kvm: check KVM_CAP_NR_VCPUS with kvm_vm_check_extension()
[qemu.git] / accel / kvm / kvm-all.c
blob90c88b517ddab393906aebb127277b5c03ef6304
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
50 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 #define PAGE_SIZE getpagesize()
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #define KVM_MSI_HASHTAB_SIZE 256
66 struct KVMParkedVcpu {
67 unsigned long vcpu_id;
68 int kvm_fd;
69 QLIST_ENTRY(KVMParkedVcpu) node;
72 struct KVMState
74 AccelState parent_obj;
76 int nr_slots;
77 int fd;
78 int vmfd;
79 int coalesced_mmio;
80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81 bool coalesced_flush_in_progress;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int many_ioeventfds;
89 int intx_set_mask;
90 bool sync_mmu;
91 /* The man page (and posix) say ioctl numbers are signed int, but
92 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
93 * unsigned, and treating them as signed here can break things */
94 unsigned irq_set_ioctl;
95 unsigned int sigmask_len;
96 GHashTable *gsimap;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 unsigned long *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 #endif
104 KVMMemoryListener memory_listener;
105 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
108 KVMState *kvm_state;
109 bool kvm_kernel_irqchip;
110 bool kvm_split_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_eventfds_allowed;
114 bool kvm_irqfds_allowed;
115 bool kvm_resamplefds_allowed;
116 bool kvm_msi_via_irqfd_allowed;
117 bool kvm_gsi_routing_allowed;
118 bool kvm_gsi_direct_mapping;
119 bool kvm_allowed;
120 bool kvm_readonly_mem_allowed;
121 bool kvm_vm_attributes_allowed;
122 bool kvm_direct_msi_allowed;
123 bool kvm_ioeventfd_any_length_allowed;
124 bool kvm_msi_use_devid;
125 static bool kvm_immediate_exit;
127 static const KVMCapabilityInfo kvm_required_capabilites[] = {
128 KVM_CAP_INFO(USER_MEMORY),
129 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
130 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
131 KVM_CAP_LAST_INFO
134 int kvm_get_max_memslots(void)
136 KVMState *s = KVM_STATE(current_machine->accelerator);
138 return s->nr_slots;
141 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
143 KVMState *s = kvm_state;
144 int i;
146 for (i = 0; i < s->nr_slots; i++) {
147 if (kml->slots[i].memory_size == 0) {
148 return &kml->slots[i];
152 return NULL;
155 bool kvm_has_free_slot(MachineState *ms)
157 KVMState *s = KVM_STATE(ms->accelerator);
159 return kvm_get_free_slot(&s->memory_listener);
162 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
164 KVMSlot *slot = kvm_get_free_slot(kml);
166 if (slot) {
167 return slot;
170 fprintf(stderr, "%s: no free slot available\n", __func__);
171 abort();
174 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
175 hwaddr start_addr,
176 hwaddr size)
178 KVMState *s = kvm_state;
179 int i;
181 for (i = 0; i < s->nr_slots; i++) {
182 KVMSlot *mem = &kml->slots[i];
184 if (start_addr == mem->start_addr && size == mem->memory_size) {
185 return mem;
189 return NULL;
193 * Calculate and align the start address and the size of the section.
194 * Return the size. If the size is 0, the aligned section is empty.
196 static hwaddr kvm_align_section(MemoryRegionSection *section,
197 hwaddr *start)
199 hwaddr size = int128_get64(section->size);
200 hwaddr delta;
202 *start = section->offset_within_address_space;
204 /* kvm works in page size chunks, but the function may be called
205 with sub-page size and unaligned start address. Pad the start
206 address to next and truncate size to previous page boundary. */
207 delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask);
208 delta &= ~qemu_real_host_page_mask;
209 *start += delta;
210 if (delta > size) {
211 return 0;
213 size -= delta;
214 size &= qemu_real_host_page_mask;
215 if (*start & ~qemu_real_host_page_mask) {
216 return 0;
219 return size;
222 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
223 hwaddr *phys_addr)
225 KVMMemoryListener *kml = &s->memory_listener;
226 int i;
228 for (i = 0; i < s->nr_slots; i++) {
229 KVMSlot *mem = &kml->slots[i];
231 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
232 *phys_addr = mem->start_addr + (ram - mem->ram);
233 return 1;
237 return 0;
240 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
242 KVMState *s = kvm_state;
243 struct kvm_userspace_memory_region mem;
245 mem.slot = slot->slot | (kml->as_id << 16);
246 mem.guest_phys_addr = slot->start_addr;
247 mem.userspace_addr = (unsigned long)slot->ram;
248 mem.flags = slot->flags;
250 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
251 /* Set the slot size to 0 before setting the slot to the desired
252 * value. This is needed based on KVM commit 75d61fbc. */
253 mem.memory_size = 0;
254 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
256 mem.memory_size = slot->memory_size;
257 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
260 int kvm_destroy_vcpu(CPUState *cpu)
262 KVMState *s = kvm_state;
263 long mmap_size;
264 struct KVMParkedVcpu *vcpu = NULL;
265 int ret = 0;
267 DPRINTF("kvm_destroy_vcpu\n");
269 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
270 if (mmap_size < 0) {
271 ret = mmap_size;
272 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
273 goto err;
276 ret = munmap(cpu->kvm_run, mmap_size);
277 if (ret < 0) {
278 goto err;
281 vcpu = g_malloc0(sizeof(*vcpu));
282 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
283 vcpu->kvm_fd = cpu->kvm_fd;
284 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
285 err:
286 return ret;
289 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
291 struct KVMParkedVcpu *cpu;
293 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
294 if (cpu->vcpu_id == vcpu_id) {
295 int kvm_fd;
297 QLIST_REMOVE(cpu, node);
298 kvm_fd = cpu->kvm_fd;
299 g_free(cpu);
300 return kvm_fd;
304 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
307 int kvm_init_vcpu(CPUState *cpu)
309 KVMState *s = kvm_state;
310 long mmap_size;
311 int ret;
313 DPRINTF("kvm_init_vcpu\n");
315 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
316 if (ret < 0) {
317 DPRINTF("kvm_create_vcpu failed\n");
318 goto err;
321 cpu->kvm_fd = ret;
322 cpu->kvm_state = s;
323 cpu->vcpu_dirty = true;
325 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
326 if (mmap_size < 0) {
327 ret = mmap_size;
328 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
329 goto err;
332 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
333 cpu->kvm_fd, 0);
334 if (cpu->kvm_run == MAP_FAILED) {
335 ret = -errno;
336 DPRINTF("mmap'ing vcpu state failed\n");
337 goto err;
340 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
341 s->coalesced_mmio_ring =
342 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
345 ret = kvm_arch_init_vcpu(cpu);
346 err:
347 return ret;
351 * dirty pages logging control
354 static int kvm_mem_flags(MemoryRegion *mr)
