slirp: Prepare for persistent socket state flags
[qemu-kvm/fedora.git] / kvm-all.c
blobd843338f39d1795e19f46abb497022c1fc3d2dba
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
68 static KVMState *kvm_state;
70 static KVMSlot *kvm_alloc_slot(KVMState *s)
72 int i;
74 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
75 /* KVM private memory slots */
76 if (i >= 8 && i < 12)
77 continue;
78 if (s->slots[i].memory_size == 0)
79 return &s->slots[i];
82 fprintf(stderr, "%s: no free slot available\n", __func__);
83 abort();
86 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
87 target_phys_addr_t start_addr,
88 target_phys_addr_t end_addr)
90 int i;
92 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
93 KVMSlot *mem = &s->slots[i];
95 if (start_addr == mem->start_addr &&
96 end_addr == mem->start_addr + mem->memory_size) {
97 return mem;
101 return NULL;
105 * Find overlapping slot with lowest start address
107 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
111 KVMSlot *found = NULL;
112 int i;
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
117 if (mem->memory_size == 0 ||
118 (found && found->start_addr < mem->start_addr)) {
119 continue;
122 if (end_addr > mem->start_addr &&
123 start_addr < mem->start_addr + mem->memory_size) {
124 found = mem;
128 return found;
131 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
133 struct kvm_userspace_memory_region mem;
135 mem.slot = slot->slot;
136 mem.guest_phys_addr = slot->start_addr;
137 mem.memory_size = slot->memory_size;
138 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
139 mem.flags = slot->flags;
140 if (s->migration_log) {
141 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
143 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147 int kvm_init_vcpu(CPUState *env)
149 KVMState *s = kvm_state;
150 long mmap_size;
151 int ret;
153 dprintf("kvm_init_vcpu\n");
155 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
156 if (ret < 0) {
157 dprintf("kvm_create_vcpu failed\n");
158 goto err;
161 env->kvm_fd = ret;
162 env->kvm_state = s;
164 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
165 if (mmap_size < 0) {
166 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
167 goto err;
170 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
171 env->kvm_fd, 0);
172 if (env->kvm_run == MAP_FAILED) {
173 ret = -errno;
174 dprintf("mmap'ing vcpu state failed\n");
175 goto err;
178 ret = kvm_arch_init_vcpu(env);
180 err:
181 return ret;
184 int kvm_put_mp_state(CPUState *env)
186 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
188 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
191 int kvm_get_mp_state(CPUState *env)
193 struct kvm_mp_state mp_state;
194 int ret;
196 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
197 if (ret < 0) {
198 return ret;
200 env->mp_state = mp_state.mp_state;
201 return 0;
204 int kvm_sync_vcpus(void)
206 CPUState *env;
208 for (env = first_cpu; env != NULL; env = env->next_cpu) {
209 int ret;
211 ret = kvm_arch_put_registers(env);
212 if (ret)
213 return ret;
216 return 0;
220 * dirty pages logging control
222 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
223 ram_addr_t size, int flags, int mask)
225 KVMState *s = kvm_state;
226 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
227 int old_flags;
229 if (mem == NULL) {
230 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
231 TARGET_FMT_plx "\n", __func__, phys_addr,
232 phys_addr + size - 1);
233 return -EINVAL;
236 old_flags = mem->flags;
238 flags = (mem->flags & ~mask) | flags;
239 mem->flags = flags;
241 /* If nothing changed effectively, no need to issue ioctl */
242 if (s->migration_log) {
243 flags |= KVM_MEM_LOG_DIRTY_PAGES;
245 if (flags == old_flags) {
246 return 0;
249 return kvm_set_user_memory_region(s, mem);
252 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
254 return kvm_dirty_pages_log_change(phys_addr, size,
255 KVM_MEM_LOG_DIRTY_PAGES,
256 KVM_MEM_LOG_DIRTY_PAGES);
259 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
261 return kvm_dirty_pages_log_change(phys_addr, size,
263 KVM_MEM_LOG_DIRTY_PAGES);
266 int kvm_set_migration_log(int enable)
268 KVMState *s = kvm_state;
269 KVMSlot *mem;
270 int i, err;
272 s->migration_log = enable;
274 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
275 mem = &s->slots[i];
277 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
278 continue;
280 err = kvm_set_user_memory_region(s, mem);
281 if (err) {
282 return err;
285 return 0;
289 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
290 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
291 * This means all bits are set to dirty.
293 * @start_add: start of logged region.
294 * @end_addr: end of logged region.
