kvm: use start + size for memory ranges
[qemu.git] / accel / kvm / kvm-all.c
blob88b0e631bd2f6e35105bbbcdf7351db5ac6c87c1
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
50 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 #define PAGE_SIZE getpagesize()
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #define KVM_MSI_HASHTAB_SIZE 256
66 struct KVMParkedVcpu {
67 unsigned long vcpu_id;
68 int kvm_fd;
69 QLIST_ENTRY(KVMParkedVcpu) node;
72 struct KVMState
74 AccelState parent_obj;
76 int nr_slots;
77 int fd;
78 int vmfd;
79 int coalesced_mmio;
80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81 bool coalesced_flush_in_progress;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int many_ioeventfds;
89 int intx_set_mask;
90 /* The man page (and posix) say ioctl numbers are signed int, but
91 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
92 * unsigned, and treating them as signed here can break things */
93 unsigned irq_set_ioctl;
94 unsigned int sigmask_len;
95 GHashTable *gsimap;
96 #ifdef KVM_CAP_IRQ_ROUTING
97 struct kvm_irq_routing *irq_routes;
98 int nr_allocated_irq_routes;
99 unsigned long *used_gsi_bitmap;
100 unsigned int gsi_count;
101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102 #endif
103 KVMMemoryListener memory_listener;
104 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_split_irqchip;
110 bool kvm_async_interrupts_allowed;
111 bool kvm_halt_in_kernel_allowed;
112 bool kvm_eventfds_allowed;
113 bool kvm_irqfds_allowed;
114 bool kvm_resamplefds_allowed;
115 bool kvm_msi_via_irqfd_allowed;
116 bool kvm_gsi_routing_allowed;
117 bool kvm_gsi_direct_mapping;
118 bool kvm_allowed;
119 bool kvm_readonly_mem_allowed;
120 bool kvm_vm_attributes_allowed;
121 bool kvm_direct_msi_allowed;
122 bool kvm_ioeventfd_any_length_allowed;
123 bool kvm_msi_use_devid;
124 static bool kvm_immediate_exit;
126 static const KVMCapabilityInfo kvm_required_capabilites[] = {
127 KVM_CAP_INFO(USER_MEMORY),
128 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
129 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
130 KVM_CAP_LAST_INFO
133 int kvm_get_max_memslots(void)
135 KVMState *s = KVM_STATE(current_machine->accelerator);
137 return s->nr_slots;
140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
142 KVMState *s = kvm_state;
143 int i;
145 for (i = 0; i < s->nr_slots; i++) {
146 if (kml->slots[i].memory_size == 0) {
147 return &kml->slots[i];
151 return NULL;
154 bool kvm_has_free_slot(MachineState *ms)
156 KVMState *s = KVM_STATE(ms->accelerator);
158 return kvm_get_free_slot(&s->memory_listener);
161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
163 KVMSlot *slot = kvm_get_free_slot(kml);
165 if (slot) {
166 return slot;
169 fprintf(stderr, "%s: no free slot available\n", __func__);
170 abort();
173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
174 hwaddr start_addr,
175 hwaddr size)
177 KVMState *s = kvm_state;
178 int i;
180 for (i = 0; i < s->nr_slots; i++) {
181 KVMSlot *mem = &kml->slots[i];
183 if (start_addr == mem->start_addr && size == mem->memory_size) {
184 return mem;
188 return NULL;
192 * Calculate and align the start address and the size of the section.
193 * Return the size. If the size is 0, the aligned section is empty.
195 static hwaddr kvm_align_section(MemoryRegionSection *section,
196 hwaddr *start)
198 hwaddr size = int128_get64(section->size);
199 hwaddr delta;
201 *start = section->offset_within_address_space;
203 /* kvm works in page size chunks, but the function may be called
204 with sub-page size and unaligned start address. Pad the start
205 address to next and truncate size to previous page boundary. */
206 delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask);
207 delta &= ~qemu_real_host_page_mask;
208 *start += delta;
209 if (delta > size) {
210 return 0;
212 size -= delta;
213 size &= qemu_real_host_page_mask;
214 if (*start & ~qemu_real_host_page_mask) {
215 return 0;
218 return size;
222 * Find overlapping slot with lowest start address
224 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
225 hwaddr start_addr,
226 hwaddr end_addr)
228 KVMState *s = kvm_state;
229 KVMSlot *found = NULL;
230 int i;
232 for (i = 0; i < s->nr_slots; i++) {
233 KVMSlot *mem = &kml->slots[i];
235 if (mem->memory_size == 0 ||
236 (found && found->start_addr < mem->start_addr)) {
237 continue;
240 if (end_addr > mem->start_addr &&
241 start_addr < mem->start_addr + mem->memory_size) {
242 found = mem;
246 return found;
249 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
250 hwaddr *phys_addr)
252 KVMMemoryListener *kml = &s->memory_listener;
253 int i;
255 for (i = 0; i < s->nr_slots; i++) {
256 KVMSlot *mem = &kml->slots[i];
258 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
259 *phys_addr = mem->start_addr + (ram - mem->ram);
260 return 1;
264 return 0;
267 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
269 KVMState *s = kvm_state;
270 struct kvm_userspace_memory_region mem;
272 mem.slot = slot->slot | (kml->as_id << 16);
273 mem.guest_phys_addr = slot->start_addr;
274 mem.userspace_addr = (unsigned long)slot->ram;
275 mem.flags = slot->flags;
277 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
278 /* Set the slot size to 0 before setting the slot to the desired
279 * value. This is needed based on KVM commit 75d61fbc. */
280 mem.memory_size = 0;
281 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
283 mem.memory_size = slot->memory_size;
284 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
287 int kvm_destroy_vcpu(CPUState *cpu)
289 KVMState *s = kvm_state;
290 long mmap_size;
291 struct KVMParkedVcpu *vcpu = NULL;
292 int ret = 0;
294 DPRINTF("kvm_destroy_vcpu\n");
296 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
297 if (mmap_size < 0) {
298 ret = mmap_size;
299 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
300 goto err;
303 ret = munmap(cpu->kvm_run, mmap_size);
304 if (ret < 0) {
305 goto err;
308 vcpu = g_malloc0(sizeof(*vcpu));
309 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
310 vcpu->kvm_fd = cpu->kvm_fd;
311 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
312 err:
313 return ret;
316 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
318 struct KVMParkedVcpu *cpu;
320 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
321 if (cpu->vcpu_id == vcpu_id) {
322 int kvm_fd;
324 QLIST_REMOVE(cpu, node);
325 kvm_fd = cpu->kvm_fd;
326 g_free(cpu);
327 return kvm_fd;
331 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
334 int kvm_init_vcpu(CPUState *cpu)
336 KVMState *s = kvm_state;
337 long mmap_size;
338 int ret;
340 DPRINTF("kvm_init_vcpu\n");
342 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
343 if (ret < 0) {
344 DPRINTF("kvm_create_vcpu failed\n");
345 goto err;
348 cpu->kvm_fd = ret;
349 cpu->kvm_state = s;
350 cpu->vcpu_dirty = true;
352 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
353 if (mmap_size < 0) {
354 ret = mmap_size;
355 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
356 goto err;
359 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
360 cpu->kvm_fd, 0);
361 if (cpu->kvm_run == MAP_FAILED) {
362 ret = -errno;
363 DPRINTF("mmap'ing vcpu state failed\n");
364 goto err;
367 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
368 s->coalesced_mmio_ring =
369 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
372 ret = kvm_arch_init_vcpu(cpu);