356 bool readonly = mr->readonly || memory_region_is_romd(mr);
357 int flags = 0;
359 if (memory_region_get_dirty_log_mask(mr) != 0) {
360 flags |= KVM_MEM_LOG_DIRTY_PAGES;
362 if (readonly && kvm_readonly_mem_allowed) {
363 flags |= KVM_MEM_READONLY;
365 return flags;
368 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
369 MemoryRegion *mr)
371 int old_flags;
373 old_flags = mem->flags;
374 mem->flags = kvm_mem_flags(mr);
376 /* If nothing changed effectively, no need to issue ioctl */
377 if (mem->flags == old_flags) {
378 return 0;
381 return kvm_set_user_memory_region(kml, mem);
384 static int kvm_section_update_flags(KVMMemoryListener *kml,
385 MemoryRegionSection *section)
387 hwaddr start_addr, size;
388 KVMSlot *mem;
390 size = kvm_align_section(section, &start_addr);
391 if (!size) {
392 return 0;
395 mem = kvm_lookup_matching_slot(kml, start_addr, size);
396 if (!mem) {
397 fprintf(stderr, "%s: error finding slot\n", __func__);
398 abort();
401 return kvm_slot_update_flags(kml, mem, section->mr);
404 static void kvm_log_start(MemoryListener *listener,
405 MemoryRegionSection *section,
406 int old, int new)
408 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
409 int r;
411 if (old != 0) {
412 return;
415 r = kvm_section_update_flags(kml, section);
416 if (r < 0) {
417 abort();
421 static void kvm_log_stop(MemoryListener *listener,
422 MemoryRegionSection *section,
423 int old, int new)
425 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
426 int r;
428 if (new != 0) {
429 return;
432 r = kvm_section_update_flags(kml, section);
433 if (r < 0) {
434 abort();
438 /* get kvm's dirty pages bitmap and update qemu's */
439 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
440 unsigned long *bitmap)
442 ram_addr_t start = section->offset_within_region +
443 memory_region_get_ram_addr(section->mr);
444 ram_addr_t pages = int128_get64(section->size) / getpagesize();
446 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
447 return 0;
450 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
453 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
454 * This function updates qemu's dirty bitmap using
455 * memory_region_set_dirty(). This means all bits are set
456 * to dirty.
458 * @start_add: start of logged region.
459 * @end_addr: end of logged region.
461 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
462 MemoryRegionSection *section)
464 KVMState *s = kvm_state;
465 struct kvm_dirty_log d = {};
466 KVMSlot *mem;
467 hwaddr start_addr, size;
469 size = kvm_align_section(section, &start_addr);
470 if (size) {
471 mem = kvm_lookup_matching_slot(kml, start_addr, size);
472 if (!mem) {
473 fprintf(stderr, "%s: error finding slot\n", __func__);
474 abort();
477 /* XXX bad kernel interface alert
478 * For dirty bitmap, kernel allocates array of size aligned to
479 * bits-per-long. But for case when the kernel is 64bits and
480 * the userspace is 32bits, userspace can't align to the same
481 * bits-per-long, since sizeof(long) is different between kernel
482 * and user space. This way, userspace will provide buffer which
483 * may be 4 bytes less than the kernel will use, resulting in
484 * userspace memory corruption (which is not detectable by valgrind
485 * too, in most cases).
486 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
487 * a hope that sizeof(long) won't become >8 any time soon.
489 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
490 /*HOST_LONG_BITS*/ 64) / 8;
491 d.dirty_bitmap = g_malloc0(size);
493 d.slot = mem->slot | (kml->as_id << 16);
494 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
495 DPRINTF("ioctl failed %d\n", errno);
496 g_free(d.dirty_bitmap);
497 return -1;
500 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
501 g_free(d.dirty_bitmap);
504 return 0;
507 static void kvm_coalesce_mmio_region(MemoryListener *listener,
508 MemoryRegionSection *secion,
509 hwaddr start, hwaddr size)
511 KVMState *s = kvm_state;
513 if (s->coalesced_mmio) {
514 struct kvm_coalesced_mmio_zone zone;
516 zone.addr = start;
517 zone.size = size;
518 zone.pad = 0;
520 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
524 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
525 MemoryRegionSection *secion,
526 hwaddr start, hwaddr size)
528 KVMState *s = kvm_state;
530 if (s->coalesced_mmio) {
531 struct kvm_coalesced_mmio_zone zone;
533 zone.addr = start;
534 zone.size = size;
535 zone.pad = 0;
537 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
541 int kvm_check_extension(KVMState *s, unsigned int extension)
543 int ret;
545 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
546 if (ret < 0) {
547 ret = 0;
550 return ret;
553 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
555 int ret;
557 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
558 if (ret < 0) {
559 /* VM wide version not implemented, use global one instead */
560 ret = kvm_check_extension(s, extension);
563 return ret;
566 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
568 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
569 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
570 * endianness, but the memory core hands them in target endianness.
571 * For example, PPC is always treated as big-endian even if running
572 * on KVM and on PPC64LE. Correct here.
574 switch (size) {
575 case 2:
576 val = bswap16(val);
577 break;
578 case 4:
579 val = bswap32(val);
580 break;
582 #endif
583 return val;
586 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
587 bool assign, uint32_t size, bool datamatch)
589 int ret;
590 struct kvm_ioeventfd iofd = {
591 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
592 .addr = addr,
593 .len = size,
594 .flags = 0,
595 .fd = fd,
598 if (!kvm_enabled()) {
599 return -ENOSYS;
602 if (datamatch) {
603 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
605 if (!assign) {
606 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
609 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
611 if (ret < 0) {
612 return -errno;
615 return 0;
618 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
619 bool assign, uint32_t size, bool datamatch)
621 struct kvm_ioeventfd kick = {
622 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
623 .addr = addr,
624 .flags = KVM_IOEVENTFD_FLAG_PIO,
625 .len = size,
626 .fd = fd,
628 int r;
629 if (!kvm_enabled()) {
630 return -ENOSYS;
632 if (datamatch) {
633 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
635 if (!assign) {
636 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
638 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
639 if (r < 0) {
640 return r;
642 return 0;
646 static int kvm_check_many_ioeventfds(void)
648 /* Userspace can use ioeventfd for io notification. This requires a host
649 * that supports eventfd(2) and an I/O thread; since eventfd does not
650 * support SIGIO it cannot interrupt the vcpu.
652 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
653 * can avoid creating too many ioeventfds.
