, "sve%d is required as it "
419 "is a power-of-two length smaller "
420 "than the maximum, sve%d\n",
421 vq * 128, max_vq * 128);
422 return;
430 * Now that we validated all our vector lengths, the only question
431 * left to answer is if we even want SVE at all.
433 if (!cpu_isar_feature(aa64_sve, cpu)) {
434 error_setg(errp, "cannot enable sve%d", max_vq * 128);
435 error_append_hint(errp, "SVE must be enabled to enable vector "
436 "lengths.\n");
437 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
438 return;
441 /* From now on sve_max_vq is the actual maximum supported length. */
442 cpu->sve_max_vq = max_vq;
445 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
446 void *opaque, Error **errp)
448 ARMCPU *cpu = ARM_CPU(obj);
449 uint32_t value;
451 /* All vector lengths are disabled when SVE is off. */
452 if (!cpu_isar_feature(aa64_sve, cpu)) {
453 value = 0;
454 } else {
455 value = cpu->sve_max_vq;
457 visit_type_uint32(v, name, &value, errp);
460 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
461 void *opaque, Error **errp)
463 ARMCPU *cpu = ARM_CPU(obj);
464 uint32_t max_vq;
466 if (!visit_type_uint32(v, name, &max_vq, errp)) {
467 return;
470 if (kvm_enabled() && !kvm_arm_sve_supported()) {
471 error_setg(errp, "cannot set sve-max-vq");
472 error_append_hint(errp, "SVE not supported by KVM on this host\n");
473 return;
476 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
477 error_setg(errp, "unsupported SVE vector length");
478 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
479 ARM_MAX_VQ);
480 return;
483 cpu->sve_max_vq = max_vq;
487 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
488 * object_property_add_bool interface because they make use
489 * of the contents of "name" to determine which bit on which
490 * to operate.
492 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
493 void *opaque, Error **errp)
495 ARMCPU *cpu = ARM_CPU(obj);
496 uint32_t vq = atoi(&name[3]) / 128;
497 bool value;
499 /* All vector lengths are disabled when SVE is off. */
500 if (!cpu_isar_feature(aa64_sve, cpu)) {
501 value = false;
502 } else {
503 value = test_bit(vq - 1, cpu->sve_vq_map);
505 visit_type_bool(v, name, &value, errp);
508 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
509 void *opaque, Error **errp)
511 ARMCPU *cpu = ARM_CPU(obj);
512 uint32_t vq = atoi(&name[3]) / 128;
513 bool value;
515 if (!visit_type_bool(v, name, &value, errp)) {
516 return;
519 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
520 error_setg(errp, "cannot enable %s", name);
521 error_append_hint(errp, "SVE not supported by KVM on this host\n");
522 return;
525 if (value) {
526 set_bit(vq - 1, cpu->sve_vq_map);
527 } else {
528 clear_bit(vq - 1, cpu->sve_vq_map);
530 set_bit(vq - 1, cpu->sve_vq_init);
533 static bool cpu_arm_get_sve(Object *obj, Error **errp)
535 ARMCPU *cpu = ARM_CPU(obj);
536 return cpu_isar_feature(aa64_sve, cpu);
539 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
541 ARMCPU *cpu = ARM_CPU(obj);
542 uint64_t t;
544 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
545 error_setg(errp, "'sve' feature not supported by KVM on this host");
546 return;
549 t = cpu->isar.id_aa64pfr0;
550 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
551 cpu->isar.id_aa64pfr0 = t;
554 #ifdef CONFIG_USER_ONLY
555 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
556 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
557 const char *name, void *opaque,
558 Error **errp)
560 ARMCPU *cpu = ARM_CPU(obj);
561 int32_t default_len, default_vq, remainder;
563 if (!visit_type_int32(v, name, &default_len, errp)) {
564 return;
567 /* Undocumented, but the kernel allows -1 to indicate "maximum". */
568 if (default_len == -1) {
569 cpu->sve_default_vq = ARM_MAX_VQ;
570 return;
573 default_vq = default_len / 16;
574 remainder = default_len % 16;
577 * Note that the 512 max comes from include/uapi/asm/sve_context.h
578 * and is the maximum architectural width of ZCR_ELx.LEN.