373 err:
374 return ret;
378 * dirty pages logging control
381 static int kvm_mem_flags(MemoryRegion *mr)
383 bool readonly = mr->readonly || memory_region_is_romd(mr);
384 int flags = 0;
386 if (memory_region_get_dirty_log_mask(mr) != 0) {
387 flags |= KVM_MEM_LOG_DIRTY_PAGES;
389 if (readonly && kvm_readonly_mem_allowed) {
390 flags |= KVM_MEM_READONLY;
392 return flags;
395 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
396 MemoryRegion *mr)
398 int old_flags;
400 old_flags = mem->flags;
401 mem->flags = kvm_mem_flags(mr);
403 /* If nothing changed effectively, no need to issue ioctl */
404 if (mem->flags == old_flags) {
405 return 0;
408 return kvm_set_user_memory_region(kml, mem);
411 static int kvm_section_update_flags(KVMMemoryListener *kml,
412 MemoryRegionSection *section)
414 hwaddr phys_addr = section->offset_within_address_space;
415 ram_addr_t size = int128_get64(section->size);
416 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, size);
418 if (mem == NULL) {
419 return 0;
420 } else {
421 return kvm_slot_update_flags(kml, mem, section->mr);
425 static void kvm_log_start(MemoryListener *listener,
426 MemoryRegionSection *section,
427 int old, int new)
429 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
430 int r;
432 if (old != 0) {
433 return;
436 r = kvm_section_update_flags(kml, section);
437 if (r < 0) {
438 abort();
442 static void kvm_log_stop(MemoryListener *listener,
443 MemoryRegionSection *section,
444 int old, int new)
446 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
447 int r;
449 if (new != 0) {
450 return;
453 r = kvm_section_update_flags(kml, section);
454 if (r < 0) {
455 abort();
459 /* get kvm's dirty pages bitmap and update qemu's */
460 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
461 unsigned long *bitmap)
463 ram_addr_t start = section->offset_within_region +
464 memory_region_get_ram_addr(section->mr);
465 ram_addr_t pages = int128_get64(section->size) / getpagesize();
467 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
468 return 0;
471 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
474 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
475 * This function updates qemu's dirty bitmap using
476 * memory_region_set_dirty(). This means all bits are set
477 * to dirty.
479 * @start_add: start of logged region.
480 * @end_addr: end of logged region.
482 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
483 MemoryRegionSection *section)
485 KVMState *s = kvm_state;
486 unsigned long size, allocated_size = 0;
487 struct kvm_dirty_log d = {};
488 KVMSlot *mem;
489 int ret = 0;
490 hwaddr start_addr = section->offset_within_address_space;
491 hwaddr end_addr = start_addr + int128_get64(section->size);
493 d.dirty_bitmap = NULL;
494 while (start_addr < end_addr) {
495 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
496 if (mem == NULL) {
497 break;
500 /* XXX bad kernel interface alert
501 * For dirty bitmap, kernel allocates array of size aligned to
502 * bits-per-long. But for case when the kernel is 64bits and
503 * the userspace is 32bits, userspace can't align to the same
504 * bits-per-long, since sizeof(long) is different between kernel
505 * and user space. This way, userspace will provide buffer which
506 * may be 4 bytes less than the kernel will use, resulting in
507 * userspace memory corruption (which is not detectable by valgrind
508 * too, in most cases).
509 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
510 * a hope that sizeof(long) won't become >8 any time soon.
512 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
513 /*HOST_LONG_BITS*/ 64) / 8;
514 if (!d.dirty_bitmap) {
515 d.dirty_bitmap = g_malloc(size);
516 } else if (size > allocated_size) {
517 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
519 allocated_size = size;
520 memset(d.dirty_bitmap, 0, allocated_size);
522 d.slot = mem->slot | (kml->as_id << 16);
523 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
524 DPRINTF("ioctl failed %d\n", errno);
525 ret = -1;
526 break;
529 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
530 start_addr = mem->start_addr + mem->memory_size;
532 g_free(d.dirty_bitmap);
534 return ret;
537 static void kvm_coalesce_mmio_region(MemoryListener *listener,
538 MemoryRegionSection *secion,
539 hwaddr start, hwaddr size)
541 KVMState *s = kvm_state;
543 if (s->coalesced_mmio) {
544 struct kvm_coalesced_mmio_zone zone;
546 zone.addr = start;
547 zone.size = size;
548 zone.pad = 0;
550 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
554 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
555 MemoryRegionSection *secion,
556 hwaddr start, hwaddr size)
558 KVMState *s = kvm_state;
560 if (s->coalesced_mmio) {
561 struct kvm_coalesced_mmio_zone zone;
563 zone.addr = start;
564 zone.size = size;
565 zone.pad = 0;
567 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
571 int kvm_check_extension(KVMState *s, unsigned int extension)
573 int ret;
575 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
576 if (ret < 0) {
577 ret = 0;
580 return ret;
583 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
585 int ret;
587 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
588 if (ret < 0) {
589 /* VM wide version not implemented, use global one instead */
590 ret = kvm_check_extension(s, extension);
593 return ret;
596 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
598 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
599 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
600 * endianness, but the memory core hands them in target endianness.
601 * For example, PPC is always treated as big-endian even if running
602 * on KVM and on PPC64LE. Correct here.
604 switch (size) {
605 case 2:
606 val = bswap16(val);
607 break;
608 case 4:
609 val = bswap32(val);
610 break;
612 #endif
613 return val;
616 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
617 bool assign, uint32_t size, bool datamatch)
619 int ret;
620 struct kvm_ioeventfd iofd = {
621 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
622 .addr = addr,
623 .len = size,
624 .flags = 0,
625 .fd = fd,
628 if (!kvm_enabled()) {
629 return -ENOSYS;
632 if (datamatch) {
633 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
635 if (!assign) {
636 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
639 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
641 if (ret < 0) {
642 return -errno;
645 return 0;
648 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
649 bool assign, uint32_t size, bool datamatch)
651 struct kvm_ioeventfd kick = {
652 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
653 .addr = addr,
654 .flags = KVM_IOEVENTFD_FLAG_PIO,
655 .len = size,
656 .fd = fd,
658 int r;
659 if (!kvm_enabled()) {
660 return -ENOSYS;
662 if (datamatch) {
663 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
665 if (!assign) {
666 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
668 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
669 if (r < 0) {
670 return r;
672 return 0;
676 static int kvm_check_many_ioeventfds(void)
678 /* Userspace can use ioeventfd for io notification. This requires a host
679 * that supports eventfd(2) and an I/O thread; since eventfd does not
680 * support SIGIO it cannot interrupt the vcpu.
682 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
683 * can avoid creating too many ioeventfds.