655 #if defined(CONFIG_EVENTFD)
656 int ioeventfds[7];
657 int i, ret = 0;
658 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
659 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
660 if (ioeventfds[i] < 0) {
661 break;
663 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
664 if (ret < 0) {
665 close(ioeventfds[i]);
666 break;
670 /* Decide whether many devices are supported or not */
671 ret = i == ARRAY_SIZE(ioeventfds);
673 while (i-- > 0) {
674 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
675 close(ioeventfds[i]);
677 return ret;
678 #else
679 return 0;
680 #endif
683 static const KVMCapabilityInfo *
684 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
686 while (list->name) {
687 if (!kvm_check_extension(s, list->value)) {
688 return list;
690 list++;
692 return NULL;
695 static void kvm_set_phys_mem(KVMMemoryListener *kml,
696 MemoryRegionSection *section, bool add)
698 KVMSlot *mem;
699 int err;
700 MemoryRegion *mr = section->mr;
701 bool writeable = !mr->readonly && !mr->rom_device;
702 hwaddr start_addr, size;
703 void *ram;
705 if (!memory_region_is_ram(mr)) {
706 if (writeable || !kvm_readonly_mem_allowed) {
707 return;
708 } else if (!mr->romd_mode) {
709 /* If the memory device is not in romd_mode, then we actually want
710 * to remove the kvm memory slot so all accesses will trap. */
711 add = false;
715 size = kvm_align_section(section, &start_addr);
716 if (!size) {
717 return;
720 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
721 (section->offset_within_address_space - start_addr);
723 mem = kvm_lookup_matching_slot(kml, start_addr, size);
724 if (!add) {
725 if (!mem) {
726 return;
728 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
729 kvm_physical_sync_dirty_bitmap(kml, section);
732 /* unregister the slot */
733 mem->memory_size = 0;
734 err = kvm_set_user_memory_region(kml, mem);
735 if (err) {
736 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
737 __func__, strerror(-err));
738 abort();
740 return;
743 if (mem) {
744 /* update the slot */
745 kvm_slot_update_flags(kml, mem, mr);
746 return;
749 /* register the new slot */
750 mem = kvm_alloc_slot(kml);
751 mem->memory_size = size;
752 mem->start_addr = start_addr;
753 mem->ram = ram;
754 mem->flags = kvm_mem_flags(mr);
756 err = kvm_set_user_memory_region(kml, mem);
757 if (err) {
758 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
759 strerror(-err));
760 abort();
764 static void kvm_region_add(MemoryListener *listener,
765 MemoryRegionSection *section)
767 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
769 memory_region_ref(section->mr);
770 kvm_set_phys_mem(kml, section, true);
773 static void kvm_region_del(MemoryListener *listener,
774 MemoryRegionSection *section)
776 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
778 kvm_set_phys_mem(kml, section, false);
779 memory_region_unref(section->mr);
782 static void kvm_log_sync(MemoryListener *listener,
783 MemoryRegionSection *section)
785 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
786 int r;
788 r = kvm_physical_sync_dirty_bitmap(kml, section);
789 if (r < 0) {
790 abort();
794 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
795 MemoryRegionSection *section,
796 bool match_data, uint64_t data,
797 EventNotifier *e)
799 int fd = event_notifier_get_fd(e);
800 int r;
802 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
803 data, true, int128_get64(section->size),
804 match_data);
805 if (r < 0) {
806 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
807 __func__, strerror(-r));
808 abort();
812 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
813 MemoryRegionSection *section,
814 bool match_data, uint64_t data,
815 EventNotifier *e)
817 int fd = event_notifier_get_fd(e);
818 int r;
820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
821 data, false, int128_get64(section->size),
822 match_data);
823 if (r < 0) {
824 abort();
828 static void kvm_io_ioeventfd_add(MemoryListener *listener,
829 MemoryRegionSection *section,
830 bool match_data, uint64_t data,
831 EventNotifier *e)
833 int fd = event_notifier_get_fd(e);
834 int r;
836 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
837 data, true, int128_get64(section->size),
838 match_data);
839 if (r < 0) {
840 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
841 __func__, strerror(-r));
842 abort();
846 static void kvm_io_ioeventfd_del(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
849 EventNotifier *e)
852 int fd = event_notifier_get_fd(e);
853 int r;
855 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
856 data, false, int128_get64(section->size),
857 match_data);
858 if (r < 0) {
859 abort();
863 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
864 AddressSpace *as, int as_id)
866 int i;
868 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
869 kml->as_id = as_id;
871 for (i = 0; i < s->nr_slots; i++) {
872 kml->slots[i].slot = i;
875 kml->listener.region_add = kvm_region_add;
876 kml->listener.region_del = kvm_region_del;
877 kml->listener.log_start = kvm_log_start;
878 kml->listener.log_stop = kvm_log_stop;
879 kml->listener.log_sync = kvm_log_sync;
880 kml->listener.priority = 10;
882 memory_listener_register(&kml->listener, as);
885 static MemoryListener kvm_io_listener = {
886 .eventfd_add = kvm_io_ioeventfd_add,
887 .eventfd_del = kvm_io_ioeventfd_del,
888 .priority = 10,
891 int kvm_set_irq(KVMState *s, int irq, int level)
893 struct kvm_irq_level event;
894 int ret;
896 assert(kvm_async_interrupts_enabled());
898 event.level = level;
899 event.irq = irq;
900 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
901 if (ret < 0) {
902 perror("kvm_set_irq");
903 abort();
906 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
909 #ifdef KVM_CAP_IRQ_ROUTING
910 typedef struct KVMMSIRoute {
911 struct kvm_irq_routing_entry kroute;
912 QTAILQ_ENTRY(KVMMSIRoute) entry;
913 } KVMMSIRoute;
915 static void set_gsi(KVMState *s, unsigned int gsi)
917 set_bit(gsi, s->used_gsi_bitmap);
920 static void clear_gsi(KVMState *s, unsigned int gsi)
922 clear_bit(gsi, s->used_gsi_bitmap);
925 void kvm_init_irq_routing(KVMState *s)
927 int gsi_count, i;
929 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
930 if (gsi_count > 0) {
931 /* Round up so we can search ints using ffs */
932 s->used_gsi_bitmap = bitmap_new(gsi_count);
933 s->gsi_count = gsi_count;
936 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
937 s->nr_allocated_irq_routes = 0;
939 if (!kvm_direct_msi_allowed) {
940 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
941 QTAILQ_INIT(&s->msi_hashtab[i]);
945 kvm_arch_init_irq_routing(s);
948 void kvm_irqchip_commit_routes(KVMState *s)
950 int ret;
952 if (kvm_gsi_direct_mapping()) {
953 return;
956 if (!kvm_gsi_routing_enabled()) {
957 return;
960 s->irq_routes->flags = 0;
961 trace_kvm_irqchip_commit_routes();
962 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
963 assert(ret == 0);
966 static void kvm_add_routing_entry(KVMState *s,
967 struct kvm_irq_routing_entry *entry)
969 struct kvm_irq_routing_entry *new;
970 int n, size;
972 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
973 n = s->nr_allocated_irq_routes * 2;
974 if (n < 64) {
975 n = 64;
977 size = sizeof(struct kvm_irq_routing);
978 size += n * sizeof(*new);
979 s->irq_routes = g_realloc(s->irq_routes, size);
980 s->nr_allocated_irq_routes = n;
982 n = s->irq_routes->nr++;
983 new = &s->irq_routes->entries[n];
985 *new = *entry;
987 set_gsi(s, entry->gsi);
990 static int kvm_update_routing_entry(KVMState *s,
991 struct kvm_irq_routing_entry *new_entry)
993 struct kvm_irq_routing_entry *entry;
994 int n;
996 for (n = 0; n < s->irq_routes->nr; n++) {
997 entry = &s->irq_routes->entries[n];
998 if (entry->gsi != new_entry->gsi) {
999 continue;
1002 if(!memcmp(entry, new_entry, sizeof *entry)) {
1003 return 0;
1006 *entry = *new_entry;
1008 return 0;
1011 return -ESRCH;
1014 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1016 struct kvm_irq_routing_entry e = {};
1018 assert(pin < s->gsi_count);
1020 e.gsi = irq;
1021 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1022 e.flags = 0;
1023 e.u.irqchip.irqchip = irqchip;
1024 e.u.irqchip.pin = pin;
1025 kvm_add_routing_entry(s, &e);
1028 void kvm_irqchip_release_virq(KVMState *s, int virq)
1030 struct kvm_irq_routing_entry *e;
1031 int i;
1033 if (kvm_gsi_direct_mapping()) {
1034 return;
1037 for (i = 0; i < s->irq_routes->nr; i++) {
1038 e = &s->irq_routes->entries[i];
1039 if (e->gsi == virq) {
1040 s->irq_routes->nr--;
1041 *e = s->irq_routes->entries[s->irq_routes->nr];
1044 clear_gsi(s, virq);
1045 kvm_arch_release_virq_post(virq);
1046 trace_kvm_irqchip_release_virq(virq);
1049 static unsigned int kvm_hash_msi(uint32_t data)
1051 /* This is optimized for IA32 MSI layout. However, no other arch shall
1052 * repeat the mistake of not providing a direct MSI injection API. */
1053 return data & 0xff;
1056 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1058 KVMMSIRoute *route, *next;
1059 unsigned int hash;
1061 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1062 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1063 kvm_irqchip_release_virq(s, route->kroute.gsi);
1064 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1065 g_free(route);
1070 static int kvm_irqchip_get_virq(KVMState *s)
1072 int next_virq;
1075 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1076 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1077 * number can succeed even though a new route entry cannot be added.
