sdl: Fix memory leakage
[qemu-kvm/fedora.git] / hw / lsi53c895a.c
blobd4805c421e173d7862ec63a0d0a1f73c93644947
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include "hw.h"
14 #include "pci.h"
15 #include "scsi-disk.h"
16 #include "block_int.h"
18 //#define DEBUG_LSI
19 //#define DEBUG_LSI_REG
21 #ifdef DEBUG_LSI
22 #define DPRINTF(fmt, args...) \
23 do { printf("lsi_scsi: " fmt , ##args); } while (0)
24 #define BADF(fmt, args...) \
25 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
26 #else
27 #define DPRINTF(fmt, args...) do {} while(0)
28 #define BADF(fmt, args...) \
29 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
30 #endif
32 #define LSI_SCNTL0_TRG 0x01
33 #define LSI_SCNTL0_AAP 0x02
34 #define LSI_SCNTL0_EPC 0x08
35 #define LSI_SCNTL0_WATN 0x10
36 #define LSI_SCNTL0_START 0x20
38 #define LSI_SCNTL1_SST 0x01
39 #define LSI_SCNTL1_IARB 0x02
40 #define LSI_SCNTL1_AESP 0x04
41 #define LSI_SCNTL1_RST 0x08
42 #define LSI_SCNTL1_CON 0x10
43 #define LSI_SCNTL1_DHP 0x20
44 #define LSI_SCNTL1_ADB 0x40
45 #define LSI_SCNTL1_EXC 0x80
47 #define LSI_SCNTL2_WSR 0x01
48 #define LSI_SCNTL2_VUE0 0x02
49 #define LSI_SCNTL2_VUE1 0x04
50 #define LSI_SCNTL2_WSS 0x08
51 #define LSI_SCNTL2_SLPHBEN 0x10
52 #define LSI_SCNTL2_SLPMD 0x20
53 #define LSI_SCNTL2_CHM 0x40
54 #define LSI_SCNTL2_SDU 0x80
56 #define LSI_ISTAT0_DIP 0x01
57 #define LSI_ISTAT0_SIP 0x02
58 #define LSI_ISTAT0_INTF 0x04
59 #define LSI_ISTAT0_CON 0x08
60 #define LSI_ISTAT0_SEM 0x10
61 #define LSI_ISTAT0_SIGP 0x20
62 #define LSI_ISTAT0_SRST 0x40
63 #define LSI_ISTAT0_ABRT 0x80
65 #define LSI_ISTAT1_SI 0x01
66 #define LSI_ISTAT1_SRUN 0x02
67 #define LSI_ISTAT1_FLSH 0x04
69 #define LSI_SSTAT0_SDP0 0x01
70 #define LSI_SSTAT0_RST 0x02
71 #define LSI_SSTAT0_WOA 0x04
72 #define LSI_SSTAT0_LOA 0x08
73 #define LSI_SSTAT0_AIP 0x10
74 #define LSI_SSTAT0_OLF 0x20
75 #define LSI_SSTAT0_ORF 0x40
76 #define LSI_SSTAT0_ILF 0x80
78 #define LSI_SIST0_PAR 0x01
79 #define LSI_SIST0_RST 0x02
80 #define LSI_SIST0_UDC 0x04
81 #define LSI_SIST0_SGE 0x08
82 #define LSI_SIST0_RSL 0x10
83 #define LSI_SIST0_SEL 0x20
84 #define LSI_SIST0_CMP 0x40
85 #define LSI_SIST0_MA 0x80
87 #define LSI_SIST1_HTH 0x01
88 #define LSI_SIST1_GEN 0x02
89 #define LSI_SIST1_STO 0x04
90 #define LSI_SIST1_SBMC 0x10
92 #define LSI_SOCL_IO 0x01
93 #define LSI_SOCL_CD 0x02
94 #define LSI_SOCL_MSG 0x04
95 #define LSI_SOCL_ATN 0x08
96 #define LSI_SOCL_SEL 0x10
97 #define LSI_SOCL_BSY 0x20
98 #define LSI_SOCL_ACK 0x40
99 #define LSI_SOCL_REQ 0x80
101 #define LSI_DSTAT_IID 0x01
102 #define LSI_DSTAT_SIR 0x04
103 #define LSI_DSTAT_SSI 0x08
104 #define LSI_DSTAT_ABRT 0x10
105 #define LSI_DSTAT_BF 0x20
106 #define LSI_DSTAT_MDPE 0x40
107 #define LSI_DSTAT_DFE 0x80
109 #define LSI_DCNTL_COM 0x01
110 #define LSI_DCNTL_IRQD 0x02
111 #define LSI_DCNTL_STD 0x04
112 #define LSI_DCNTL_IRQM 0x08
113 #define LSI_DCNTL_SSM 0x10
114 #define LSI_DCNTL_PFEN 0x20
115 #define LSI_DCNTL_PFF 0x40
116 #define LSI_DCNTL_CLSE 0x80
118 #define LSI_DMODE_MAN 0x01
119 #define LSI_DMODE_BOF 0x02
120 #define LSI_DMODE_ERMP 0x04
121 #define LSI_DMODE_ERL 0x08
122 #define LSI_DMODE_DIOM 0x10
123 #define LSI_DMODE_SIOM 0x20
125 #define LSI_CTEST2_DACK 0x01
126 #define LSI_CTEST2_DREQ 0x02
127 #define LSI_CTEST2_TEOP 0x04
128 #define LSI_CTEST2_PCICIE 0x08
129 #define LSI_CTEST2_CM 0x10
130 #define LSI_CTEST2_CIO 0x20
131 #define LSI_CTEST2_SIGP 0x40
132 #define LSI_CTEST2_DDIR 0x80
134 #define LSI_CTEST5_BL2 0x04
135 #define LSI_CTEST5_DDIR 0x08
136 #define LSI_CTEST5_MASR 0x10
137 #define LSI_CTEST5_DFSN 0x20
138 #define LSI_CTEST5_BBCK 0x40
139 #define LSI_CTEST5_ADCK 0x80
141 #define LSI_CCNTL0_DILS 0x01
142 #define LSI_CCNTL0_DISFC 0x10
143 #define LSI_CCNTL0_ENNDJ 0x20
144 #define LSI_CCNTL0_PMJCTL 0x40
145 #define LSI_CCNTL0_ENPMJ 0x80
147 #define LSI_CCNTL1_EN64DBMV 0x01
148 #define LSI_CCNTL1_EN64TIBMV 0x02
149 #define LSI_CCNTL1_64TIMOD 0x04
150 #define LSI_CCNTL1_DDAC 0x08
151 #define LSI_CCNTL1_ZMOD 0x80
153 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
155 #define PHASE_DO 0
156 #define PHASE_DI 1
157 #define PHASE_CMD 2
158 #define PHASE_ST 3
159 #define PHASE_MO 6
160 #define PHASE_MI 7
161 #define PHASE_MASK 7
163 /* Maximum length of MSG IN data. */
164 #define LSI_MAX_MSGIN_LEN 8
166 /* Flag set if this is a tagged command. */
167 #define LSI_TAG_VALID (1 << 16)
169 typedef struct {
170 uint32_t tag;
171 uint32_t pending;
172 int out;
173 } lsi_queue;
175 typedef struct {
176 PCIDevice pci_dev;
177 int mmio_io_addr;
178 int ram_io_addr;
179 uint32_t script_ram_base;
181 int carry; /* ??? Should this be an a visible register somewhere? */
182 int sense;
183 /* Action to take at the end of a MSG IN phase.
184 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
185 int msg_action;
186 int msg_len;
187 uint8_t msg[LSI_MAX_MSGIN_LEN];
188 /* 0 if SCRIPTS are running or stopped.
189 * 1 if a Wait Reselect instruction has been issued.
190 * 2 if processing DMA from lsi_execute_script.