685 #if defined(CONFIG_EVENTFD)
686 int ioeventfds[7];
687 int i, ret = 0;
688 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
689 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
690 if (ioeventfds[i] < 0) {
691 break;
693 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
694 if (ret < 0) {
695 close(ioeventfds[i]);
696 break;
700 /* Decide whether many devices are supported or not */
701 ret = i == ARRAY_SIZE(ioeventfds);
703 while (i-- > 0) {
704 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
705 close(ioeventfds[i]);
707 return ret;
708 #else
709 return 0;
710 #endif
713 static const KVMCapabilityInfo *
714 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
716 while (list->name) {
717 if (!kvm_check_extension(s, list->value)) {
718 return list;
720 list++;
722 return NULL;
725 static void kvm_set_phys_mem(KVMMemoryListener *kml,
726 MemoryRegionSection *section, bool add)
728 KVMSlot *mem, old;
729 int err;
730 MemoryRegion *mr = section->mr;
731 bool writeable = !mr->readonly && !mr->rom_device;
732 hwaddr start_addr, size;
733 void *ram;
735 if (!memory_region_is_ram(mr)) {
736 if (writeable || !kvm_readonly_mem_allowed) {
737 return;
738 } else if (!mr->romd_mode) {
739 /* If the memory device is not in romd_mode, then we actually want
740 * to remove the kvm memory slot so all accesses will trap. */
741 add = false;
745 size = kvm_align_section(section, &start_addr);
746 if (!size) {
747 return;
750 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
751 (section->offset_within_address_space - start_addr);
753 while (1) {
754 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
755 if (!mem) {
756 break;
759 if (add && start_addr >= mem->start_addr &&
760 (start_addr + size <= mem->start_addr + mem->memory_size) &&
761 (ram - start_addr == mem->ram - mem->start_addr)) {
762 /* The new slot fits into the existing one and comes with
763 * identical parameters - update flags and done. */
764 kvm_slot_update_flags(kml, mem, mr);
765 return;
768 old = *mem;
770 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
771 kvm_physical_sync_dirty_bitmap(kml, section);
774 /* unregister the overlapping slot */
775 mem->memory_size = 0;
776 err = kvm_set_user_memory_region(kml, mem);
777 if (err) {
778 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
779 __func__, strerror(-err));
780 abort();
783 /* register prefix slot */
784 if (old.start_addr < start_addr) {
785 mem = kvm_alloc_slot(kml);
786 mem->memory_size = start_addr - old.start_addr;
787 mem->start_addr = old.start_addr;
788 mem->ram = old.ram;
789 mem->flags = kvm_mem_flags(mr);
791 err = kvm_set_user_memory_region(kml, mem);
792 if (err) {
793 fprintf(stderr, "%s: error registering prefix slot: %s\n",
794 __func__, strerror(-err));
795 #ifdef TARGET_PPC
796 fprintf(stderr, "%s: This is probably because your kernel's " \
797 "PAGE_SIZE is too big. Please try to use 4k " \
798 "PAGE_SIZE!\n", __func__);
799 #endif
800 abort();
804 /* register suffix slot */
805 if (old.start_addr + old.memory_size > start_addr + size) {
806 ram_addr_t size_delta;
808 mem = kvm_alloc_slot(kml);
809 mem->start_addr = start_addr + size;
810 size_delta = mem->start_addr - old.start_addr;
811 mem->memory_size = old.memory_size - size_delta;
812 mem->ram = old.ram + size_delta;
813 mem->flags = kvm_mem_flags(mr);
815 err = kvm_set_user_memory_region(kml, mem);
816 if (err) {
817 fprintf(stderr, "%s: error registering suffix slot: %s\n",
818 __func__, strerror(-err));
819 abort();
824 if (!add) {
825 return;
827 mem = kvm_alloc_slot(kml);
828 mem->memory_size = size;
829 mem->start_addr = start_addr;
830 mem->ram = ram;
831 mem->flags = kvm_mem_flags(mr);
833 err = kvm_set_user_memory_region(kml, mem);
834 if (err) {
835 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
836 strerror(-err));
837 abort();
841 static void kvm_region_add(MemoryListener *listener,
842 MemoryRegionSection *section)
844 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
846 memory_region_ref(section->mr);
847 kvm_set_phys_mem(kml, section, true);
850 static void kvm_region_del(MemoryListener *listener,
851 MemoryRegionSection *section)
853 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
855 kvm_set_phys_mem(kml, section, false);
856 memory_region_unref(section->mr);
859 static void kvm_log_sync(MemoryListener *listener,
860 MemoryRegionSection *section)
862 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
863 int r;
865 r = kvm_physical_sync_dirty_bitmap(kml, section);
866 if (r < 0) {
867 abort();
871 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
872 MemoryRegionSection *section,
873 bool match_data, uint64_t data,
874 EventNotifier *e)
876 int fd = event_notifier_get_fd(e);
877 int r;
879 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
880 data, true, int128_get64(section->size),
881 match_data);
882 if (r < 0) {
883 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
884 __func__, strerror(-r));
885 abort();
889 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
890 MemoryRegionSection *section,
891 bool match_data, uint64_t data,
892 EventNotifier *e)
894 int fd = event_notifier_get_fd(e);
895 int r;
897 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
898 data, false, int128_get64(section->size),
899 match_data);
900 if (r < 0) {
901 abort();
905 static void kvm_io_ioeventfd_add(MemoryListener *listener,
906 MemoryRegionSection *section,
907 bool match_data, uint64_t data,
908 EventNotifier *e)
910 int fd = event_notifier_get_fd(e);
911 int r;
913 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
914 data, true, int128_get64(section->size),
915 match_data);
916 if (r < 0) {
917 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
918 __func__, strerror(-r));
919 abort();
923 static void kvm_io_ioeventfd_del(MemoryListener *listener,
924 MemoryRegionSection *section,
925 bool match_data, uint64_t data,
926 EventNotifier *e)
929 int fd = event_notifier_get_fd(e);
930 int r;
932 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
933 data, false, int128_get64(section->size),
934 match_data);
935 if (r < 0) {
936 abort();
940 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
941 AddressSpace *as, int as_id)
943 int i;
945 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
946 kml->as_id = as_id;
948 for (i = 0; i < s->nr_slots; i++) {
949 kml->slots[i].slot = i;
952 kml->listener.region_add = kvm_region_add;
953 kml->listener.region_del = kvm_region_del;
954 kml->listener.log_start = kvm_log_start;
955 kml->listener.log_stop = kvm_log_stop;
956 kml->listener.log_sync = kvm_log_sync;
957 kml->listener.priority = 10;
959 memory_listener_register(&kml->listener, as);
962 static MemoryListener kvm_io_listener = {
963 .eventfd_add = kvm_io_ioeventfd_add,
964 .eventfd_del = kvm_io_ioeventfd_del,
965 .priority = 10,
968 int kvm_set_irq(KVMState *s, int irq, int level)
970 struct kvm_irq_level event;
971 int ret;
973 assert(kvm_async_interrupts_enabled());
975 event.level = level;
976 event.irq = irq;