1078 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1080 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1081 kvm_flush_dynamic_msi_routes(s);
1084 /* Return the lowest unused GSI in the bitmap */
1085 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1086 if (next_virq >= s->gsi_count) {
1087 return -ENOSPC;
1088 } else {
1089 return next_virq;
1093 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1095 unsigned int hash = kvm_hash_msi(msg.data);
1096 KVMMSIRoute *route;
1098 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1099 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1100 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1101 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1102 return route;
1105 return NULL;
1108 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1110 struct kvm_msi msi;
1111 KVMMSIRoute *route;
1113 if (kvm_direct_msi_allowed) {
1114 msi.address_lo = (uint32_t)msg.address;
1115 msi.address_hi = msg.address >> 32;
1116 msi.data = le32_to_cpu(msg.data);
1117 msi.flags = 0;
1118 memset(msi.pad, 0, sizeof(msi.pad));
1120 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1123 route = kvm_lookup_msi_route(s, msg);
1124 if (!route) {
1125 int virq;
1127 virq = kvm_irqchip_get_virq(s);
1128 if (virq < 0) {
1129 return virq;
1132 route = g_malloc0(sizeof(KVMMSIRoute));
1133 route->kroute.gsi = virq;
1134 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1135 route->kroute.flags = 0;
1136 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1137 route->kroute.u.msi.address_hi = msg.address >> 32;
1138 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1140 kvm_add_routing_entry(s, &route->kroute);
1141 kvm_irqchip_commit_routes(s);
1143 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1144 entry);
1147 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1149 return kvm_set_irq(s, route->kroute.gsi, 1);
1152 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1154 struct kvm_irq_routing_entry kroute = {};
1155 int virq;
1156 MSIMessage msg = {0, 0};
1158 if (pci_available && dev) {
1159 msg = pci_get_msi_message(dev, vector);
1162 if (kvm_gsi_direct_mapping()) {
1163 return kvm_arch_msi_data_to_gsi(msg.data);
1166 if (!kvm_gsi_routing_enabled()) {
1167 return -ENOSYS;
1170 virq = kvm_irqchip_get_virq(s);
1171 if (virq < 0) {
1172 return virq;
1175 kroute.gsi = virq;
1176 kroute.type = KVM_IRQ_ROUTING_MSI;
1177 kroute.flags = 0;
1178 kroute.u.msi.address_lo = (uint32_t)msg.address;
1179 kroute.u.msi.address_hi = msg.address >> 32;
1180 kroute.u.msi.data = le32_to_cpu(msg.data);
1181 if (pci_available && kvm_msi_devid_required()) {
1182 kroute.flags = KVM_MSI_VALID_DEVID;
1183 kroute.u.msi.devid = pci_requester_id(dev);
1185 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1186 kvm_irqchip_release_virq(s, virq);
1187 return -EINVAL;
1190 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1191 vector, virq);
1193 kvm_add_routing_entry(s, &kroute);
1194 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1195 kvm_irqchip_commit_routes(s);
1197 return virq;
1200 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1201 PCIDevice *dev)
1203 struct kvm_irq_routing_entry kroute = {};
1205 if (kvm_gsi_direct_mapping()) {
1206 return 0;
1209 if (!kvm_irqchip_in_kernel()) {
1210 return -ENOSYS;
1213 kroute.gsi = virq;
1214 kroute.type = KVM_IRQ_ROUTING_MSI;
1215 kroute.flags = 0;
1216 kroute.u.msi.address_lo = (uint32_t)msg.address;
1217 kroute.u.msi.address_hi = msg.address >> 32;
1218 kroute.u.msi.data = le32_to_cpu(msg.data);
1219 if (pci_available && kvm_msi_devid_required()) {
1220 kroute.flags = KVM_MSI_VALID_DEVID;
1221 kroute.u.msi.devid = pci_requester_id(dev);
1223 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1224 return -EINVAL;
1227 trace_kvm_irqchip_update_msi_route(virq);
1229 return kvm_update_routing_entry(s, &kroute);
1232 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1233 bool assign)
1235 struct kvm_irqfd irqfd = {
1236 .fd = fd,
1237 .gsi = virq,
1238 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1241 if (rfd != -1) {
1242 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1243 irqfd.resamplefd = rfd;
1246 if (!kvm_irqfds_enabled()) {
1247 return -ENOSYS;
1250 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1253 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1255 struct kvm_irq_routing_entry kroute = {};
1256 int virq;
1258 if (!kvm_gsi_routing_enabled()) {
1259 return -ENOSYS;
1262 virq = kvm_irqchip_get_virq(s);
1263 if (virq < 0) {
1264 return virq;
1267 kroute.gsi = virq;
1268 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1269 kroute.flags = 0;
1270 kroute.u.adapter.summary_addr = adapter->summary_addr;
1271 kroute.u.adapter.ind_addr = adapter->ind_addr;
1272 kroute.u.adapter.summary_offset = adapter->summary_offset;
1273 kroute.u.adapter.ind_offset = adapter->ind_offset;
1274 kroute.u.adapter.adapter_id = adapter->adapter_id;
1276 kvm_add_routing_entry(s, &kroute);
1278 return virq;
1281 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1283 struct kvm_irq_routing_entry kroute = {};
1284 int virq;
1286 if (!kvm_gsi_routing_enabled()) {
1287 return -ENOSYS;
1289 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1290 return -ENOSYS;
1292 virq = kvm_irqchip_get_virq(s);
1293 if (virq < 0) {
1294 return virq;
1297 kroute.gsi = virq;
1298 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1299 kroute.flags = 0;
1300 kroute.u.hv_sint.vcpu = vcpu;
1301 kroute.u.hv_sint.sint = sint;
1303 kvm_add_routing_entry(s, &kroute);
1304 kvm_irqchip_commit_routes(s);
1306 return virq;
1309 #else /* !KVM_CAP_IRQ_ROUTING */
1311 void kvm_init_irq_routing(KVMState *s)
1315 void kvm_irqchip_release_virq(KVMState *s, int virq)
1319 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1321 abort();
1324 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1326 return -ENOSYS;
1329 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1331 return -ENOSYS;
1334 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1336 return -ENOSYS;
1339 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1341 abort();
1344 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1346 return -ENOSYS;
1348 #endif /* !KVM_CAP_IRQ_ROUTING */
1350 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1351 EventNotifier *rn, int virq)
1353 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1354 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1357 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1358 int virq)