191 * 3 if a DMA operation is in progress. */
192 int waiting;
193 SCSIDevice *scsi_dev[LSI_MAX_DEVS];
194 SCSIDevice *current_dev;
195 int current_lun;
196 /* The tag is a combination of the device ID and the SCSI tag. */
197 uint32_t current_tag;
198 uint32_t current_dma_len;
199 int command_complete;
200 uint8_t *dma_buf;
201 lsi_queue *queue;
202 int queue_len;
203 int active_commands;
205 uint32_t dsa;
206 uint32_t temp;
207 uint32_t dnad;
208 uint32_t dbc;
209 uint8_t istat0;
210 uint8_t istat1;
211 uint8_t dcmd;
212 uint8_t dstat;
213 uint8_t dien;
214 uint8_t sist0;
215 uint8_t sist1;
216 uint8_t sien0;
217 uint8_t sien1;
218 uint8_t mbox0;
219 uint8_t mbox1;
220 uint8_t dfifo;
221 uint8_t ctest2;
222 uint8_t ctest3;
223 uint8_t ctest4;
224 uint8_t ctest5;
225 uint8_t ccntl0;
226 uint8_t ccntl1;
227 uint32_t dsp;
228 uint32_t dsps;
229 uint8_t dmode;
230 uint8_t dcntl;
231 uint8_t scntl0;
232 uint8_t scntl1;
233 uint8_t scntl2;
234 uint8_t scntl3;
235 uint8_t sstat0;
236 uint8_t sstat1;
237 uint8_t scid;
238 uint8_t sxfer;
239 uint8_t socl;
240 uint8_t sdid;
241 uint8_t ssid;
242 uint8_t sfbr;
243 uint8_t stest1;
244 uint8_t stest2;
245 uint8_t stest3;
246 uint8_t sidl;
247 uint8_t stime0;
248 uint8_t respid0;
249 uint8_t respid1;
250 uint32_t mmrs;
251 uint32_t mmws;
252 uint32_t sfs;
253 uint32_t drs;
254 uint32_t sbms;
255 uint32_t dbms;
256 uint32_t dnad64;
257 uint32_t pmjad1;
258 uint32_t pmjad2;
259 uint32_t rbc;
260 uint32_t ua;
261 uint32_t ia;
262 uint32_t sbc;
263 uint32_t csbc;
264 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
265 uint8_t sbr;
267 /* Script ram is stored as 32-bit words in host byteorder. */
268 uint32_t script_ram[2048];
269 } LSIState;
271 static void lsi_soft_reset(LSIState *s)
273 DPRINTF("Reset\n");
274 s->carry = 0;
276 s->waiting = 0;
277 s->dsa = 0;
278 s->dnad = 0;
279 s->dbc = 0;
280 s->temp = 0;
281 memset(s->scratch, 0, sizeof(s->scratch));
282 s->istat0 = 0;
283 s->istat1 = 0;
284 s->dcmd = 0;
285 s->dstat = 0;
286 s->dien = 0;
287 s->sist0 = 0;
288 s->sist1 = 0;
289 s->sien0 = 0;
290 s->sien1 = 0;
291 s->mbox0 = 0;
292 s->mbox1 = 0;
293 s->dfifo = 0;
294 s->ctest2 = 0;
295 s->ctest3 = 0;
296 s->ctest4 = 0;
297 s->ctest5 = 0;
298 s->ccntl0 = 0;
299 s->ccntl1 = 0;
300 s->dsp = 0;
301 s->dsps = 0;
302 s->dmode = 0;
303 s->dcntl = 0;
304 s->scntl0 = 0xc0;
305 s->scntl1 = 0;
306 s->scntl2 = 0;
307 s->scntl3 = 0;
308 s->sstat0 = 0;
309 s->sstat1 = 0;
310 s->scid = 7;
311 s->sxfer = 0;
312 s->socl = 0;
313 s->stest1 = 0;
314 s->stest2 = 0;
315 s->stest3 = 0;
316 s->sidl = 0;
317 s->stime0 = 0;
318 s->respid0 = 0x80;
319 s->respid1 = 0;
320 s->mmrs = 0;
321 s->mmws = 0;
322 s->sfs = 0;
323 s->drs = 0;
324 s->sbms = 0;
325 s->dbms = 0;
326 s->dnad64 = 0;
327 s->pmjad1 = 0;
328 s->pmjad2 = 0;
329 s->rbc = 0;
330 s->ua = 0;
331 s->ia = 0;
332 s->sbc = 0;
333 s->csbc = 0;
334 s->sbr = 0;
337 static int lsi_dma_40bit(LSIState *s)
339 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
340 return 1;
341 return 0;
344 static int lsi_dma_ti64bit(LSIState *s)
346 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
347 return 1;
348 return 0;
351 static int lsi_dma_64bit(LSIState *s)
353 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
354 return 1;
355 return 0;
358 static uint8_t lsi_reg_readb(LSIState *s, int offset);
359 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
360 static void lsi_execute_script(LSIState *s);
362 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
364 uint32_t buf;
366 /* Optimize reading from SCRIPTS RAM. */
367 if ((addr & 0xffffe000) == s->script_ram_base) {
368 return s->script_ram[(addr & 0x1fff) >> 2];
370 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
371 return cpu_to_le32(buf);
374 static void lsi_stop_script(LSIState *s)
376 s->istat1 &= ~LSI_ISTAT1_SRUN;
379 static void lsi_update_irq(LSIState *s)
381 int level;
382 static int last_level;
384 /* It's unclear whether the DIP/SIP bits should be cleared when the
385 Interrupt Status Registers are cleared or when istat0 is read.
386 We currently do the formwer, which seems to work. */
387 level = 0;
388 if (s->dstat) {
389 if (s->dstat & s->dien)
390 level = 1;
391 s->istat0 |= LSI_ISTAT0_DIP;
392 } else {
393 s->istat0 &= ~LSI_ISTAT0_DIP;
396 if (s->sist0 || s->sist1) {
397 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
398 level = 1;
399 s->istat0 |= LSI_ISTAT0_SIP;
400 } else {
401 s->istat0 &= ~LSI_ISTAT0_SIP;
403 if (s->istat0 & LSI_ISTAT0_INTF)
404 level = 1;
406 if (level != last_level) {
407 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
408 level, s->dstat, s->sist1, s->sist0);
409 last_level = level;
411 qemu_set_irq(s->pci_dev.irq[0], level);
414 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
415 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
417 uint32_t mask0;
418 uint32_t mask1;
420 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
421 stat1, stat0, s->sist1, s->sist0);
422 s->sist0 |= stat0;
423 s->sist1 |= stat1;
424 /* Stop processor on fatal or unmasked interrupt. As a special hack
425 we don't stop processing when raising STO. Instead continue
426 execution and stop at the next insn that accesses the SCSI bus. */
427 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
428 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
429 mask1 &= ~LSI_SIST1_STO;
430 if (s->sist0 & mask0 || s->sist1 & mask1) {
431 lsi_stop_script(s);
433 lsi_update_irq(s);
436 /* Stop SCRIPTS execution and raise a DMA interrupt. */
437 static void lsi_script_dma_interrupt(LSIState *s, int stat)
439 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
440 s->dstat |= stat;
441 lsi_update_irq(s);
442 lsi_stop_script(s);
445 static inline void lsi_set_phase(LSIState *s, int phase)
447 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
450 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
452 /* Trigger a phase mismatch. */
453 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
454 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
455 s->dsp = s->pmjad1;
456 } else {
457 s->dsp = s->pmjad2;
459 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
460 } else {
461 DPRINTF("Phase mismatch interrupt\n");
462 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
463 lsi_stop_script(s);
465 lsi_set_phase(s, new_phase);
469 /* Resume SCRIPTS execution after a DMA operation. */
470 static void lsi_resume_script(LSIState *s)
472 if (s->waiting != 2) {
473 s->waiting = 0;
474 lsi_execute_script(s);
475 } else {
476 s->waiting = 0;
480 /* Initiate a SCSI layer data transfer. */
481 static void lsi_do_dma(LSIState *s, int out)
483 uint32_t count;
484 target_phys_addr_t addr;
486 if (!s->current_dma_len) {
487 /* Wait until data is available. */
488 DPRINTF("DMA no data available\n");
489 return;
492 count = s->dbc;
493 if (count > s->current_dma_len)