977 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
978 if (ret < 0) {
979 perror("kvm_set_irq");
980 abort();
983 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
986 #ifdef KVM_CAP_IRQ_ROUTING
987 typedef struct KVMMSIRoute {
988 struct kvm_irq_routing_entry kroute;
989 QTAILQ_ENTRY(KVMMSIRoute) entry;
990 } KVMMSIRoute;
992 static void set_gsi(KVMState *s, unsigned int gsi)
994 set_bit(gsi, s->used_gsi_bitmap);
997 static void clear_gsi(KVMState *s, unsigned int gsi)
999 clear_bit(gsi, s->used_gsi_bitmap);
1002 void kvm_init_irq_routing(KVMState *s)
1004 int gsi_count, i;
1006 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1007 if (gsi_count > 0) {
1008 /* Round up so we can search ints using ffs */
1009 s->used_gsi_bitmap = bitmap_new(gsi_count);
1010 s->gsi_count = gsi_count;
1013 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1014 s->nr_allocated_irq_routes = 0;
1016 if (!kvm_direct_msi_allowed) {
1017 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1018 QTAILQ_INIT(&s->msi_hashtab[i]);
1022 kvm_arch_init_irq_routing(s);
1025 void kvm_irqchip_commit_routes(KVMState *s)
1027 int ret;
1029 if (kvm_gsi_direct_mapping()) {
1030 return;
1033 if (!kvm_gsi_routing_enabled()) {
1034 return;
1037 s->irq_routes->flags = 0;
1038 trace_kvm_irqchip_commit_routes();
1039 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1040 assert(ret == 0);
1043 static void kvm_add_routing_entry(KVMState *s,
1044 struct kvm_irq_routing_entry *entry)
1046 struct kvm_irq_routing_entry *new;
1047 int n, size;
1049 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1050 n = s->nr_allocated_irq_routes * 2;
1051 if (n < 64) {
1052 n = 64;
1054 size = sizeof(struct kvm_irq_routing);
1055 size += n * sizeof(*new);
1056 s->irq_routes = g_realloc(s->irq_routes, size);
1057 s->nr_allocated_irq_routes = n;
1059 n = s->irq_routes->nr++;
1060 new = &s->irq_routes->entries[n];
1062 *new = *entry;
1064 set_gsi(s, entry->gsi);
1067 static int kvm_update_routing_entry(KVMState *s,
1068 struct kvm_irq_routing_entry *new_entry)
1070 struct kvm_irq_routing_entry *entry;
1071 int n;
1073 for (n = 0; n < s->irq_routes->nr; n++) {
1074 entry = &s->irq_routes->entries[n];
1075 if (entry->gsi != new_entry->gsi) {
1076 continue;
1079 if(!memcmp(entry, new_entry, sizeof *entry)) {
1080 return 0;
1083 *entry = *new_entry;
1085 return 0;
1088 return -ESRCH;
1091 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1093 struct kvm_irq_routing_entry e = {};
1095 assert(pin < s->gsi_count);
1097 e.gsi = irq;
1098 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1099 e.flags = 0;
1100 e.u.irqchip.irqchip = irqchip;
1101 e.u.irqchip.pin = pin;
1102 kvm_add_routing_entry(s, &e);
1105 void kvm_irqchip_release_virq(KVMState *s, int virq)
1107 struct kvm_irq_routing_entry *e;
1108 int i;
1110 if (kvm_gsi_direct_mapping()) {
1111 return;
1114 for (i = 0; i < s->irq_routes->nr; i++) {
1115 e = &s->irq_routes->entries[i];
1116 if (e->gsi == virq) {
1117 s->irq_routes->nr--;
1118 *e = s->irq_routes->entries[s->irq_routes->nr];
1121 clear_gsi(s, virq);
1122 kvm_arch_release_virq_post(virq);
1123 trace_kvm_irqchip_release_virq(virq);
1126 static unsigned int kvm_hash_msi(uint32_t data)
1128 /* This is optimized for IA32 MSI layout. However, no other arch shall
1129 * repeat the mistake of not providing a direct MSI injection API. */
1130 return data & 0xff;
1133 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1135 KVMMSIRoute *route, *next;
1136 unsigned int hash;
1138 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1139 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1140 kvm_irqchip_release_virq(s, route->kroute.gsi);
1141 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1142 g_free(route);
1147 static int kvm_irqchip_get_virq(KVMState *s)
1149 int next_virq;
1152 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1153 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1154 * number can succeed even though a new route entry cannot be added.
1155 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1157 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1158 kvm_flush_dynamic_msi_routes(s);
1161 /* Return the lowest unused GSI in the bitmap */
1162 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1163 if (next_virq >= s->gsi_count) {
1164 return -ENOSPC;
1165 } else {
1166 return next_virq;
1170 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1172 unsigned int hash = kvm_hash_msi(msg.data);
1173 KVMMSIRoute *route;
1175 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1176 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1177 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1178 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1179 return route;
1182 return NULL;
1185 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1187 struct kvm_msi msi;
1188 KVMMSIRoute *route;
1190 if (kvm_direct_msi_allowed) {
1191 msi.address_lo = (uint32_t)msg.address;
1192 msi.address_hi = msg.address >> 32;
1193 msi.data = le32_to_cpu(msg.data);
1194 msi.flags = 0;
1195 memset(msi.pad, 0, sizeof(msi.pad));
1197 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1200 route = kvm_lookup_msi_route(s, msg);
1201 if (!route) {
1202 int virq;
1204 virq = kvm_irqchip_get_virq(s);
1205 if (virq < 0) {
1206 return virq;
1209 route = g_malloc0(sizeof(KVMMSIRoute));
1210 route->kroute.gsi = virq;
1211 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1212 route->kroute.flags = 0;
1213 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1214 route->kroute.u.msi.address_hi = msg.address >> 32;
1215 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1217 kvm_add_routing_entry(s, &route->kroute);
1218 kvm_irqchip_commit_routes(s);
1220 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1221 entry);
1224 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1226 return kvm_set_irq(s, route->kroute.gsi, 1);
1229 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1231 struct kvm_irq_routing_entry kroute = {};
1232 int virq;
1233 MSIMessage msg = {0, 0};
1235 if (pci_available && dev) {
1236 msg = pci_get_msi_message(dev, vector);
1239 if (kvm_gsi_direct_mapping()) {
1240 return kvm_arch_msi_data_to_gsi(msg.data);
1243 if (!kvm_gsi_routing_enabled()) {
1244 return -ENOSYS;
1247 virq = kvm_irqchip_get_virq(s);
1248 if (virq < 0) {
1249 return virq;
1252 kroute.gsi = virq;
1253 kroute.type = KVM_IRQ_ROUTING_MSI;
1254 kroute.flags = 0;
1255 kroute.u.msi.address_lo = (uint32_t)msg.address;
1256 kroute.u.msi.address_hi = msg.address >> 32;
1257 kroute.u.msi.data = le32_to_cpu(msg.data);
1258 if (pci_available && kvm_msi_devid_required()) {
1259 kroute.flags = KVM_MSI_VALID_DEVID;
1260 kroute.u.msi.devid = pci_requester_id(dev);
1262 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1263 kvm_irqchip_release_virq(s, virq);
1264 return -EINVAL;
1267 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1268 vector, virq);
1270 kvm_add_routing_entry(s, &kroute);