1360 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1361 false);
1364 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1365 EventNotifier *rn, qemu_irq irq)
1367 gpointer key, gsi;
1368 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1370 if (!found) {
1371 return -ENXIO;
1373 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1376 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1377 qemu_irq irq)
1379 gpointer key, gsi;
1380 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1382 if (!found) {
1383 return -ENXIO;
1385 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1388 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1390 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1393 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1395 int ret;
1397 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1399 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1400 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1401 if (ret < 0) {
1402 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1403 exit(1);
1405 } else {
1406 return;
1409 /* First probe and see if there's a arch-specific hook to create the
1410 * in-kernel irqchip for us */
1411 ret = kvm_arch_irqchip_create(machine, s);
1412 if (ret == 0) {
1413 if (machine_kernel_irqchip_split(machine)) {
1414 perror("Split IRQ chip mode not supported.");
1415 exit(1);
1416 } else {
1417 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1420 if (ret < 0) {
1421 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1422 exit(1);
1425 kvm_kernel_irqchip = true;
1426 /* If we have an in-kernel IRQ chip then we must have asynchronous
1427 * interrupt delivery (though the reverse is not necessarily true)
1429 kvm_async_interrupts_allowed = true;
1430 kvm_halt_in_kernel_allowed = true;
1432 kvm_init_irq_routing(s);
1434 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1437 /* Find number of supported CPUs using the recommended
1438 * procedure from the kernel API documentation to cope with
1439 * older kernels that may be missing capabilities.
1441 static int kvm_recommended_vcpus(KVMState *s)
1443 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1444 return (ret) ? ret : 4;
1447 static int kvm_max_vcpus(KVMState *s)
1449 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1450 return (ret) ? ret : kvm_recommended_vcpus(s);
1453 static int kvm_max_vcpu_id(KVMState *s)
1455 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1456 return (ret) ? ret : kvm_max_vcpus(s);
1459 bool kvm_vcpu_id_is_valid(int vcpu_id)
1461 KVMState *s = KVM_STATE(current_machine->accelerator);
1462 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1465 static int kvm_init(MachineState *ms)
1467 MachineClass *mc = MACHINE_GET_CLASS(ms);
1468 static const char upgrade_note[] =
1469 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1470 "(see http://sourceforge.net/projects/kvm).\n";
1471 struct {
1472 const char *name;
1473 int num;
1474 } num_cpus[] = {
1475 { "SMP", smp_cpus },
1476 { "hotpluggable", max_cpus },
1477 { NULL, }
1478 }, *nc = num_cpus;
1479 int soft_vcpus_limit, hard_vcpus_limit;
1480 KVMState *s;
1481 const KVMCapabilityInfo *missing_cap;
1482 int ret;
1483 int type = 0;
1484 const char *kvm_type;
1486 s = KVM_STATE(ms->accelerator);
1489 * On systems where the kernel can support different base page
1490 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1491 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1492 * page size for the system though.
1494 assert(TARGET_PAGE_SIZE <= getpagesize());
1496 s->sigmask_len = 8;
1498 #ifdef KVM_CAP_SET_GUEST_DEBUG
1499 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1500 #endif
1501 QLIST_INIT(&s->kvm_parked_vcpus);
1502 s->vmfd = -1;
1503 s->fd = qemu_open("/dev/kvm", O_RDWR);
1504 if (s->fd == -1) {
1505 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1506 ret = -errno;
1507 goto err;
1510 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1511 if (ret < KVM_API_VERSION) {
1512 if (ret >= 0) {
1513 ret = -EINVAL;
1515 fprintf(stderr, "kvm version too old\n");
1516 goto err;
1519 if (ret > KVM_API_VERSION) {
1520 ret = -EINVAL;
1521 fprintf(stderr, "kvm version not supported\n");
1522 goto err;
1525 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1526 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1528 /* If unspecified, use the default value */
1529 if (!s->nr_slots) {
1530 s->nr_slots = 32;
1533 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1534 if (mc->kvm_type) {
1535 type = mc->kvm_type(kvm_type);
1536 } else if (kvm_type) {
1537 ret = -EINVAL;
1538 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1539 goto err;
1542 do {
1543 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1544 } while (ret == -EINTR);
1546 if (ret < 0) {
1547 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1548 strerror(-ret));
1550 #ifdef TARGET_S390X
1551 if (ret == -EINVAL) {
1552 fprintf(stderr,
1553 "Host kernel setup problem detected. Please verify:\n");
1554 fprintf(stderr, "- for kernels supporting the switch_amode or"
1555 " user_mode parameters, whether\n");
1556 fprintf(stderr,
1557 " user space is running in primary address space\n");
1558 fprintf(stderr,
1559 "- for kernels supporting the vm.allocate_pgste sysctl, "
1560 "whether it is enabled\n");
1562 #endif
1563 goto err;
1566 s->vmfd = ret;
1568 /* check the vcpu limits */
1569 soft_vcpus_limit = kvm_recommended_vcpus(s);
1570 hard_vcpus_limit = kvm_max_vcpus(s);
1572 while (nc->name) {
1573 if (nc->num > soft_vcpus_limit) {
1574 warn_report("Number of %s cpus requested (%d) exceeds "
1575 "the recommended cpus supported by KVM (%d)",
1576 nc->name, nc->num, soft_vcpus_limit);
1578 if (nc->num > hard_vcpus_limit) {
1579 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1580 "the maximum cpus supported by KVM (%d)\n",
1581 nc->name, nc->num, hard_vcpus_limit);
1582 exit(1);
1585 nc++;
1588 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1589 if (!missing_cap) {
1590 missing_cap =
1591 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1593 if (missing_cap) {
1594 ret = -EINVAL;
1595 fprintf(stderr, "kvm does not support %s\n%s",
1596 missing_cap->name, upgrade_note);
1597 goto err;
1600 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1602 #ifdef KVM_CAP_VCPU_EVENTS
1603 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1604 #endif
1606 s->robust_singlestep =
1607 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1609 #ifdef KVM_CAP_DEBUGREGS
1610 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1611 #endif