494 count = s->current_dma_len;
496 addr = s->dnad;
497 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
498 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
499 addr |= ((uint64_t)s->dnad64 << 32);
500 else if (s->dbms)
501 addr |= ((uint64_t)s->dbms << 32);
502 else if (s->sbms)
503 addr |= ((uint64_t)s->sbms << 32);
505 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
506 s->csbc += count;
507 s->dnad += count;
508 s->dbc -= count;
510 if (s->dma_buf == NULL) {
511 s->dma_buf = s->current_dev->get_buf(s->current_dev,
512 s->current_tag);
515 /* ??? Set SFBR to first data byte. */
516 if (out) {
517 cpu_physical_memory_read(addr, s->dma_buf, count);
518 } else {
519 cpu_physical_memory_write(addr, s->dma_buf, count);
521 s->current_dma_len -= count;
522 if (s->current_dma_len == 0) {
523 s->dma_buf = NULL;
524 if (out) {
525 /* Write the data. */
526 s->current_dev->write_data(s->current_dev, s->current_tag);
527 } else {
528 /* Request any remaining data. */
529 s->current_dev->read_data(s->current_dev, s->current_tag);
531 } else {
532 s->dma_buf += count;
533 lsi_resume_script(s);
538 /* Add a command to the queue. */
539 static void lsi_queue_command(LSIState *s)
541 lsi_queue *p;
543 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
544 if (s->queue_len == s->active_commands) {
545 s->queue_len++;
546 s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
548 p = &s->queue[s->active_commands++];
549 p->tag = s->current_tag;
550 p->pending = 0;
551 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
554 /* Queue a byte for a MSG IN phase. */
555 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
557 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
558 BADF("MSG IN data too long\n");
559 } else {
560 DPRINTF("MSG IN 0x%02x\n", data);
561 s->msg[s->msg_len++] = data;
565 /* Perform reselection to continue a command. */
566 static void lsi_reselect(LSIState *s, uint32_t tag)
568 lsi_queue *p;
569 int n;
570 int id;
572 p = NULL;
573 for (n = 0; n < s->active_commands; n++) {
574 p = &s->queue[n];
575 if (p->tag == tag)
576 break;
578 if (n == s->active_commands) {
579 BADF("Reselected non-existant command tag=0x%x\n", tag);
580 return;
582 id = (tag >> 8) & 0xf;
583 s->ssid = id | 0x80;
584 DPRINTF("Reselected target %d\n", id);
585 s->current_dev = s->scsi_dev[id];
586 s->current_tag = tag;
587 s->scntl1 |= LSI_SCNTL1_CON;
588 lsi_set_phase(s, PHASE_MI);
589 s->msg_action = p->out ? 2 : 3;
590 s->current_dma_len = p->pending;
591 s->dma_buf = NULL;
592 lsi_add_msg_byte(s, 0x80);
593 if (s->current_tag & LSI_TAG_VALID) {
594 lsi_add_msg_byte(s, 0x20);
595 lsi_add_msg_byte(s, tag & 0xff);
598 s->active_commands--;
599 if (n != s->active_commands) {
600 s->queue[n] = s->queue[s->active_commands];
604 /* Record that data is available for a queued command. Returns zero if
605 the device was reselected, nonzero if the IO is deferred. */
606 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
608 lsi_queue *p;
609 int i;
610 for (i = 0; i < s->active_commands; i++) {
611 p = &s->queue[i];
612 if (p->tag == tag) {
613 if (p->pending) {
614 BADF("Multiple IO pending for tag %d\n", tag);
616 p->pending = arg;
617 if (s->waiting == 1) {
618 /* Reselect device. */
619 lsi_reselect(s, tag);
620 return 0;
621 } else {
622 DPRINTF("Queueing IO tag=0x%x\n", tag);
623 p->pending = arg;
624 return 1;
628 BADF("IO with unknown tag %d\n", tag);
629 return 1;
632 /* Callback to indicate that the SCSI layer has completed a transfer. */
633 static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
634 uint32_t arg)
636 LSIState *s = (LSIState *)opaque;
637 int out;
639 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
640 if (reason == SCSI_REASON_DONE) {
641 DPRINTF("Command complete sense=%d\n", (int)arg);
642 s->sense = arg;
643 s->command_complete = 2;
644 if (s->waiting && s->dbc != 0) {
645 /* Raise phase mismatch for short transfers. */
646 lsi_bad_phase(s, out, PHASE_ST);
647 } else {
648 lsi_set_phase(s, PHASE_ST);
650 lsi_resume_script(s);
651 return;
654 if (s->waiting == 1 || tag != s->current_tag) {
655 if (lsi_queue_tag(s, tag, arg))
656 return;
658 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
659 s->current_dma_len = arg;
660 s->command_complete = 1;
661 if (!s->waiting)
662 return;
663 if (s->waiting == 1 || s->dbc == 0) {
664 lsi_resume_script(s);
665 } else {
666 lsi_do_dma(s, out);
670 static void lsi_do_command(LSIState *s)
672 uint8_t buf[16];
673 int n;
675 DPRINTF("Send command len=%d\n", s->dbc);
676 if (s->dbc > 16)
677 s->dbc = 16;
678 cpu_physical_memory_read(s->dnad, buf, s->dbc);
679 s->sfbr = buf[0];
680 s->command_complete = 0;
681 n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
682 s->current_lun);
683 if (n > 0) {
684 lsi_set_phase(s, PHASE_DI);
685 s->current_dev->read_data(s->current_dev, s->current_tag);
686 } else if (n < 0) {
687 lsi_set_phase(s, PHASE_DO);
688 s->current_dev->write_data(s->current_dev, s->current_tag);
691 if (!s->command_complete) {
692 if (n) {
693 /* Command did not complete immediately so disconnect. */
694 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
695 lsi_add_msg_byte(s, 4); /* DISCONNECT */
696 /* wait data */
697 lsi_set_phase(s, PHASE_MI);
698 s->msg_action = 1;
699 lsi_queue_command(s);
700 } else {
701 /* wait command complete */
702 lsi_set_phase(s, PHASE_DI);
707 static void lsi_do_status(LSIState *s)
709 uint8_t sense;
710 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
711 if (s->dbc != 1)
712 BADF("Bad Status move\n");
713 s->dbc = 1;
714 sense = s->sense;
715 s->sfbr = sense;
716 cpu_physical_memory_write(s->dnad, &sense, 1);
717 lsi_set_phase(s, PHASE_MI);
718 s->msg_action = 1;
719 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
722 static void lsi_disconnect(LSIState *s)
724 s->scntl1 &= ~LSI_SCNTL1_CON;
725 s->sstat1 &= ~PHASE_MASK;
728 static void lsi_do_msgin(LSIState *s)
730 int len;
731 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
732 s->sfbr = s->msg[0];
733 len = s->msg_len;
734 if (len > s->dbc)
735 len = s->dbc;
736 cpu_physical_memory_write(s->dnad, s->msg, len);
737 /* Linux drivers rely on the last byte being in the SIDL. */
738 s->sidl = s->msg[len - 1];
739 s->msg_len -= len;
740 if (s->msg_len) {
741 memmove(s->msg, s->msg + len, s->msg_len);
742 } else {
743 /* ??? Check if ATN (not yet implemented) is asserted and maybe
744 switch to PHASE_MO. */
745 switch (s->msg_action) {
746 case 0:
747 lsi_set_phase(s, PHASE_CMD);
748 break;
749 case 1:
750 lsi_disconnect(s);
751 break;
752 case 2:
753 lsi_set_phase(s, PHASE_DO);
754 break;
755 case 3:
756 lsi_set_phase(s, PHASE_DI);
757 break;
758 default:
759 abort();
764 /* Read the next byte during a MSGOUT phase. */
765 static uint8_t lsi_get_msgbyte(LSIState *s)
767 uint8_t data;
768 cpu_physical_memory_read(s->dnad, &data, 1);