580 if (remainder || default_vq < 1 || default_vq > 512) {
581 error_setg(errp, "cannot set sve-default-vector-length");
582 if (remainder) {
583 error_append_hint(errp, "Vector length not a multiple of 16\n");
584 } else if (default_vq < 1) {
585 error_append_hint(errp, "Vector length smaller than 16\n");
586 } else {
587 error_append_hint(errp, "Vector length larger than %d\n",
588 512 * 16);
590 return;
593 cpu->sve_default_vq = default_vq;
596 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
597 const char *name, void *opaque,
598 Error **errp)
600 ARMCPU *cpu = ARM_CPU(obj);
601 int32_t value = cpu->sve_default_vq * 16;
603 visit_type_int32(v, name, &value, errp);
605 #endif
607 void aarch64_add_sve_properties(Object *obj)
609 uint32_t vq;
611 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
613 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
614 char name[8];
615 sprintf(name, "sve%d", vq * 128);
616 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
617 cpu_arm_set_sve_vq, NULL, NULL);
620 #ifdef CONFIG_USER_ONLY
621 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
622 object_property_add(obj, "sve-default-vector-length", "int32",
623 cpu_arm_get_sve_default_vec_len,
624 cpu_arm_set_sve_default_vec_len, NULL, NULL);
625 #endif
628 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
630 int arch_val = 0, impdef_val = 0;
631 uint64_t t;
633 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
634 if (cpu->prop_pauth) {
635 if (cpu->prop_pauth_impdef) {
636 impdef_val = 1;
637 } else {
638 arch_val = 1;
640 } else if (cpu->prop_pauth_impdef) {
641 error_setg(errp, "cannot enable pauth-impdef without pauth");
642 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
645 t = cpu->isar.id_aa64isar1;
646 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
647 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
648 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
649 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
650 cpu->isar.id_aa64isar1 = t;
653 static Property arm_cpu_pauth_property =
654 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
655 static Property arm_cpu_pauth_impdef_property =
656 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
658 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
659 * otherwise, a CPU with as many features enabled as our emulation supports.
660 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
661 * this only needs to handle 64 bits.
663 static void aarch64_max_initfn(Object *obj)
665 ARMCPU *cpu = ARM_CPU(obj);
667 if (kvm_enabled()) {
668 kvm_arm_set_cpu_features_from_host(cpu);
669 } else {
670 uint64_t t;
671 uint32_t u;
672 aarch64_a57_initfn(obj);
675 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
676 * one and try to apply errata workarounds or use impdef features we
677 * don't provide.
678 * An IMPLEMENTER field of 0 means "reserved for software use";
679 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
680 * to see which features are present";
681 * the VARIANT, PARTNUM and REVISION fields are all implementation
682 * defined and we choose to define PARTNUM just in case guest
683 * code needs to distinguish this QEMU CPU from other software
684 * implementations, though this shouldn't be needed.
686 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
687 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
688 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
689 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
690 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
691 cpu->midr = t;
693 t = cpu->isar.id_aa64isar0;
694 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
695 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
696 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
697 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
698 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
699 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
700 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
701 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
702 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
703 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
704 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
705 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
706 t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
707 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
708 cpu->isar.id_aa64isar0 = t;
710 t = cpu->isar.id_aa64isar1;
711 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
712 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
713 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
714 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
715 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
716 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);
717 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
718 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
719 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);
720 cpu->isar.id_aa64isar1 = t;
722 t = cpu->isar.id_aa64pfr0;
723 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
724 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
725 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
726 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
727 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
728 cpu->isar.id_aa64pfr0 = t;
730 t = cpu->isar.id_aa64pfr1;
731 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
732 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
734 * Begin with full support for MTE. This will be downgraded to MTE=0
735 * during realize if the board provides no tag memory, much like
736 * we do for EL2 with the virtualization=on property.