1613 #ifdef KVM_CAP_IRQ_ROUTING
1614 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1615 #endif
1617 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1619 s->irq_set_ioctl = KVM_IRQ_LINE;
1620 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1621 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1624 #ifdef KVM_CAP_READONLY_MEM
1625 kvm_readonly_mem_allowed =
1626 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1627 #endif
1629 kvm_eventfds_allowed =
1630 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1632 kvm_irqfds_allowed =
1633 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1635 kvm_resamplefds_allowed =
1636 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1638 kvm_vm_attributes_allowed =
1639 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1641 kvm_ioeventfd_any_length_allowed =
1642 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1644 kvm_state = s;
1646 ret = kvm_arch_init(ms, s);
1647 if (ret < 0) {
1648 goto err;
1651 if (machine_kernel_irqchip_allowed(ms)) {
1652 kvm_irqchip_create(ms, s);
1655 if (kvm_eventfds_allowed) {
1656 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1657 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1659 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1660 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1662 kvm_memory_listener_register(s, &s->memory_listener,
1663 &address_space_memory, 0);
1664 memory_listener_register(&kvm_io_listener,
1665 &address_space_io);
1667 s->many_ioeventfds = kvm_check_many_ioeventfds();
1669 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1671 return 0;
1673 err:
1674 assert(ret < 0);
1675 if (s->vmfd >= 0) {
1676 close(s->vmfd);
1678 if (s->fd != -1) {
1679 close(s->fd);
1681 g_free(s->memory_listener.slots);
1683 return ret;
1686 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1688 s->sigmask_len = sigmask_len;
1691 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1692 int size, uint32_t count)
1694 int i;
1695 uint8_t *ptr = data;
1697 for (i = 0; i < count; i++) {
1698 address_space_rw(&address_space_io, port, attrs,
1699 ptr, size,
1700 direction == KVM_EXIT_IO_OUT);
1701 ptr += size;
1705 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1707 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1708 run->internal.suberror);
1710 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1711 int i;
1713 for (i = 0; i < run->internal.ndata; ++i) {
1714 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1715 i, (uint64_t)run->internal.data[i]);
1718 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1719 fprintf(stderr, "emulation failure\n");
1720 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1721 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1722 return EXCP_INTERRUPT;
1725 /* FIXME: Should trigger a qmp message to let management know
1726 * something went wrong.
1728 return -1;
1731 void kvm_flush_coalesced_mmio_buffer(void)
1733 KVMState *s = kvm_state;
1735 if (s->coalesced_flush_in_progress) {
1736 return;
1739 s->coalesced_flush_in_progress = true;
1741 if (s->coalesced_mmio_ring) {
1742 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1743 while (ring->first != ring->last) {
1744 struct kvm_coalesced_mmio *ent;
1746 ent = &ring->coalesced_mmio[ring->first];
1748 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1749 smp_wmb();
1750 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1754 s->coalesced_flush_in_progress = false;
1757 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1759 if (!cpu->vcpu_dirty) {
1760 kvm_arch_get_registers(cpu);
1761 cpu->vcpu_dirty = true;
1765 void kvm_cpu_synchronize_state(CPUState *cpu)
1767 if (!cpu->vcpu_dirty) {
1768 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1772 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1774 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1775 cpu->vcpu_dirty = false;
1778 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1780 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1783 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1785 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1786 cpu->vcpu_dirty = false;
1789 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1791 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1794 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1796 cpu->vcpu_dirty = true;
1799 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1801 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1804 #ifdef KVM_HAVE_MCE_INJECTION
1805 static __thread void *pending_sigbus_addr;
1806 static __thread int pending_sigbus_code;
1807 static __thread bool have_sigbus_pending;
1808 #endif
1810 static void kvm_cpu_kick(CPUState *cpu)
1812 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1815 static void kvm_cpu_kick_self(void)
1817 if (kvm_immediate_exit) {
1818 kvm_cpu_kick(current_cpu);
1819 } else {
1820 qemu_cpu_kick_self();
1824 static void kvm_eat_signals(CPUState *cpu)
1826 struct timespec ts = { 0, 0 };
1827 siginfo_t siginfo;
1828 sigset_t waitset;
1829 sigset_t chkset;
1830 int r;
1832 if (kvm_immediate_exit) {
1833 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1834 /* Write kvm_run->immediate_exit before the cpu->exit_request
1835 * write in kvm_cpu_exec.
1837 smp_wmb();
1838 return;
1841 sigemptyset(&waitset);
1842 sigaddset(&waitset, SIG_IPI);
1844 do {
1845 r = sigtimedwait(&waitset, &siginfo, &ts);
1846 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1847 perror("sigtimedwait");
1848 exit(1);
1851 r = sigpending(&chkset);
1852 if (r == -1) {
1853 perror("sigpending");
1854 exit(1);
1856 } while (sigismember(&chkset, SIG_IPI));
1859 int kvm_cpu_exec(CPUState *cpu)
1861 struct kvm_run *run = cpu->kvm_run;
1862 int ret, run_ret;
1864 DPRINTF("kvm_cpu_exec()\n");
1866 if (kvm_arch_process_async_events(cpu)) {
1867 atomic_set(&cpu->exit_request, 0);
1868 return EXCP_HLT;
1871 qemu_mutex_unlock_iothread();
1872 cpu_exec_start(cpu);
1874 do {
1875 MemTxAttrs attrs;
1877 if (cpu->vcpu_dirty) {
1878 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1879 cpu->vcpu_dirty = false;
1882 kvm_arch_pre_run(cpu, run);
1883 if (atomic_read(&cpu->exit_request)) {
1884 DPRINTF("interrupt exit requested\n");
1886 * KVM requires us to reenter the kernel after IO exits to complete
1887 * instruction emulation. This self-signal will ensure that we
1888 * leave ASAP again.
1890 kvm_cpu_kick_self();
1893 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1894 * Matching barrier in kvm_eat_signals.