769 s->dnad++;
770 s->dbc--;
771 return data;
774 static void lsi_do_msgout(LSIState *s)
776 uint8_t msg;
777 int len;
779 DPRINTF("MSG out len=%d\n", s->dbc);
780 while (s->dbc) {
781 msg = lsi_get_msgbyte(s);
782 s->sfbr = msg;
784 switch (msg) {
785 case 0x00:
786 DPRINTF("MSG: Disconnect\n");
787 lsi_disconnect(s);
788 break;
789 case 0x08:
790 DPRINTF("MSG: No Operation\n");
791 lsi_set_phase(s, PHASE_CMD);
792 break;
793 case 0x01:
794 len = lsi_get_msgbyte(s);
795 msg = lsi_get_msgbyte(s);
796 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
797 switch (msg) {
798 case 1:
799 DPRINTF("SDTR (ignored)\n");
800 s->dbc -= 2;
801 break;
802 case 3:
803 DPRINTF("WDTR (ignored)\n");
804 s->dbc -= 1;
805 break;
806 default:
807 goto bad;
809 break;
810 case 0x20: /* SIMPLE queue */
811 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
812 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
813 break;
814 case 0x21: /* HEAD of queue */
815 BADF("HEAD queue not implemented\n");
816 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
817 break;
818 case 0x22: /* ORDERED queue */
819 BADF("ORDERED queue not implemented\n");
820 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
821 break;
822 default:
823 if ((msg & 0x80) == 0) {
824 goto bad;
826 s->current_lun = msg & 7;
827 DPRINTF("Select LUN %d\n", s->current_lun);
828 lsi_set_phase(s, PHASE_CMD);
829 break;
832 return;
833 bad:
834 BADF("Unimplemented message 0x%02x\n", msg);
835 lsi_set_phase(s, PHASE_MI);
836 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
837 s->msg_action = 0;
840 /* Sign extend a 24-bit value. */
841 static inline int32_t sxt24(int32_t n)
843 return (n << 8) >> 8;
846 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
848 int n;
849 uint8_t buf[TARGET_PAGE_SIZE];
851 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
852 while (count) {
853 n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
854 cpu_physical_memory_read(src, buf, n);
855 cpu_physical_memory_write(dest, buf, n);
856 src += n;
857 dest += n;
858 count -= n;
862 static void lsi_wait_reselect(LSIState *s)
864 int i;
865 DPRINTF("Wait Reselect\n");
866 if (s->current_dma_len)
867 BADF("Reselect with pending DMA\n");
868 for (i = 0; i < s->active_commands; i++) {
869 if (s->queue[i].pending) {
870 lsi_reselect(s, s->queue[i].tag);
871 break;
874 if (s->current_dma_len == 0) {
875 s->waiting = 1;
879 static void lsi_execute_script(LSIState *s)
881 uint32_t insn;
882 uint32_t addr, addr_high;
883 int opcode;
884 int insn_processed = 0;
886 s->istat1 |= LSI_ISTAT1_SRUN;
887 again:
888 insn_processed++;
889 insn = read_dword(s, s->dsp);
890 if (!insn) {
891 /* If we receive an empty opcode increment the DSP by 4 bytes
892 instead of 8 and execute the next opcode at that location */
893 s->dsp += 4;
894 goto again;
896 addr = read_dword(s, s->dsp + 4);
897 addr_high = 0;
898 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
899 s->dsps = addr;
900 s->dcmd = insn >> 24;
901 s->dsp += 8;
902 switch (insn >> 30) {
903 case 0: /* Block move. */
904 if (s->sist1 & LSI_SIST1_STO) {
905 DPRINTF("Delayed select timeout\n");
906 lsi_stop_script(s);
907 break;
909 s->dbc = insn & 0xffffff;
910 s->rbc = s->dbc;
911 /* ??? Set ESA. */
912 s->ia = s->dsp - 8;
913 if (insn & (1 << 29)) {
914 /* Indirect addressing. */
915 addr = read_dword(s, addr);
916 } else if (insn & (1 << 28)) {
917 uint32_t buf[2];
918 int32_t offset;
919 /* Table indirect addressing. */
921 /* 32-bit Table indirect */
922 offset = sxt24(addr);
923 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
924 /* byte count is stored in bits 0:23 only */
925 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
926 s->rbc = s->dbc;
927 addr = cpu_to_le32(buf[1]);
929 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
930 * table, bits [31:24] */
931 if (lsi_dma_40bit(s))
932 addr_high = cpu_to_le32(buf[0]) >> 24;
933 else if (lsi_dma_ti64bit(s)) {
934 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
935 switch (selector) {
936 case 0 ... 0x0f:
937 /* offset index into scratch registers since
938 * TI64 mode can use registers C to R */
939 addr_high = s->scratch[2 + selector];
940 break;
941 case 0x10:
942 addr_high = s->mmrs;
943 break;
944 case 0x11:
945 addr_high = s->mmws;
946 break;
947 case 0x12:
948 addr_high = s->sfs;
949 break;
950 case 0x13:
951 addr_high = s->drs;
952 break;
953 case 0x14:
954 addr_high = s->sbms;
955 break;
956 case 0x15:
957 addr_high = s->dbms;
958 break;
959 default:
960 BADF("Illegal selector specified (0x%x > 0x15)"
961 " for 64-bit DMA block move", selector);
962 break;
965 } else if (lsi_dma_64bit(s)) {
966 /* fetch a 3rd dword if 64-bit direct move is enabled and
967 only if we're not doing table indirect or indirect addressing */
968 s->dbms = read_dword(s, s->dsp);
969 s->dsp += 4;
970 s->ia = s->dsp - 12;
972 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
973 DPRINTF("Wrong phase got %d expected %d\n",
974 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
975 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
976 break;
978 s->dnad = addr;
979 s->dnad64 = addr_high;
980 switch (s->sstat1 & 0x7) {
981 case PHASE_DO:
982 s->waiting = 2;
983 lsi_do_dma(s, 1);
984 if (s->waiting)
985 s->waiting = 3;
986 break;
987 case PHASE_DI:
988 s->waiting = 2;
989 lsi_do_dma(s, 0);
990 if (s->waiting)
991 s->waiting = 3;
992 break;
993 case PHASE_CMD:
994 lsi_do_command(s);
995 break;
996 case PHASE_ST:
997 lsi_do_status(s);
998 break;
999 case PHASE_MO:
1000 lsi_do_msgout(s);
1001 break;
1002 case PHASE_MI:
1003 lsi_do_msgin(s);
1004 break;
1005 default:
1006 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1007 exit(1);
1009 s->dfifo = s->dbc & 0xff;
1010 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1011 s->sbc = s->dbc;
1012 s->rbc -= s->dbc;
1013 s->ua = addr + s->dbc;
1014 break;
1016 case 1: /* IO or Read/Write instruction. */
1017 opcode = (insn >> 27) & 7;
1018 if (opcode < 5) {
1019 uint32_t id;
1021 if (insn & (1 << 25)) {
1022 id = read_dword(s, s->dsa + sxt24(insn));
1023 } else {
1024 id = addr;
1026 id = (id >> 16) & 0xf;
1027 if (insn & (1 << 26)) {
1028 addr = s->dsp + sxt24(addr);
1030 s->dnad = addr;
1031 switch (opcode) {
1032 case 0: /* Select */
1033 s->sdid = id;
1034 if (s->current_dma_len && (s->ssid & 0xf) == id) {
1035 DPRINTF("Already reselected by target %d\n", id);
1036 break;
1038 s->sstat0 |= LSI_SSTAT0_WOA;
1039 s->scntl1 &= ~LSI_SCNTL1_IARB;
1040 if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1041 DPRINTF("Selected absent target %d\n", id);
1042 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1043 lsi_disconnect(s);
1044 break;
1046 DPRINTF("Selected target %d%s\n",
1047 id, insn & (1 << 3) ? " ATN" : "");
1048 /* ??? Linux drivers compain when this is set. Maybe
1049 it only applies in low-level mode (unimplemented).