1271 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1272 kvm_irqchip_commit_routes(s);
1274 return virq;
1277 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1278 PCIDevice *dev)
1280 struct kvm_irq_routing_entry kroute = {};
1282 if (kvm_gsi_direct_mapping()) {
1283 return 0;
1286 if (!kvm_irqchip_in_kernel()) {
1287 return -ENOSYS;
1290 kroute.gsi = virq;
1291 kroute.type = KVM_IRQ_ROUTING_MSI;
1292 kroute.flags = 0;
1293 kroute.u.msi.address_lo = (uint32_t)msg.address;
1294 kroute.u.msi.address_hi = msg.address >> 32;
1295 kroute.u.msi.data = le32_to_cpu(msg.data);
1296 if (pci_available && kvm_msi_devid_required()) {
1297 kroute.flags = KVM_MSI_VALID_DEVID;
1298 kroute.u.msi.devid = pci_requester_id(dev);
1300 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1301 return -EINVAL;
1304 trace_kvm_irqchip_update_msi_route(virq);
1306 return kvm_update_routing_entry(s, &kroute);
1309 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1310 bool assign)
1312 struct kvm_irqfd irqfd = {
1313 .fd = fd,
1314 .gsi = virq,
1315 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1318 if (rfd != -1) {
1319 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1320 irqfd.resamplefd = rfd;
1323 if (!kvm_irqfds_enabled()) {
1324 return -ENOSYS;
1327 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1330 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1332 struct kvm_irq_routing_entry kroute = {};
1333 int virq;
1335 if (!kvm_gsi_routing_enabled()) {
1336 return -ENOSYS;
1339 virq = kvm_irqchip_get_virq(s);
1340 if (virq < 0) {
1341 return virq;
1344 kroute.gsi = virq;
1345 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1346 kroute.flags = 0;
1347 kroute.u.adapter.summary_addr = adapter->summary_addr;
1348 kroute.u.adapter.ind_addr = adapter->ind_addr;
1349 kroute.u.adapter.summary_offset = adapter->summary_offset;
1350 kroute.u.adapter.ind_offset = adapter->ind_offset;
1351 kroute.u.adapter.adapter_id = adapter->adapter_id;
1353 kvm_add_routing_entry(s, &kroute);
1355 return virq;
1358 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1360 struct kvm_irq_routing_entry kroute = {};
1361 int virq;
1363 if (!kvm_gsi_routing_enabled()) {
1364 return -ENOSYS;
1366 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1367 return -ENOSYS;
1369 virq = kvm_irqchip_get_virq(s);
1370 if (virq < 0) {
1371 return virq;
1374 kroute.gsi = virq;
1375 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1376 kroute.flags = 0;
1377 kroute.u.hv_sint.vcpu = vcpu;
1378 kroute.u.hv_sint.sint = sint;
1380 kvm_add_routing_entry(s, &kroute);
1381 kvm_irqchip_commit_routes(s);
1383 return virq;
1386 #else /* !KVM_CAP_IRQ_ROUTING */
1388 void kvm_init_irq_routing(KVMState *s)
1392 void kvm_irqchip_release_virq(KVMState *s, int virq)
1396 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1398 abort();
1401 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1403 return -ENOSYS;
1406 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1408 return -ENOSYS;
1411 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1413 return -ENOSYS;
1416 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1418 abort();
1421 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1423 return -ENOSYS;
1425 #endif /* !KVM_CAP_IRQ_ROUTING */
1427 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1428 EventNotifier *rn, int virq)
1430 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1431 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1434 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1435 int virq)
1437 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1438 false);
1441 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1442 EventNotifier *rn, qemu_irq irq)
1444 gpointer key, gsi;
1445 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1447 if (!found) {
1448 return -ENXIO;
1450 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1453 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1454 qemu_irq irq)
1456 gpointer key, gsi;
1457 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1459 if (!found) {
1460 return -ENXIO;
1462 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1465 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1467 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1470 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1472 int ret;
1474 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1476 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1477 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1478 if (ret < 0) {
1479 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1480 exit(1);
1482 } else {
1483 return;
1486 /* First probe and see if there's a arch-specific hook to create the
1487 * in-kernel irqchip for us */
1488 ret = kvm_arch_irqchip_create(machine, s);
1489 if (ret == 0) {
1490 if (machine_kernel_irqchip_split(machine)) {
1491 perror("Split IRQ chip mode not supported.");
1492 exit(1);
1493 } else {
1494 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1497 if (ret < 0) {
1498 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1499 exit(1);
1502 kvm_kernel_irqchip = true;
1503 /* If we have an in-kernel IRQ chip then we must have asynchronous
1504 * interrupt delivery (though the reverse is not necessarily true)
1506 kvm_async_interrupts_allowed = true;
1507 kvm_halt_in_kernel_allowed = true;
1509 kvm_init_irq_routing(s);
1511 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1514 /* Find number of supported CPUs using the recommended
1515 * procedure from the kernel API documentation to cope with
1516 * older kernels that may be missing capabilities.
1518 static int kvm_recommended_vcpus(KVMState *s)
1520 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1521 return (ret) ? ret : 4;
1524 static int kvm_max_vcpus(KVMState *s)
1526 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1527 return (ret) ? ret : kvm_recommended_vcpus(s);
1530 static int kvm_max_vcpu_id(KVMState *s)
1532 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1533 return (ret) ? ret : kvm_max_vcpus(s);
1536 bool kvm_vcpu_id_is_valid(int vcpu_id)
1538 KVMState *s = KVM_STATE(current_machine->accelerator);
1539 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1542 static int kvm_init(MachineState *ms)
1544 MachineClass *mc = MACHINE_GET_CLASS(ms);
1545 static const char upgrade_note[] =
1546 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1547 "(see http://sourceforge.net/projects/kvm).\n";
1548 struct {
1549 const char *name;
1550 int num;
1551 } num_cpus[] = {
1552 { "SMP", smp_cpus },
1553 { "hotpluggable", max_cpus },
1554 { NULL, }
1555 }, *nc = num_cpus;
1556 int soft_vcpus_limit, hard_vcpus_limit;
1557 KVMState *s;
1558 const KVMCapabilityInfo *missing_cap;
1559 int ret;
1560 int type = 0;
1561 const char *kvm_type;
1563 s = KVM_STATE(ms->accelerator);
1566 * On systems where the kernel can support different base page
1567 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1568 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1569 * page size for the system though.