1896 smp_rmb();
1898 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1900 attrs = kvm_arch_post_run(cpu, run);
1902 #ifdef KVM_HAVE_MCE_INJECTION
1903 if (unlikely(have_sigbus_pending)) {
1904 qemu_mutex_lock_iothread();
1905 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1906 pending_sigbus_addr);
1907 have_sigbus_pending = false;
1908 qemu_mutex_unlock_iothread();
1910 #endif
1912 if (run_ret < 0) {
1913 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1914 DPRINTF("io window exit\n");
1915 kvm_eat_signals(cpu);
1916 ret = EXCP_INTERRUPT;
1917 break;
1919 fprintf(stderr, "error: kvm run failed %s\n",
1920 strerror(-run_ret));
1921 #ifdef TARGET_PPC
1922 if (run_ret == -EBUSY) {
1923 fprintf(stderr,
1924 "This is probably because your SMT is enabled.\n"
1925 "VCPU can only run on primary threads with all "
1926 "secondary threads offline.\n");
1928 #endif
1929 ret = -1;
1930 break;
1933 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1934 switch (run->exit_reason) {
1935 case KVM_EXIT_IO:
1936 DPRINTF("handle_io\n");
1937 /* Called outside BQL */
1938 kvm_handle_io(run->io.port, attrs,
1939 (uint8_t *)run + run->io.data_offset,
1940 run->io.direction,
1941 run->io.size,
1942 run->io.count);
1943 ret = 0;
1944 break;
1945 case KVM_EXIT_MMIO:
1946 DPRINTF("handle_mmio\n");
1947 /* Called outside BQL */
1948 address_space_rw(&address_space_memory,
1949 run->mmio.phys_addr, attrs,
1950 run->mmio.data,
1951 run->mmio.len,
1952 run->mmio.is_write);
1953 ret = 0;
1954 break;
1955 case KVM_EXIT_IRQ_WINDOW_OPEN:
1956 DPRINTF("irq_window_open\n");
1957 ret = EXCP_INTERRUPT;
1958 break;
1959 case KVM_EXIT_SHUTDOWN:
1960 DPRINTF("shutdown\n");
1961 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1962 ret = EXCP_INTERRUPT;
1963 break;
1964 case KVM_EXIT_UNKNOWN:
1965 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1966 (uint64_t)run->hw.hardware_exit_reason);
1967 ret = -1;
1968 break;
1969 case KVM_EXIT_INTERNAL_ERROR:
1970 ret = kvm_handle_internal_error(cpu, run);
1971 break;
1972 case KVM_EXIT_SYSTEM_EVENT:
1973 switch (run->system_event.type) {
1974 case KVM_SYSTEM_EVENT_SHUTDOWN:
1975 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1976 ret = EXCP_INTERRUPT;
1977 break;
1978 case KVM_SYSTEM_EVENT_RESET:
1979 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1980 ret = EXCP_INTERRUPT;
1981 break;
1982 case KVM_SYSTEM_EVENT_CRASH:
1983 kvm_cpu_synchronize_state(cpu);
1984 qemu_mutex_lock_iothread();
1985 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
1986 qemu_mutex_unlock_iothread();
1987 ret = 0;
1988 break;
1989 default:
1990 DPRINTF("kvm_arch_handle_exit\n");
1991 ret = kvm_arch_handle_exit(cpu, run);
1992 break;
1994 break;
1995 default:
1996 DPRINTF("kvm_arch_handle_exit\n");
1997 ret = kvm_arch_handle_exit(cpu, run);
1998 break;
2000 } while (ret == 0);
2002 cpu_exec_end(cpu);
2003 qemu_mutex_lock_iothread();
2005 if (ret < 0) {
2006 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2007 vm_stop(RUN_STATE_INTERNAL_ERROR);
2010 atomic_set(&cpu->exit_request, 0);
2011 return ret;
2014 int kvm_ioctl(KVMState *s, int type, ...)
2016 int ret;
2017 void *arg;
2018 va_list ap;
2020 va_start(ap, type);
2021 arg = va_arg(ap, void *);
2022 va_end(ap);
2024 trace_kvm_ioctl(type, arg);
2025 ret = ioctl(s->fd, type, arg);
2026 if (ret == -1) {
2027 ret = -errno;
2029 return ret;
2032 int kvm_vm_ioctl(KVMState *s, int type, ...)
2034 int ret;
2035 void *arg;
2036 va_list ap;
2038 va_start(ap, type);
2039 arg = va_arg(ap, void *);
2040 va_end(ap);
2042 trace_kvm_vm_ioctl(type, arg);
2043 ret = ioctl(s->vmfd, type, arg);
2044 if (ret == -1) {
2045 ret = -errno;
2047 return ret;
2050 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2052 int ret;
2053 void *arg;
2054 va_list ap;
2056 va_start(ap, type);
2057 arg = va_arg(ap, void *);
2058 va_end(ap);
2060 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2061 ret = ioctl(cpu->kvm_fd, type, arg);
2062 if (ret == -1) {
2063 ret = -errno;
2065 return ret;
2068 int kvm_device_ioctl(int fd, int type, ...)
2070 int ret;
2071 void *arg;
2072 va_list ap;
2074 va_start(ap, type);
2075 arg = va_arg(ap, void *);
2076 va_end(ap);
2078 trace_kvm_device_ioctl(fd, type, arg);
2079 ret = ioctl(fd, type, arg);
2080 if (ret == -1) {
2081 ret = -errno;
2083 return ret;
2086 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2088 int ret;
2089 struct kvm_device_attr attribute = {
2090 .group = group,
2091 .attr = attr,
2094 if (!kvm_vm_attributes_allowed) {
2095 return 0;
2098 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2099 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2100 return ret ? 0 : 1;
2103 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2105 struct kvm_device_attr attribute = {
2106 .group = group,
2107 .attr = attr,
2108 .flags = 0,
2111 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2114 int kvm_device_access(int fd, int group, uint64_t attr,
2115 void *val, bool write, Error **errp)
2117 struct kvm_device_attr kvmattr;
2118 int err;
2120 kvmattr.flags = 0;
2121 kvmattr.group = group;
2122 kvmattr.attr = attr;
2123 kvmattr.addr = (uintptr_t)val;
2125 err = kvm_device_ioctl(fd,
2126 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2127 &kvmattr);
2128 if (err < 0) {
2129 error_setg_errno(errp, -err,
2130 "KVM_%s_DEVICE_ATTR failed: Group %d "
2131 "attr 0x%016" PRIx64,
2132 write ? "SET" : "GET", group, attr);
2134 return err;
2137 bool kvm_has_sync_mmu(void)
2139 return kvm_state->sync_mmu;
2142 int kvm_has_vcpu_events(void)
2144 return kvm_state->vcpu_events;
2147 int kvm_has_robust_singlestep(void)
2149 return kvm_state->robust_singlestep;
2152 int kvm_has_debugregs(void)
2154 return kvm_state->debugregs;
2157 int kvm_has_many_ioeventfds(void)
2159 if (!kvm_enabled()) {
2160 return 0;
2162 return kvm_state->many_ioeventfds;
2165 int kvm_has_gsi_routing(void)
2167 #ifdef KVM_CAP_IRQ_ROUTING
2168 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2169 #else
2170 return false;
2171 #endif
2174 int kvm_has_intx_set_mask(void)
2176 return kvm_state->intx_set_mask;
2179 bool kvm_arm_supports_user_irq(void)
2181 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2184 #ifdef KVM_CAP_SET_GUEST_DEBUG
2185 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2186 target_ulong pc)
2188 struct kvm_sw_breakpoint *bp;
2190 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2191 if (bp->pc == pc) {
2192 return bp;
2195 return NULL;
2198 int kvm_sw_breakpoints_active(CPUState *cpu)
2200 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2203 struct kvm_set_guest_debug_data {
2204 struct kvm_guest_debug dbg;
2205 int err;
2208 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2210 struct kvm_set_guest_debug_data *dbg_data =
2211 (struct kvm_set_guest_debug_data *) data.host_ptr;