1050 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1051 s->current_dev = s->scsi_dev[id];
1052 s->current_tag = id << 8;
1053 s->scntl1 |= LSI_SCNTL1_CON;
1054 if (insn & (1 << 3)) {
1055 s->socl |= LSI_SOCL_ATN;
1057 lsi_set_phase(s, PHASE_MO);
1058 break;
1059 case 1: /* Disconnect */
1060 DPRINTF("Wait Disconect\n");
1061 s->scntl1 &= ~LSI_SCNTL1_CON;
1062 break;
1063 case 2: /* Wait Reselect */
1064 lsi_wait_reselect(s);
1065 break;
1066 case 3: /* Set */
1067 DPRINTF("Set%s%s%s%s\n",
1068 insn & (1 << 3) ? " ATN" : "",
1069 insn & (1 << 6) ? " ACK" : "",
1070 insn & (1 << 9) ? " TM" : "",
1071 insn & (1 << 10) ? " CC" : "");
1072 if (insn & (1 << 3)) {
1073 s->socl |= LSI_SOCL_ATN;
1074 lsi_set_phase(s, PHASE_MO);
1076 if (insn & (1 << 9)) {
1077 BADF("Target mode not implemented\n");
1078 exit(1);
1080 if (insn & (1 << 10))
1081 s->carry = 1;
1082 break;
1083 case 4: /* Clear */
1084 DPRINTF("Clear%s%s%s%s\n",
1085 insn & (1 << 3) ? " ATN" : "",
1086 insn & (1 << 6) ? " ACK" : "",
1087 insn & (1 << 9) ? " TM" : "",
1088 insn & (1 << 10) ? " CC" : "");
1089 if (insn & (1 << 3)) {
1090 s->socl &= ~LSI_SOCL_ATN;
1092 if (insn & (1 << 10))
1093 s->carry = 0;
1094 break;
1096 } else {
1097 uint8_t op0;
1098 uint8_t op1;
1099 uint8_t data8;
1100 int reg;
1101 int operator;
1102 #ifdef DEBUG_LSI
1103 static const char *opcode_names[3] =
1104 {"Write", "Read", "Read-Modify-Write"};
1105 static const char *operator_names[8] =
1106 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1107 #endif
1109 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1110 data8 = (insn >> 8) & 0xff;
1111 opcode = (insn >> 27) & 7;
1112 operator = (insn >> 24) & 7;
1113 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1114 opcode_names[opcode - 5], reg,
1115 operator_names[operator], data8, s->sfbr,
1116 (insn & (1 << 23)) ? " SFBR" : "");
1117 op0 = op1 = 0;
1118 switch (opcode) {
1119 case 5: /* From SFBR */
1120 op0 = s->sfbr;
1121 op1 = data8;
1122 break;
1123 case 6: /* To SFBR */
1124 if (operator)
1125 op0 = lsi_reg_readb(s, reg);
1126 op1 = data8;
1127 break;
1128 case 7: /* Read-modify-write */
1129 if (operator)
1130 op0 = lsi_reg_readb(s, reg);
1131 if (insn & (1 << 23)) {
1132 op1 = s->sfbr;
1133 } else {
1134 op1 = data8;
1136 break;
1139 switch (operator) {
1140 case 0: /* move */
1141 op0 = op1;
1142 break;
1143 case 1: /* Shift left */
1144 op1 = op0 >> 7;
1145 op0 = (op0 << 1) | s->carry;
1146 s->carry = op1;
1147 break;
1148 case 2: /* OR */
1149 op0 |= op1;
1150 break;
1151 case 3: /* XOR */
1152 op0 ^= op1;
1153 break;
1154 case 4: /* AND */
1155 op0 &= op1;
1156 break;
1157 case 5: /* SHR */
1158 op1 = op0 & 1;
1159 op0 = (op0 >> 1) | (s->carry << 7);
1160 s->carry = op1;
1161 break;
1162 case 6: /* ADD */
1163 op0 += op1;
1164 s->carry = op0 < op1;
1165 break;
1166 case 7: /* ADC */
1167 op0 += op1 + s->carry;
1168 if (s->carry)
1169 s->carry = op0 <= op1;
1170 else
1171 s->carry = op0 < op1;
1172 break;
1175 switch (opcode) {
1176 case 5: /* From SFBR */
1177 case 7: /* Read-modify-write */
1178 lsi_reg_writeb(s, reg, op0);
1179 break;
1180 case 6: /* To SFBR */
1181 s->sfbr = op0;
1182 break;
1185 break;
1187 case 2: /* Transfer Control. */
1189 int cond;
1190 int jmp;
1192 if ((insn & 0x002e0000) == 0) {
1193 DPRINTF("NOP\n");
1194 break;
1196 if (s->sist1 & LSI_SIST1_STO) {
1197 DPRINTF("Delayed select timeout\n");
1198 lsi_stop_script(s);
1199 break;
1201 cond = jmp = (insn & (1 << 19)) != 0;
1202 if (cond == jmp && (insn & (1 << 21))) {
1203 DPRINTF("Compare carry %d\n", s->carry == jmp);
1204 cond = s->carry != 0;
1206 if (cond == jmp && (insn & (1 << 17))) {
1207 DPRINTF("Compare phase %d %c= %d\n",
1208 (s->sstat1 & PHASE_MASK),
1209 jmp ? '=' : '!',
1210 ((insn >> 24) & 7));
1211 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1213 if (cond == jmp && (insn & (1 << 18))) {
1214 uint8_t mask;
1216 mask = (~insn >> 8) & 0xff;
1217 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1218 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1219 cond = (s->sfbr & mask) == (insn & mask);
1221 if (cond == jmp) {
1222 if (insn & (1 << 23)) {
1223 /* Relative address. */
1224 addr = s->dsp + sxt24(addr);
1226 switch ((insn >> 27) & 7) {
1227 case 0: /* Jump */
1228 DPRINTF("Jump to 0x%08x\n", addr);
1229 s->dsp = addr;
1230 break;
1231 case 1: /* Call */
1232 DPRINTF("Call 0x%08x\n", addr);
1233 s->temp = s->dsp;
1234 s->dsp = addr;
1235 break;
1236 case 2: /* Return */
1237 DPRINTF("Return to 0x%08x\n", s->temp);
1238 s->dsp = s->temp;
1239 break;
1240 case 3: /* Interrupt */
1241 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1242 if ((insn & (1 << 20)) != 0) {
1243 s->istat0 |= LSI_ISTAT0_INTF;
1244 lsi_update_irq(s);
1245 } else {
1246 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1248 break;
1249 default:
1250 DPRINTF("Illegal transfer control\n");
1251 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1252 break;
1254 } else {
1255 DPRINTF("Control condition failed\n");
1258 break;
1260 case 3:
1261 if ((insn & (1 << 29)) == 0) {
1262 /* Memory move. */
1263 uint32_t dest;
1264 /* ??? The docs imply the destination address is loaded into
1265 the TEMP register. However the Linux drivers rely on
1266 the value being presrved. */
1267 dest = read_dword(s, s->dsp);
1268 s->dsp += 4;
1269 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1270 } else {
1271 uint8_t data[7];
1272 int reg;
1273 int n;
1274 int i;
1276 if (insn & (1 << 28)) {
1277 addr = s->dsa + sxt24(addr);
1279 n = (insn & 7);
1280 reg = (insn >> 16) & 0xff;
1281 if (insn & (1 << 24)) {
1282 cpu_physical_memory_read(addr, data, n);
1283 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1284 addr, *(int *)data);
1285 for (i = 0; i < n; i++) {
1286 lsi_reg_writeb(s, reg + i, data[i]);
1288 } else {
1289 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1290 for (i = 0; i < n; i++) {
1291 data[i] = lsi_reg_readb(s, reg + i);
1293 cpu_physical_memory_write(addr, data, n);
1297 if (insn_processed > 10000 && !s->waiting) {
1298 /* Some windows drivers make the device spin waiting for a memory
1299 location to change. If we have been executed a lot of code then
1300 assume this is the case and force an unexpected device disconnect.