1571 assert(TARGET_PAGE_SIZE <= getpagesize());
1573 s->sigmask_len = 8;
1575 #ifdef KVM_CAP_SET_GUEST_DEBUG
1576 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1577 #endif
1578 QLIST_INIT(&s->kvm_parked_vcpus);
1579 s->vmfd = -1;
1580 s->fd = qemu_open("/dev/kvm", O_RDWR);
1581 if (s->fd == -1) {
1582 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1583 ret = -errno;
1584 goto err;
1587 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1588 if (ret < KVM_API_VERSION) {
1589 if (ret >= 0) {
1590 ret = -EINVAL;
1592 fprintf(stderr, "kvm version too old\n");
1593 goto err;
1596 if (ret > KVM_API_VERSION) {
1597 ret = -EINVAL;
1598 fprintf(stderr, "kvm version not supported\n");
1599 goto err;
1602 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1603 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1605 /* If unspecified, use the default value */
1606 if (!s->nr_slots) {
1607 s->nr_slots = 32;
1610 /* check the vcpu limits */
1611 soft_vcpus_limit = kvm_recommended_vcpus(s);
1612 hard_vcpus_limit = kvm_max_vcpus(s);
1614 while (nc->name) {
1615 if (nc->num > soft_vcpus_limit) {
1616 fprintf(stderr,
1617 "Warning: Number of %s cpus requested (%d) exceeds "
1618 "the recommended cpus supported by KVM (%d)\n",
1619 nc->name, nc->num, soft_vcpus_limit);
1621 if (nc->num > hard_vcpus_limit) {
1622 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1623 "the maximum cpus supported by KVM (%d)\n",
1624 nc->name, nc->num, hard_vcpus_limit);
1625 exit(1);
1628 nc++;
1631 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1632 if (mc->kvm_type) {
1633 type = mc->kvm_type(kvm_type);
1634 } else if (kvm_type) {
1635 ret = -EINVAL;
1636 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1637 goto err;
1640 do {
1641 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1642 } while (ret == -EINTR);
1644 if (ret < 0) {
1645 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1646 strerror(-ret));
1648 #ifdef TARGET_S390X
1649 if (ret == -EINVAL) {
1650 fprintf(stderr,
1651 "Host kernel setup problem detected. Please verify:\n");
1652 fprintf(stderr, "- for kernels supporting the switch_amode or"
1653 " user_mode parameters, whether\n");
1654 fprintf(stderr,
1655 " user space is running in primary address space\n");
1656 fprintf(stderr,
1657 "- for kernels supporting the vm.allocate_pgste sysctl, "
1658 "whether it is enabled\n");
1660 #endif
1661 goto err;
1664 s->vmfd = ret;
1665 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1666 if (!missing_cap) {
1667 missing_cap =
1668 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1670 if (missing_cap) {
1671 ret = -EINVAL;
1672 fprintf(stderr, "kvm does not support %s\n%s",
1673 missing_cap->name, upgrade_note);
1674 goto err;
1677 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1679 #ifdef KVM_CAP_VCPU_EVENTS
1680 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1681 #endif
1683 s->robust_singlestep =
1684 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1686 #ifdef KVM_CAP_DEBUGREGS
1687 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1688 #endif
1690 #ifdef KVM_CAP_IRQ_ROUTING
1691 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1692 #endif
1694 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1696 s->irq_set_ioctl = KVM_IRQ_LINE;
1697 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1698 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1701 #ifdef KVM_CAP_READONLY_MEM
1702 kvm_readonly_mem_allowed =
1703 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1704 #endif
1706 kvm_eventfds_allowed =
1707 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1709 kvm_irqfds_allowed =
1710 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1712 kvm_resamplefds_allowed =
1713 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1715 kvm_vm_attributes_allowed =
1716 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1718 kvm_ioeventfd_any_length_allowed =
1719 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1721 kvm_state = s;
1723 ret = kvm_arch_init(ms, s);
1724 if (ret < 0) {
1725 goto err;
1728 if (machine_kernel_irqchip_allowed(ms)) {
1729 kvm_irqchip_create(ms, s);
1732 if (kvm_eventfds_allowed) {
1733 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1734 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1736 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1737 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1739 kvm_memory_listener_register(s, &s->memory_listener,
1740 &address_space_memory, 0);
1741 memory_listener_register(&kvm_io_listener,
1742 &address_space_io);
1744 s->many_ioeventfds = kvm_check_many_ioeventfds();
1746 return 0;
1748 err:
1749 assert(ret < 0);
1750 if (s->vmfd >= 0) {
1751 close(s->vmfd);
1753 if (s->fd != -1) {
1754 close(s->fd);
1756 g_free(s->memory_listener.slots);
1758 return ret;
1761 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1763 s->sigmask_len = sigmask_len;
1766 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1767 int size, uint32_t count)
1769 int i;
1770 uint8_t *ptr = data;
1772 for (i = 0; i < count; i++) {
1773 address_space_rw(&address_space_io, port, attrs,
1774 ptr, size,
1775 direction == KVM_EXIT_IO_OUT);
1776 ptr += size;
1780 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1782 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1783 run->internal.suberror);
1785 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1786 int i;
1788 for (i = 0; i < run->internal.ndata; ++i) {
1789 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1790 i, (uint64_t)run->internal.data[i]);
1793 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1794 fprintf(stderr, "emulation failure\n");
1795 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1796 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1797 return EXCP_INTERRUPT;
1800 /* FIXME: Should trigger a qmp message to let management know
1801 * something went wrong.
1803 return -1;
1806 void kvm_flush_coalesced_mmio_buffer(void)
1808 KVMState *s = kvm_state;
1810 if (s->coalesced_flush_in_progress) {
1811 return;
1814 s->coalesced_flush_in_progress = true;
1816 if (s->coalesced_mmio_ring) {
1817 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1818 while (ring->first != ring->last) {
1819 struct kvm_coalesced_mmio *ent;
1821 ent = &ring->coalesced_mmio[ring->first];
1823 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1824 smp_wmb();
1825 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1829 s->coalesced_flush_in_progress = false;
1832 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1834 if (!cpu->vcpu_dirty) {
1835 kvm_arch_get_registers(cpu);
1836 cpu->vcpu_dirty = true;
1840 void kvm_cpu_synchronize_state(CPUState *cpu)
1842 if (!cpu->vcpu_dirty) {
1843 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1847 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1849 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1850 cpu->vcpu_dirty = false;
1853 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1855 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1858 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1860 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1861 cpu->vcpu_dirty = false;
1864 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1866 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1869 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1871 cpu->vcpu_dirty = true;
1874 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1876 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1879 #ifdef KVM_HAVE_MCE_INJECTION
1880 static __thread void *pending_sigbus_addr;
1881 static __thread int pending_sigbus_code;
1882 static __thread bool have_sigbus_pending;
1883 #endif
1885 static void kvm_cpu_kick(CPUState *cpu)
1887 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1890 static void kvm_cpu_kick_self(void)
1892 if (kvm_immediate_exit) {
1893 kvm_cpu_kick(current_cpu);
1894 } else {
1895 qemu_cpu_kick_self();
1899 static void kvm_eat_signals(CPUState *cpu)
1901 struct timespec ts = { 0, 0 };
1902 siginfo_t siginfo;
1903 sigset_t waitset;
1904 sigset_t chkset;
1905 int r;
1907 if (kvm_immediate_exit) {
1908 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1909 /* Write kvm_run->immediate_exit before the cpu->exit_request
1910 * write in kvm_cpu_exec.
1912 smp_wmb();
1913 return;
1916 sigemptyset(&waitset);
1917 sigaddset(&waitset, SIG_IPI);
1919 do {
1920 r = sigtimedwait(&waitset, &siginfo, &ts);
1921 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1922 perror("sigtimedwait");
1923 exit(1);
1926 r = sigpending(&chkset);
1927 if (r == -1) {
1928 perror("sigpending");
1929 exit(1);
1931 } while (sigismember(&chkset, SIG_IPI));
1934 int kvm_cpu_exec(CPUState *cpu)
1936 struct kvm_run *run = cpu->kvm_run;
1937 int ret, run_ret;
1939 DPRINTF("kvm_cpu_exec()\n");
1941 if (kvm_arch_process_async_events(cpu)) {
1942 atomic_set(&cpu->exit_request, 0);
1943 return EXCP_HLT;
1946 qemu_mutex_unlock_iothread();
1947 cpu_exec_start(cpu);
1949 do {
1950 MemTxAttrs attrs;
1952 if (cpu->vcpu_dirty) {
1953 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1954 cpu->vcpu_dirty = false;
1957 kvm_arch_pre_run(cpu, run);
1958 if (atomic_read(&cpu->exit_request)) {
1959 DPRINTF("interrupt exit requested\n");
1961 * KVM requires us to reenter the kernel after IO exits to complete
1962 * instruction emulation. This self-signal will ensure that we
1963 * leave ASAP again.
1965 kvm_cpu_kick_self();
1968 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1969 * Matching barrier in kvm_eat_signals.