2213 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2214 &dbg_data->dbg);
2217 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2219 struct kvm_set_guest_debug_data data;
2221 data.dbg.control = reinject_trap;
2223 if (cpu->singlestep_enabled) {
2224 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2226 kvm_arch_update_guest_debug(cpu, &data.dbg);
2228 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2229 RUN_ON_CPU_HOST_PTR(&data));
2230 return data.err;
2233 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2234 target_ulong len, int type)
2236 struct kvm_sw_breakpoint *bp;
2237 int err;
2239 if (type == GDB_BREAKPOINT_SW) {
2240 bp = kvm_find_sw_breakpoint(cpu, addr);
2241 if (bp) {
2242 bp->use_count++;
2243 return 0;
2246 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2247 bp->pc = addr;
2248 bp->use_count = 1;
2249 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2250 if (err) {
2251 g_free(bp);
2252 return err;
2255 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2256 } else {
2257 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2258 if (err) {
2259 return err;
2263 CPU_FOREACH(cpu) {
2264 err = kvm_update_guest_debug(cpu, 0);
2265 if (err) {
2266 return err;
2269 return 0;
2272 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2273 target_ulong len, int type)
2275 struct kvm_sw_breakpoint *bp;
2276 int err;
2278 if (type == GDB_BREAKPOINT_SW) {
2279 bp = kvm_find_sw_breakpoint(cpu, addr);
2280 if (!bp) {
2281 return -ENOENT;
2284 if (bp->use_count > 1) {
2285 bp->use_count--;
2286 return 0;
2289 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2290 if (err) {
2291 return err;
2294 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2295 g_free(bp);
2296 } else {
2297 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2298 if (err) {
2299 return err;
2303 CPU_FOREACH(cpu) {
2304 err = kvm_update_guest_debug(cpu, 0);
2305 if (err) {
2306 return err;
2309 return 0;
2312 void kvm_remove_all_breakpoints(CPUState *cpu)
2314 struct kvm_sw_breakpoint *bp, *next;
2315 KVMState *s = cpu->kvm_state;
2316 CPUState *tmpcpu;
2318 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2319 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2320 /* Try harder to find a CPU that currently sees the breakpoint. */
2321 CPU_FOREACH(tmpcpu) {
2322 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2323 break;
2327 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2328 g_free(bp);
2330 kvm_arch_remove_all_hw_breakpoints();
2332 CPU_FOREACH(cpu) {
2333 kvm_update_guest_debug(cpu, 0);
2337 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2339 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2341 return -EINVAL;
2344 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2345 target_ulong len, int type)
2347 return -EINVAL;
2350 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2351 target_ulong len, int type)
2353 return -EINVAL;
2356 void kvm_remove_all_breakpoints(CPUState *cpu)
2359 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2361 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2363 KVMState *s = kvm_state;
2364 struct kvm_signal_mask *sigmask;
2365 int r;
2367 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2369 sigmask->len = s->sigmask_len;
2370 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2371 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2372 g_free(sigmask);
2374 return r;
2377 static void kvm_ipi_signal(int sig)
2379 if (current_cpu) {
2380 assert(kvm_immediate_exit);
2381 kvm_cpu_kick(current_cpu);
2385 void kvm_init_cpu_signals(CPUState *cpu)
2387 int r;
2388 sigset_t set;
2389 struct sigaction sigact;
2391 memset(&sigact, 0, sizeof(sigact));
2392 sigact.sa_handler = kvm_ipi_signal;
2393 sigaction(SIG_IPI, &sigact, NULL);
2395 pthread_sigmask(SIG_BLOCK, NULL, &set);
2396 #if defined KVM_HAVE_MCE_INJECTION
2397 sigdelset(&set, SIGBUS);
2398 pthread_sigmask(SIG_SETMASK, &set, NULL);
2399 #endif
2400 sigdelset(&set, SIG_IPI);
2401 if (kvm_immediate_exit) {
2402 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2403 } else {
2404 r = kvm_set_signal_mask(cpu, &set);
2406 if (r) {
2407 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2408 exit(1);
2412 /* Called asynchronously in VCPU thread. */
2413 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2415 #ifdef KVM_HAVE_MCE_INJECTION
2416 if (have_sigbus_pending) {
2417 return 1;
2419 have_sigbus_pending = true;
2420 pending_sigbus_addr = addr;
2421 pending_sigbus_code = code;
2422 atomic_set(&cpu->exit_request, 1);
2423 return 0;
2424 #else
2425 return 1;
2426 #endif
2429 /* Called synchronously (via signalfd) in main thread. */
2430 int kvm_on_sigbus(int code, void *addr)
2432 #ifdef KVM_HAVE_MCE_INJECTION
2433 /* Action required MCE kills the process if SIGBUS is blocked. Because
2434 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2435 * we can only get action optional here.
2437 assert(code != BUS_MCEERR_AR);
2438 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2439 return 0;
2440 #else
2441 return 1;
2442 #endif
2445 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2447 int ret;
2448 struct kvm_create_device create_dev;
2450 create_dev.type = type;
2451 create_dev.fd = -1;
2452 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2454 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2455 return -ENOTSUP;
2458 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2459 if (ret) {
2460 return ret;
2463 return test ? 0 : create_dev.fd;
2466 bool kvm_device_supported(int vmfd, uint64_t type)
2468 struct kvm_create_device create_dev = {
2469 .type = type,
2470 .fd = -1,
2471 .flags = KVM_CREATE_DEVICE_TEST,
2474 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2475 return false;
2478 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2481 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2483 struct kvm_one_reg reg;
2484 int r;
2486 reg.id = id;
2487 reg.addr = (uintptr_t) source;
2488 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2489 if (r) {
2490 trace_kvm_failed_reg_set(id, strerror(-r));
2492 return r;
2495 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2497 struct kvm_one_reg reg;
2498 int r;
2500 reg.id = id;
2501 reg.addr = (uintptr_t) target;
2502 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2503 if (r) {
2504 trace_kvm_failed_reg_get(id, strerror(-r));
2506 return r;
2509 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2511 AccelClass *ac = ACCEL_CLASS(oc);
2512 ac->name = "KVM";
2513 ac->init_machine = kvm_init;
2514 ac->allowed = &kvm_allowed;
2517 static const TypeInfo kvm_accel_type = {
2518 .name = TYPE_KVM_ACCEL,
2519 .parent = TYPE_ACCEL,
2520 .class_init = kvm_accel_class_init,
2521 .instance_size = sizeof(KVMState),
2524 static void kvm_type_init(void)
2526 type_register_static(&kvm_accel_type);
2529 type_init(kvm_type_init);