1301 This is apparently sufficient to beat the drivers into submission.
1303 if (!(s->sien0 & LSI_SIST0_UDC))
1304 fprintf(stderr, "inf. loop with UDC masked\n");
1305 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1306 lsi_disconnect(s);
1307 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1308 if (s->dcntl & LSI_DCNTL_SSM) {
1309 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1310 } else {
1311 goto again;
1314 DPRINTF("SCRIPTS execution stopped\n");
1317 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1319 uint8_t tmp;
1320 #define CASE_GET_REG24(name, addr) \
1321 case addr: return s->name & 0xff; \
1322 case addr + 1: return (s->name >> 8) & 0xff; \
1323 case addr + 2: return (s->name >> 16) & 0xff;
1325 #define CASE_GET_REG32(name, addr) \
1326 case addr: return s->name & 0xff; \
1327 case addr + 1: return (s->name >> 8) & 0xff; \
1328 case addr + 2: return (s->name >> 16) & 0xff; \
1329 case addr + 3: return (s->name >> 24) & 0xff;
1331 #ifdef DEBUG_LSI_REG
1332 DPRINTF("Read reg %x\n", offset);
1333 #endif
1334 switch (offset) {
1335 case 0x00: /* SCNTL0 */
1336 return s->scntl0;
1337 case 0x01: /* SCNTL1 */
1338 return s->scntl1;
1339 case 0x02: /* SCNTL2 */
1340 return s->scntl2;
1341 case 0x03: /* SCNTL3 */
1342 return s->scntl3;
1343 case 0x04: /* SCID */
1344 return s->scid;
1345 case 0x05: /* SXFER */
1346 return s->sxfer;
1347 case 0x06: /* SDID */
1348 return s->sdid;
1349 case 0x07: /* GPREG0 */
1350 return 0x7f;
1351 case 0x08: /* Revision ID */
1352 return 0x00;
1353 case 0xa: /* SSID */
1354 return s->ssid;
1355 case 0xb: /* SBCL */
1356 /* ??? This is not correct. However it's (hopefully) only
1357 used for diagnostics, so should be ok. */
1358 return 0;
1359 case 0xc: /* DSTAT */
1360 tmp = s->dstat | 0x80;
1361 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1362 s->dstat = 0;
1363 lsi_update_irq(s);
1364 return tmp;
1365 case 0x0d: /* SSTAT0 */
1366 return s->sstat0;
1367 case 0x0e: /* SSTAT1 */
1368 return s->sstat1;
1369 case 0x0f: /* SSTAT2 */
1370 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1371 CASE_GET_REG32(dsa, 0x10)
1372 case 0x14: /* ISTAT0 */
1373 return s->istat0;
1374 case 0x15: /* ISTAT1 */
1375 return s->istat1;
1376 case 0x16: /* MBOX0 */
1377 return s->mbox0;
1378 case 0x17: /* MBOX1 */
1379 return s->mbox1;
1380 case 0x18: /* CTEST0 */
1381 return 0xff;
1382 case 0x19: /* CTEST1 */
1383 return 0;
1384 case 0x1a: /* CTEST2 */
1385 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1386 if (s->istat0 & LSI_ISTAT0_SIGP) {
1387 s->istat0 &= ~LSI_ISTAT0_SIGP;
1388 tmp |= LSI_CTEST2_SIGP;
1390 return tmp;
1391 case 0x1b: /* CTEST3 */
1392 return s->ctest3;
1393 CASE_GET_REG32(temp, 0x1c)
1394 case 0x20: /* DFIFO */
1395 return 0;
1396 case 0x21: /* CTEST4 */
1397 return s->ctest4;
1398 case 0x22: /* CTEST5 */
1399 return s->ctest5;
1400 case 0x23: /* CTEST6 */
1401 return 0;
1402 CASE_GET_REG24(dbc, 0x24)
1403 case 0x27: /* DCMD */
1404 return s->dcmd;
1405 CASE_GET_REG32(dnad, 0x28)
1406 CASE_GET_REG32(dsp, 0x2c)
1407 CASE_GET_REG32(dsps, 0x30)
1408 CASE_GET_REG32(scratch[0], 0x34)
1409 case 0x38: /* DMODE */
1410 return s->dmode;
1411 case 0x39: /* DIEN */
1412 return s->dien;
1413 case 0x3a: /* SBR */
1414 return s->sbr;
1415 case 0x3b: /* DCNTL */
1416 return s->dcntl;
1417 case 0x40: /* SIEN0 */
1418 return s->sien0;
1419 case 0x41: /* SIEN1 */
1420 return s->sien1;
1421 case 0x42: /* SIST0 */
1422 tmp = s->sist0;
1423 s->sist0 = 0;
1424 lsi_update_irq(s);
1425 return tmp;
1426 case 0x43: /* SIST1 */
1427 tmp = s->sist1;
1428 s->sist1 = 0;
1429 lsi_update_irq(s);
1430 return tmp;
1431 case 0x46: /* MACNTL */
1432 return 0x0f;
1433 case 0x47: /* GPCNTL0 */
1434 return 0x0f;
1435 case 0x48: /* STIME0 */
1436 return s->stime0;
1437 case 0x4a: /* RESPID0 */
1438 return s->respid0;
1439 case 0x4b: /* RESPID1 */
1440 return s->respid1;
1441 case 0x4d: /* STEST1 */
1442 return s->stest1;
1443 case 0x4e: /* STEST2 */
1444 return s->stest2;
1445 case 0x4f: /* STEST3 */
1446 return s->stest3;
1447 case 0x50: /* SIDL */
1448 /* This is needed by the linux drivers. We currently only update it
1449 during the MSG IN phase. */
1450 return s->sidl;
1451 case 0x52: /* STEST4 */
1452 return 0xe0;
1453 case 0x56: /* CCNTL0 */
1454 return s->ccntl0;
1455 case 0x57: /* CCNTL1 */
1456 return s->ccntl1;
1457 case 0x58: /* SBDL */
1458 /* Some drivers peek at the data bus during the MSG IN phase. */
1459 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1460 return s->msg[0];
1461 return 0;
1462 case 0x59: /* SBDL high */
1463 return 0;
1464 CASE_GET_REG32(mmrs, 0xa0)
1465 CASE_GET_REG32(mmws, 0xa4)
1466 CASE_GET_REG32(sfs, 0xa8)
1467 CASE_GET_REG32(drs, 0xac)
1468 CASE_GET_REG32(sbms, 0xb0)
1469 CASE_GET_REG32(dbms, 0xb4)
1470 CASE_GET_REG32(dnad64, 0xb8)
1471 CASE_GET_REG32(pmjad1, 0xc0)
1472 CASE_GET_REG32(pmjad2, 0xc4)
1473 CASE_GET_REG32(rbc, 0xc8)
1474 CASE_GET_REG32(ua, 0xcc)
1475 CASE_GET_REG32(ia, 0xd4)
1476 CASE_GET_REG32(sbc, 0xd8)
1477 CASE_GET_REG32(csbc, 0xdc)
1479 if (offset >= 0x5c && offset < 0xa0) {
1480 int n;
1481 int shift;
1482 n = (offset - 0x58) >> 2;
1483 shift = (offset & 3) * 8;
1484 return (s->scratch[n] >> shift) & 0xff;
1486 BADF("readb 0x%x\n", offset);
1487 exit(1);
1488 #undef CASE_GET_REG24
1489 #undef CASE_GET_REG32
1492 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1494 #define CASE_SET_REG24(name, addr) \
1495 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1496 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1497 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1499 #define CASE_SET_REG32(name, addr) \
1500 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1501 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1502 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1503 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1505 #ifdef DEBUG_LSI_REG
1506 DPRINTF("Write reg %x = %02x\n", offset, val);
1507 #endif
1508 switch (offset) {
1509 case 0x00: /* SCNTL0 */
1510 s->scntl0 = val;
1511 if (val & LSI_SCNTL0_START) {
1512 BADF("Start sequence not implemented\n");
1514 break;
1515 case 0x01: /* SCNTL1 */
1516 s->scntl1 = val & ~LSI_SCNTL1_SST;
1517 if (val & LSI_SCNTL1_IARB) {
1518 BADF("Immediate Arbritration not implemented\n");
1520 if (val & LSI_SCNTL1_RST) {
1521 s->sstat0 |= LSI_SSTAT0_RST;
1522 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1523 } else {
1524 s->sstat0 &= ~LSI_SSTAT0_RST;
1526 break;
1527 case 0x02: /* SCNTL2 */
1528 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1529 s->scntl2 = val;
1530 break;
1531 case 0x03: /* SCNTL3 */