1971 smp_rmb();
1973 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1975 attrs = kvm_arch_post_run(cpu, run);
1977 #ifdef KVM_HAVE_MCE_INJECTION
1978 if (unlikely(have_sigbus_pending)) {
1979 qemu_mutex_lock_iothread();
1980 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1981 pending_sigbus_addr);
1982 have_sigbus_pending = false;
1983 qemu_mutex_unlock_iothread();
1985 #endif
1987 if (run_ret < 0) {
1988 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1989 DPRINTF("io window exit\n");
1990 kvm_eat_signals(cpu);
1991 ret = EXCP_INTERRUPT;
1992 break;
1994 fprintf(stderr, "error: kvm run failed %s\n",
1995 strerror(-run_ret));
1996 #ifdef TARGET_PPC
1997 if (run_ret == -EBUSY) {
1998 fprintf(stderr,
1999 "This is probably because your SMT is enabled.\n"
2000 "VCPU can only run on primary threads with all "
2001 "secondary threads offline.\n");
2003 #endif
2004 ret = -1;
2005 break;
2008 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2009 switch (run->exit_reason) {
2010 case KVM_EXIT_IO:
2011 DPRINTF("handle_io\n");
2012 /* Called outside BQL */
2013 kvm_handle_io(run->io.port, attrs,
2014 (uint8_t *)run + run->io.data_offset,
2015 run->io.direction,
2016 run->io.size,
2017 run->io.count);
2018 ret = 0;
2019 break;
2020 case KVM_EXIT_MMIO:
2021 DPRINTF("handle_mmio\n");
2022 /* Called outside BQL */
2023 address_space_rw(&address_space_memory,
2024 run->mmio.phys_addr, attrs,
2025 run->mmio.data,
2026 run->mmio.len,
2027 run->mmio.is_write);
2028 ret = 0;
2029 break;
2030 case KVM_EXIT_IRQ_WINDOW_OPEN:
2031 DPRINTF("irq_window_open\n");
2032 ret = EXCP_INTERRUPT;
2033 break;
2034 case KVM_EXIT_SHUTDOWN:
2035 DPRINTF("shutdown\n");
2036 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2037 ret = EXCP_INTERRUPT;
2038 break;
2039 case KVM_EXIT_UNKNOWN:
2040 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2041 (uint64_t)run->hw.hardware_exit_reason);
2042 ret = -1;
2043 break;
2044 case KVM_EXIT_INTERNAL_ERROR:
2045 ret = kvm_handle_internal_error(cpu, run);
2046 break;
2047 case KVM_EXIT_SYSTEM_EVENT:
2048 switch (run->system_event.type) {
2049 case KVM_SYSTEM_EVENT_SHUTDOWN:
2050 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2051 ret = EXCP_INTERRUPT;
2052 break;
2053 case KVM_SYSTEM_EVENT_RESET:
2054 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2055 ret = EXCP_INTERRUPT;
2056 break;
2057 case KVM_SYSTEM_EVENT_CRASH:
2058 kvm_cpu_synchronize_state(cpu);
2059 qemu_mutex_lock_iothread();
2060 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2061 qemu_mutex_unlock_iothread();
2062 ret = 0;
2063 break;
2064 default:
2065 DPRINTF("kvm_arch_handle_exit\n");
2066 ret = kvm_arch_handle_exit(cpu, run);
2067 break;
2069 break;
2070 default:
2071 DPRINTF("kvm_arch_handle_exit\n");
2072 ret = kvm_arch_handle_exit(cpu, run);
2073 break;
2075 } while (ret == 0);
2077 cpu_exec_end(cpu);
2078 qemu_mutex_lock_iothread();
2080 if (ret < 0) {
2081 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2082 vm_stop(RUN_STATE_INTERNAL_ERROR);
2085 atomic_set(&cpu->exit_request, 0);
2086 return ret;
2089 int kvm_ioctl(KVMState *s, int type, ...)
2091 int ret;
2092 void *arg;
2093 va_list ap;
2095 va_start(ap, type);
2096 arg = va_arg(ap, void *);
2097 va_end(ap);
2099 trace_kvm_ioctl(type, arg);
2100 ret = ioctl(s->fd, type, arg);
2101 if (ret == -1) {
2102 ret = -errno;
2104 return ret;
2107 int kvm_vm_ioctl(KVMState *s, int type, ...)
2109 int ret;
2110 void *arg;
2111 va_list ap;
2113 va_start(ap, type);
2114 arg = va_arg(ap, void *);
2115 va_end(ap);
2117 trace_kvm_vm_ioctl(type, arg);
2118 ret = ioctl(s->vmfd, type, arg);
2119 if (ret == -1) {
2120 ret = -errno;
2122 return ret;
2125 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2127 int ret;
2128 void *arg;
2129 va_list ap;
2131 va_start(ap, type);
2132 arg = va_arg(ap, void *);
2133 va_end(ap);
2135 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2136 ret = ioctl(cpu->kvm_fd, type, arg);
2137 if (ret == -1) {
2138 ret = -errno;
2140 return ret;
2143 int kvm_device_ioctl(int fd, int type, ...)
2145 int ret;
2146 void *arg;
2147 va_list ap;
2149 va_start(ap, type);
2150 arg = va_arg(ap, void *);
2151 va_end(ap);
2153 trace_kvm_device_ioctl(fd, type, arg);
2154 ret = ioctl(fd, type, arg);
2155 if (ret == -1) {
2156 ret = -errno;
2158 return ret;
2161 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2163 int ret;
2164 struct kvm_device_attr attribute = {
2165 .group = group,
2166 .attr = attr,
2169 if (!kvm_vm_attributes_allowed) {
2170 return 0;
2173 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2174 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2175 return ret ? 0 : 1;
2178 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2180 struct kvm_device_attr attribute = {
2181 .group = group,
2182 .attr = attr,
2183 .flags = 0,
2186 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2189 int kvm_device_access(int fd, int group, uint64_t attr,
2190 void *val, bool write, Error **errp)
2192 struct kvm_device_attr kvmattr;
2193 int err;
2195 kvmattr.flags = 0;
2196 kvmattr.group = group;
2197 kvmattr.attr = attr;
2198 kvmattr.addr = (uintptr_t)val;
2200 err = kvm_device_ioctl(fd,
2201 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2202 &kvmattr);
2203 if (err < 0) {
2204 error_setg_errno(errp, -err,
2205 "KVM_%s_DEVICE_ATTR failed: Group %d "
2206 "attr 0x%016" PRIx64,
2207 write ? "SET" : "GET", group, attr);
2209 return err;
2212 /* Return 1 on success, 0 on failure */
2213 int kvm_has_sync_mmu(void)
2215 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2218 int kvm_has_vcpu_events(void)
2220 return kvm_state->vcpu_events;
2223 int kvm_has_robust_singlestep(void)
2225 return kvm_state->robust_singlestep;
2228 int kvm_has_debugregs(void)
2230 return kvm_state->debugregs;
2233 int kvm_has_many_ioeventfds(void)
2235 if (!kvm_enabled()) {
2236 return 0;
2238 return kvm_state->many_ioeventfds;
2241 int kvm_has_gsi_routing(void)
2243 #ifdef KVM_CAP_IRQ_ROUTING
2244 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2245 #else
2246 return false;
2247 #endif
2250 int kvm_has_intx_set_mask(void)
2252 return kvm_state->intx_set_mask;
2255 bool kvm_arm_supports_user_irq(void)
2257 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2260 #ifdef KVM_CAP_SET_GUEST_DEBUG
2261 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2262 target_ulong pc)
2264 struct kvm_sw_breakpoint *bp;
2266 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2267 if (bp->pc == pc) {
2268 return bp;
2271 return NULL;
2274 int kvm_sw_breakpoints_active(CPUState *cpu)
2276 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2279 struct kvm_set_guest_debug_data {
2280 struct kvm_guest_debug dbg;
2281 int err;
2284 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2286 struct kvm_set_guest_debug_data *dbg_data =
2287 (struct kvm_set_guest_debug_data *) data.host_ptr;