738 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);
739 cpu->isar.id_aa64pfr1 = t;
741 t = cpu->isar.id_aa64mmfr0;
742 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
743 cpu->isar.id_aa64mmfr0 = t;
745 t = cpu->isar.id_aa64mmfr1;
746 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
747 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
748 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
749 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
750 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
751 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
752 cpu->isar.id_aa64mmfr1 = t;
754 t = cpu->isar.id_aa64mmfr2;
755 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
756 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
757 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
758 cpu->isar.id_aa64mmfr2 = t;
760 t = cpu->isar.id_aa64zfr0;
761 t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
762 t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* PMULL */
763 t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);
764 t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);
765 t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);
766 t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);
767 t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);
768 t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);
769 t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);
770 cpu->isar.id_aa64zfr0 = t;
772 /* Replicate the same data to the 32-bit id registers. */
773 u = cpu->isar.id_isar5;
774 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
775 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
776 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
777 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
778 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
779 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
780 cpu->isar.id_isar5 = u;
782 u = cpu->isar.id_isar6;
783 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
784 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
785 u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
786 u = FIELD_DP32(u, ID_ISAR6, SB, 1);
787 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
788 u = FIELD_DP32(u, ID_ISAR6, BF16, 1);
789 u = FIELD_DP32(u, ID_ISAR6, I8MM, 1);
790 cpu->isar.id_isar6 = u;
792 u = cpu->isar.id_pfr0;
793 u = FIELD_DP32(u, ID_PFR0, DIT, 1);
794 cpu->isar.id_pfr0 = u;
796 u = cpu->isar.id_pfr2;
797 u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
798 cpu->isar.id_pfr2 = u;
800 u = cpu->isar.id_mmfr3;
801 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
802 cpu->isar.id_mmfr3 = u;
804 u = cpu->isar.id_mmfr4;
805 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
806 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
807 u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
808 u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
809 cpu->isar.id_mmfr4 = u;
811 t = cpu->isar.id_aa64dfr0;
812 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
813 cpu->isar.id_aa64dfr0 = t;
815 u = cpu->isar.id_dfr0;
816 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
817 cpu->isar.id_dfr0 = u;
819 u = cpu->isar.mvfr1;
820 u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */
821 u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
822 cpu->isar.mvfr1 = u;
824 #ifdef CONFIG_USER_ONLY
825 /* For usermode -cpu max we can use a larger and more efficient DCZ
826 * blocksize since we don't have to follow what the hardware does.
828 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
829 cpu->dcz_blocksize = 7; /* 512 bytes */
830 #endif
832 /* Default to PAUTH on, with the architected algorithm. */
833 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
834 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
836 bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ);
839 aarch64_add_sve_properties(obj);
840 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
841 cpu_max_set_sve_max_vq, NULL, NULL);
844 static const ARMCPUInfo aarch64_cpus[] = {
845 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
846 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
847 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
848 { .name = "max", .initfn = aarch64_max_initfn },
851 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
853 ARMCPU *cpu = ARM_CPU(obj);
855 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
858 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
860 ARMCPU *cpu = ARM_CPU(obj);
862 /* At this time, this property is only allowed if KVM is enabled. This
863 * restriction allows us to avoid fixing up functionality that assumes a
864 * uniform execution state like do_interrupt.
866 if (value == false) {
867 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
868 error_setg(errp, "'aarch64' feature cannot be disabled "
869 "unless KVM is enabled and 32-bit EL1 "
870 "is supported");
871 return;
873 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
874 } else {
875 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
879 static void aarch64_cpu_finalizefn(Object *obj)
883 static gchar *aarch64_gdb_arch_name(CPUState *cs)
885 return g_strdup("aarch64");
888 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
890 CPUClass *cc = CPU_CLASS(oc);
892 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
893 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
894 cc->gdb_num_core_regs = 34;
895 cc->gdb_core_xml_file = "aarch64-core.xml";
896 cc->gdb_arch_name = aarch64_gdb_arch_name;
898 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
899 aarch64_cpu_set_aarch64);
900 object_class_property_set_description(oc, "aarch64",
901 "Set on/off to enable/disable aarch64 "
902 "execution state ");
905 static void aarch64_cpu_instance_init(Object *obj)
907 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
909 acc->info->initfn(obj);
910 arm_cpu_post_init(obj);
913 static void cpu_register_class_init(ObjectClass *oc, void *data)
915 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
917 acc->info = data;
920 void aarch64_cpu_register(const ARMCPUInfo *info)
922 TypeInfo type_info = {
923 .parent = TYPE_AARCH64_CPU,
924 .instance_size = sizeof(ARMCPU),
925 .instance_init = aarch64_cpu_instance_init,
926 .class_size = sizeof(ARMCPUClass),
927 .class_init = info->class_init ?: cpu_register_class_init,
928 .class_data = (void *)info,
931 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
932 type_register(&type_info);
933 g_free((void *)type_info.name);
936 static const TypeInfo aarch64_cpu_type_info = {
937 .name = TYPE_AARCH64_CPU,
938 .parent = TYPE_ARM_CPU,
939 .instance_size = sizeof(ARMCPU),
940 .instance_finalize = aarch64_cpu_finalizefn,
941 .abstract = true,
942 .class_size = sizeof(AArch64CPUClass),
943 .class_init = aarch64_cpu_class_init,
946 static void aarch64_cpu_register_types(void)
948 size_t i;
950 type_register_static(&aarch64_cpu_type_info);
952 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
953 aarch64_cpu_register(&aarch64_cpus[i]);
957 type_init(aarch64_cpu_register_types)