1532 s->scntl3 = val;
1533 break;
1534 case 0x04: /* SCID */
1535 s->scid = val;
1536 break;
1537 case 0x05: /* SXFER */
1538 s->sxfer = val;
1539 break;
1540 case 0x06: /* SDID */
1541 if ((val & 0xf) != (s->ssid & 0xf))
1542 BADF("Destination ID does not match SSID\n");
1543 s->sdid = val & 0xf;
1544 break;
1545 case 0x07: /* GPREG0 */
1546 break;
1547 case 0x08: /* SFBR */
1548 /* The CPU is not allowed to write to this register. However the
1549 SCRIPTS register move instructions are. */
1550 s->sfbr = val;
1551 break;
1552 case 0x0a: case 0x0b:
1553 /* Openserver writes to these readonly registers on startup */
1554 return;
1555 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1556 /* Linux writes to these readonly registers on startup. */
1557 return;
1558 CASE_SET_REG32(dsa, 0x10)
1559 case 0x14: /* ISTAT0 */
1560 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1561 if (val & LSI_ISTAT0_ABRT) {
1562 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1564 if (val & LSI_ISTAT0_INTF) {
1565 s->istat0 &= ~LSI_ISTAT0_INTF;
1566 lsi_update_irq(s);
1568 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1569 DPRINTF("Woken by SIGP\n");
1570 s->waiting = 0;
1571 s->dsp = s->dnad;
1572 lsi_execute_script(s);
1574 if (val & LSI_ISTAT0_SRST) {
1575 lsi_soft_reset(s);
1577 break;
1578 case 0x16: /* MBOX0 */
1579 s->mbox0 = val;
1580 break;
1581 case 0x17: /* MBOX1 */
1582 s->mbox1 = val;
1583 break;
1584 case 0x1a: /* CTEST2 */
1585 s->ctest2 = val & LSI_CTEST2_PCICIE;
1586 break;
1587 case 0x1b: /* CTEST3 */
1588 s->ctest3 = val & 0x0f;
1589 break;
1590 CASE_SET_REG32(temp, 0x1c)
1591 case 0x21: /* CTEST4 */
1592 if (val & 7) {
1593 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1595 s->ctest4 = val;
1596 break;
1597 case 0x22: /* CTEST5 */
1598 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1599 BADF("CTEST5 DMA increment not implemented\n");
1601 s->ctest5 = val;
1602 break;
1603 CASE_SET_REG24(dbc, 0x24)
1604 CASE_SET_REG32(dnad, 0x28)
1605 case 0x2c: /* DSP[0:7] */
1606 s->dsp &= 0xffffff00;
1607 s->dsp |= val;
1608 break;
1609 case 0x2d: /* DSP[8:15] */
1610 s->dsp &= 0xffff00ff;
1611 s->dsp |= val << 8;
1612 break;
1613 case 0x2e: /* DSP[16:23] */
1614 s->dsp &= 0xff00ffff;
1615 s->dsp |= val << 16;
1616 break;
1617 case 0x2f: /* DSP[24:31] */
1618 s->dsp &= 0x00ffffff;
1619 s->dsp |= val << 24;
1620 if ((s->dmode & LSI_DMODE_MAN) == 0
1621 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1622 lsi_execute_script(s);
1623 break;
1624 CASE_SET_REG32(dsps, 0x30)
1625 CASE_SET_REG32(scratch[0], 0x34)
1626 case 0x38: /* DMODE */
1627 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1628 BADF("IO mappings not implemented\n");
1630 s->dmode = val;
1631 break;
1632 case 0x39: /* DIEN */
1633 s->dien = val;
1634 lsi_update_irq(s);
1635 break;
1636 case 0x3a: /* SBR */
1637 s->sbr = val;
1638 break;
1639 case 0x3b: /* DCNTL */
1640 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1641 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1642 lsi_execute_script(s);
1643 break;
1644 case 0x40: /* SIEN0 */
1645 s->sien0 = val;
1646 lsi_update_irq(s);
1647 break;
1648 case 0x41: /* SIEN1 */
1649 s->sien1 = val;
1650 lsi_update_irq(s);
1651 break;
1652 case 0x47: /* GPCNTL0 */
1653 break;
1654 case 0x48: /* STIME0 */
1655 s->stime0 = val;
1656 break;
1657 case 0x49: /* STIME1 */
1658 if (val & 0xf) {
1659 DPRINTF("General purpose timer not implemented\n");
1660 /* ??? Raising the interrupt immediately seems to be sufficient
1661 to keep the FreeBSD driver happy. */
1662 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1664 break;
1665 case 0x4a: /* RESPID0 */
1666 s->respid0 = val;
1667 break;
1668 case 0x4b: /* RESPID1 */
1669 s->respid1 = val;
1670 break;
1671 case 0x4d: /* STEST1 */
1672 s->stest1 = val;
1673 break;
1674 case 0x4e: /* STEST2 */
1675 if (val & 1) {
1676 BADF("Low level mode not implemented\n");
1678 s->stest2 = val;
1679 break;
1680 case 0x4f: /* STEST3 */
1681 if (val & 0x41) {
1682 BADF("SCSI FIFO test mode not implemented\n");
1684 s->stest3 = val;
1685 break;
1686 case 0x56: /* CCNTL0 */
1687 s->ccntl0 = val;
1688 break;
1689 case 0x57: /* CCNTL1 */
1690 s->ccntl1 = val;
1691 break;
1692 CASE_SET_REG32(mmrs, 0xa0)
1693 CASE_SET_REG32(mmws, 0xa4)
1694 CASE_SET_REG32(sfs, 0xa8)
1695 CASE_SET_REG32(drs, 0xac)
1696 CASE_SET_REG32(sbms, 0xb0)
1697 CASE_SET_REG32(dbms, 0xb4)
1698 CASE_SET_REG32(dnad64, 0xb8)
1699 CASE_SET_REG32(pmjad1, 0xc0)
1700 CASE_SET_REG32(pmjad2, 0xc4)
1701 CASE_SET_REG32(rbc, 0xc8)
1702 CASE_SET_REG32(ua, 0xcc)
1703 CASE_SET_REG32(ia, 0xd4)
1704 CASE_SET_REG32(sbc, 0xd8)
1705 CASE_SET_REG32(csbc, 0xdc)
1706 default:
1707 if (offset >= 0x5c && offset < 0xa0) {
1708 int n;
1709 int shift;
1710 n = (offset - 0x58) >> 2;
1711 shift = (offset & 3) * 8;
1712 s->scratch[n] &= ~(0xff << shift);
1713 s->scratch[n] |= (val & 0xff) << shift;
1714 } else {
1715 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1718 #undef CASE_SET_REG24
1719 #undef CASE_SET_REG32
1722 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1724 LSIState *s = (LSIState *)opaque;
1726 lsi_reg_writeb(s, addr & 0xff, val);
1729 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1731 LSIState *s = (LSIState *)opaque;
1733 addr &= 0xff;
1734 lsi_reg_writeb(s, addr, val & 0xff);
1735 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1738 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1740 LSIState *s = (LSIState *)opaque;
1742 addr &= 0xff;
1743 lsi_reg_writeb(s, addr, val & 0xff);
1744 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1745 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1746 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1749 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1751 LSIState *s = (LSIState *)opaque;
1753 return lsi_reg_readb(s, addr & 0xff);
1756 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1758 LSIState *s = (LSIState *)opaque;
1759 uint32_t val;
1761 addr &= 0xff;
1762 val = lsi_reg_readb(s, addr);
1763 val |= lsi_reg_readb(s, addr + 1) << 8;
1764 return val;
1767 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1769 LSIState *s = (LSIState *)opaque;
1770 uint32_t val;
1771 addr &= 0xff;
1772 val = lsi_reg_readb(s, addr);
1773 val |= lsi_reg_readb(s, addr + 1) << 8;
1774 val |= lsi_reg_readb(s, addr + 2) << 16;
1775 val |= lsi_reg_readb(s, addr + 3) << 24;
1776 return val;
1779 static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1780 lsi_mmio_readb,
1781 lsi_mmio_readw,
1782 lsi_mmio_readl,
1785 static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1786 lsi_mmio_writeb,