2289 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2290 &dbg_data->dbg);
2293 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2295 struct kvm_set_guest_debug_data data;
2297 data.dbg.control = reinject_trap;
2299 if (cpu->singlestep_enabled) {
2300 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2302 kvm_arch_update_guest_debug(cpu, &data.dbg);
2304 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2305 RUN_ON_CPU_HOST_PTR(&data));
2306 return data.err;
2309 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2310 target_ulong len, int type)
2312 struct kvm_sw_breakpoint *bp;
2313 int err;
2315 if (type == GDB_BREAKPOINT_SW) {
2316 bp = kvm_find_sw_breakpoint(cpu, addr);
2317 if (bp) {
2318 bp->use_count++;
2319 return 0;
2322 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2323 bp->pc = addr;
2324 bp->use_count = 1;
2325 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2326 if (err) {
2327 g_free(bp);
2328 return err;
2331 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2332 } else {
2333 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2334 if (err) {
2335 return err;
2339 CPU_FOREACH(cpu) {
2340 err = kvm_update_guest_debug(cpu, 0);
2341 if (err) {
2342 return err;
2345 return 0;
2348 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2349 target_ulong len, int type)
2351 struct kvm_sw_breakpoint *bp;
2352 int err;
2354 if (type == GDB_BREAKPOINT_SW) {
2355 bp = kvm_find_sw_breakpoint(cpu, addr);
2356 if (!bp) {
2357 return -ENOENT;
2360 if (bp->use_count > 1) {
2361 bp->use_count--;
2362 return 0;
2365 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2366 if (err) {
2367 return err;
2370 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2371 g_free(bp);
2372 } else {
2373 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2374 if (err) {
2375 return err;
2379 CPU_FOREACH(cpu) {
2380 err = kvm_update_guest_debug(cpu, 0);
2381 if (err) {
2382 return err;
2385 return 0;
2388 void kvm_remove_all_breakpoints(CPUState *cpu)
2390 struct kvm_sw_breakpoint *bp, *next;
2391 KVMState *s = cpu->kvm_state;
2392 CPUState *tmpcpu;
2394 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2395 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2396 /* Try harder to find a CPU that currently sees the breakpoint. */
2397 CPU_FOREACH(tmpcpu) {
2398 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2399 break;
2403 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2404 g_free(bp);
2406 kvm_arch_remove_all_hw_breakpoints();
2408 CPU_FOREACH(cpu) {
2409 kvm_update_guest_debug(cpu, 0);
2413 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2415 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2417 return -EINVAL;
2420 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2421 target_ulong len, int type)
2423 return -EINVAL;
2426 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2427 target_ulong len, int type)
2429 return -EINVAL;
2432 void kvm_remove_all_breakpoints(CPUState *cpu)
2435 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2437 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2439 KVMState *s = kvm_state;
2440 struct kvm_signal_mask *sigmask;
2441 int r;
2443 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2445 sigmask->len = s->sigmask_len;
2446 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2447 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2448 g_free(sigmask);
2450 return r;
2453 static void kvm_ipi_signal(int sig)
2455 if (current_cpu) {
2456 assert(kvm_immediate_exit);
2457 kvm_cpu_kick(current_cpu);
2461 void kvm_init_cpu_signals(CPUState *cpu)
2463 int r;
2464 sigset_t set;
2465 struct sigaction sigact;
2467 memset(&sigact, 0, sizeof(sigact));
2468 sigact.sa_handler = kvm_ipi_signal;
2469 sigaction(SIG_IPI, &sigact, NULL);
2471 pthread_sigmask(SIG_BLOCK, NULL, &set);
2472 #if defined KVM_HAVE_MCE_INJECTION
2473 sigdelset(&set, SIGBUS);
2474 pthread_sigmask(SIG_SETMASK, &set, NULL);
2475 #endif
2476 sigdelset(&set, SIG_IPI);
2477 if (kvm_immediate_exit) {
2478 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2479 } else {
2480 r = kvm_set_signal_mask(cpu, &set);
2482 if (r) {
2483 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2484 exit(1);
2488 /* Called asynchronously in VCPU thread. */
2489 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2491 #ifdef KVM_HAVE_MCE_INJECTION
2492 if (have_sigbus_pending) {
2493 return 1;
2495 have_sigbus_pending = true;
2496 pending_sigbus_addr = addr;
2497 pending_sigbus_code = code;
2498 atomic_set(&cpu->exit_request, 1);
2499 return 0;
2500 #else
2501 return 1;
2502 #endif
2505 /* Called synchronously (via signalfd) in main thread. */
2506 int kvm_on_sigbus(int code, void *addr)
2508 #ifdef KVM_HAVE_MCE_INJECTION
2509 /* Action required MCE kills the process if SIGBUS is blocked. Because
2510 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2511 * we can only get action optional here.
2513 assert(code != BUS_MCEERR_AR);
2514 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2515 return 0;
2516 #else
2517 return 1;
2518 #endif
2521 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2523 int ret;
2524 struct kvm_create_device create_dev;
2526 create_dev.type = type;
2527 create_dev.fd = -1;
2528 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2530 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2531 return -ENOTSUP;
2534 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2535 if (ret) {
2536 return ret;
2539 return test ? 0 : create_dev.fd;
2542 bool kvm_device_supported(int vmfd, uint64_t type)
2544 struct kvm_create_device create_dev = {
2545 .type = type,
2546 .fd = -1,
2547 .flags = KVM_CREATE_DEVICE_TEST,
2550 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2551 return false;
2554 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2557 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2559 struct kvm_one_reg reg;
2560 int r;
2562 reg.id = id;
2563 reg.addr = (uintptr_t) source;
2564 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2565 if (r) {
2566 trace_kvm_failed_reg_set(id, strerror(-r));
2568 return r;
2571 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2573 struct kvm_one_reg reg;
2574 int r;
2576 reg.id = id;
2577 reg.addr = (uintptr_t) target;
2578 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2579 if (r) {
2580 trace_kvm_failed_reg_get(id, strerror(-r));
2582 return r;
2585 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2587 AccelClass *ac = ACCEL_CLASS(oc);
2588 ac->name = "KVM";
2589 ac->init_machine = kvm_init;
2590 ac->allowed = &kvm_allowed;
2593 static const TypeInfo kvm_accel_type = {
2594 .name = TYPE_KVM_ACCEL,
2595 .parent = TYPE_ACCEL,
2596 .class_init = kvm_accel_class_init,
2597 .instance_size = sizeof(KVMState),
2600 static void kvm_type_init(void)
2602 type_register_static(&kvm_accel_type);
2605 type_init(kvm_type_init);