1787 lsi_mmio_writew,
1788 lsi_mmio_writel,
1791 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1793 LSIState *s = (LSIState *)opaque;
1794 uint32_t newval;
1795 int shift;
1797 addr &= 0x1fff;
1798 newval = s->script_ram[addr >> 2];
1799 shift = (addr & 3) * 8;
1800 newval &= ~(0xff << shift);
1801 newval |= val << shift;
1802 s->script_ram[addr >> 2] = newval;
1805 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1807 LSIState *s = (LSIState *)opaque;
1808 uint32_t newval;
1810 addr &= 0x1fff;
1811 newval = s->script_ram[addr >> 2];
1812 if (addr & 2) {
1813 newval = (newval & 0xffff) | (val << 16);
1814 } else {
1815 newval = (newval & 0xffff0000) | val;
1817 s->script_ram[addr >> 2] = newval;
1821 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1823 LSIState *s = (LSIState *)opaque;
1825 addr &= 0x1fff;
1826 s->script_ram[addr >> 2] = val;
1829 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1831 LSIState *s = (LSIState *)opaque;
1832 uint32_t val;
1834 addr &= 0x1fff;
1835 val = s->script_ram[addr >> 2];
1836 val >>= (addr & 3) * 8;
1837 return val & 0xff;
1840 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1842 LSIState *s = (LSIState *)opaque;
1843 uint32_t val;
1845 addr &= 0x1fff;
1846 val = s->script_ram[addr >> 2];
1847 if (addr & 2)
1848 val >>= 16;
1849 return le16_to_cpu(val);
1852 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1854 LSIState *s = (LSIState *)opaque;
1856 addr &= 0x1fff;
1857 return le32_to_cpu(s->script_ram[addr >> 2]);
1860 static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1861 lsi_ram_readb,
1862 lsi_ram_readw,
1863 lsi_ram_readl,
1866 static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1867 lsi_ram_writeb,
1868 lsi_ram_writew,
1869 lsi_ram_writel,
1872 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1874 LSIState *s = (LSIState *)opaque;
1875 return lsi_reg_readb(s, addr & 0xff);
1878 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1880 LSIState *s = (LSIState *)opaque;
1881 uint32_t val;
1882 addr &= 0xff;
1883 val = lsi_reg_readb(s, addr);
1884 val |= lsi_reg_readb(s, addr + 1) << 8;
1885 return val;
1888 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1890 LSIState *s = (LSIState *)opaque;
1891 uint32_t val;
1892 addr &= 0xff;
1893 val = lsi_reg_readb(s, addr);
1894 val |= lsi_reg_readb(s, addr + 1) << 8;
1895 val |= lsi_reg_readb(s, addr + 2) << 16;
1896 val |= lsi_reg_readb(s, addr + 3) << 24;
1897 return val;
1900 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1902 LSIState *s = (LSIState *)opaque;
1903 lsi_reg_writeb(s, addr & 0xff, val);
1906 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1908 LSIState *s = (LSIState *)opaque;
1909 addr &= 0xff;
1910 lsi_reg_writeb(s, addr, val & 0xff);
1911 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1914 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1916 LSIState *s = (LSIState *)opaque;
1917 addr &= 0xff;
1918 lsi_reg_writeb(s, addr, val & 0xff);
1919 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1920 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1921 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1924 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1925 uint32_t addr, uint32_t size, int type)
1927 LSIState *s = (LSIState *)pci_dev;
1929 DPRINTF("Mapping IO at %08x\n", addr);
1931 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1932 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1933 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1934 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1935 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1936 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1939 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1940 uint32_t addr, uint32_t size, int type)
1942 LSIState *s = (LSIState *)pci_dev;
1944 DPRINTF("Mapping ram at %08x\n", addr);
1945 s->script_ram_base = addr;
1946 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1949 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1950 uint32_t addr, uint32_t size, int type)
1952 LSIState *s = (LSIState *)pci_dev;
1954 DPRINTF("Mapping registers at %08x\n", addr);
1955 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1958 void lsi_scsi_attach(void *opaque, BlockDriverState *bd, int id)
1960 LSIState *s = (LSIState *)opaque;
1962 if (id < 0) {
1963 for (id = 0; id < LSI_MAX_DEVS; id++) {
1964 if (s->scsi_dev[id] == NULL)
1965 break;
1968 if (id >= LSI_MAX_DEVS) {
1969 BADF("Bad Device ID %d\n", id);
1970 return;
1972 if (s->scsi_dev[id]) {
1973 DPRINTF("Destroying device %d\n", id);
1974 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1976 DPRINTF("Attaching block device %d\n", id);
1977 s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1978 if (s->scsi_dev[id] == NULL)
1979 s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1980 bd->private = &s->pci_dev;
1983 static int lsi_scsi_uninit(PCIDevice *d)
1985 LSIState *s = (LSIState *) d;
1987 cpu_unregister_io_memory(s->mmio_io_addr);
1988 cpu_unregister_io_memory(s->ram_io_addr);
1990 qemu_free(s->queue);
1992 return 0;
1995 void *lsi_scsi_init(PCIBus *bus, int devfn)
1997 LSIState *s;
1998 uint8_t *pci_conf;
2000 s = (LSIState *)pci_register_device(bus, "LSI53C895A SCSI HBA",
2001 sizeof(*s), devfn, NULL, NULL);
2002 if (s == NULL) {
2003 fprintf(stderr, "lsi-scsi: Failed to register PCI device\n");
2004 return NULL;
2007 pci_conf = s->pci_dev.config;
2009 /* PCI Vendor ID (word) */
2010 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2011 /* PCI device ID (word) */
2012 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2013 /* PCI base class code */
2014 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2015 /* PCI subsystem ID */
2016 pci_conf[0x2e] = 0x00;
2017 pci_conf[0x2f] = 0x10;
2018 /* PCI latency timer = 255 */
2019 pci_conf[0x0d] = 0xff;
2020 /* Interrupt pin 1 */
2021 pci_conf[0x3d] = 0x01;
2023 s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
2024 lsi_mmio_writefn, s);
2025 s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
2026 lsi_ram_writefn, s);
2028 pci_register_io_region((struct PCIDevice *)s, 0, 256,
2029 PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2030 pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
2031 PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2032 pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
2033 PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2034 s->queue = qemu_malloc(sizeof(lsi_queue));
2035 s->queue_len = 1;
2036 s->active_commands = 0;
2037 s->pci_dev.unregister = lsi_scsi_uninit;
2039 lsi_soft_reset(s);
2041 return s;