296 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
297 target_phys_addr_t end_addr)
299 KVMState *s = kvm_state;
300 unsigned long size, allocated_size = 0;
301 target_phys_addr_t phys_addr;
302 ram_addr_t addr;
303 KVMDirtyLog d;
304 KVMSlot *mem;
305 int ret = 0;
307 d.dirty_bitmap = NULL;
308 while (start_addr < end_addr) {
309 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
310 if (mem == NULL) {
311 break;
314 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
315 if (!d.dirty_bitmap) {
316 d.dirty_bitmap = qemu_malloc(size);
317 } else if (size > allocated_size) {
318 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
320 allocated_size = size;
321 memset(d.dirty_bitmap, 0, allocated_size);
323 d.slot = mem->slot;
325 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
326 dprintf("ioctl failed %d\n", errno);
327 ret = -1;
328 break;
331 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
332 phys_addr < mem->start_addr + mem->memory_size;
333 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
334 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
335 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
336 unsigned word = nr / (sizeof(*bitmap) * 8);
337 unsigned bit = nr % (sizeof(*bitmap) * 8);
339 if ((bitmap[word] >> bit) & 1) {
340 cpu_physical_memory_set_dirty(addr);
343 start_addr = phys_addr;
345 qemu_free(d.dirty_bitmap);
347 return ret;
350 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
352 int ret = -ENOSYS;
353 #ifdef KVM_CAP_COALESCED_MMIO
354 KVMState *s = kvm_state;
356 if (s->coalesced_mmio) {
357 struct kvm_coalesced_mmio_zone zone;
359 zone.addr = start;
360 zone.size = size;
362 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
364 #endif
366 return ret;
369 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
371 int ret = -ENOSYS;
372 #ifdef KVM_CAP_COALESCED_MMIO
373 KVMState *s = kvm_state;
375 if (s->coalesced_mmio) {
376 struct kvm_coalesced_mmio_zone zone;
378 zone.addr = start;
379 zone.size = size;
381 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
383 #endif
385 return ret;
388 int kvm_check_extension(KVMState *s, unsigned int extension)
390 int ret;
392 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
393 if (ret < 0) {
394 ret = 0;
397 return ret;
400 static void kvm_reset_vcpus(void *opaque)
402 kvm_sync_vcpus();
405 int kvm_init(int smp_cpus)
407 static const char upgrade_note[] =
408 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
409 "(see http://sourceforge.net/projects/kvm).\n";
410 KVMState *s;
411 int ret;
412 int i;
414 if (smp_cpus > 1) {
415 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
416 return -EINVAL;
419 s = qemu_mallocz(sizeof(KVMState));
421 #ifdef KVM_CAP_SET_GUEST_DEBUG
422 TAILQ_INIT(&s->kvm_sw_breakpoints);
423 #endif
424 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
425 s->slots[i].slot = i;
427 s->vmfd = -1;
428 s->fd = open("/dev/kvm", O_RDWR);
429 if (s->fd == -1) {
430 fprintf(stderr, "Could not access KVM kernel module: %m\n");
431 ret = -errno;
432 goto err;
435 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
436 if (ret < KVM_API_VERSION) {
437 if (ret > 0)
438 ret = -EINVAL;
439 fprintf(stderr, "kvm version too old\n");
440 goto err;
443 if (ret > KVM_API_VERSION) {
444 ret = -EINVAL;
445 fprintf(stderr, "kvm version not supported\n");
446 goto err;
449 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
450 if (s->vmfd < 0)
451 goto err;
453 /* initially, KVM allocated its own memory and we had to jump through
454 * hooks to make phys_ram_base point to this. Modern versions of KVM
455 * just use a user allocated buffer so we can use regular pages
456 * unmodified. Make sure we have a sufficiently modern version of KVM.
458 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
459 ret = -EINVAL;
460 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
461 upgrade_note);
462 goto err;
465 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
466 * destroyed properly. Since we rely on this capability, refuse to work
467 * with any kernel without this capability. */
468 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
469 ret = -EINVAL;
471 fprintf(stderr,
472 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
473 upgrade_note);
474 goto err;
477 #ifdef KVM_CAP_COALESCED_MMIO
478 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
479 #else
480 s->coalesced_mmio = 0;
481 #endif
483 s->broken_set_mem_region = 1;
484 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
485 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
486 if (ret > 0) {
487 s->broken_set_mem_region = 0;
489 #endif
491 ret = kvm_arch_init(s, smp_cpus);
492 if (ret < 0)
493 goto err;
495 qemu_register_reset(kvm_reset_vcpus, INT_MAX, NULL);
497 kvm_state = s;
499 return 0;
501 err:
502 if (s) {
503 if (s->vmfd != -1)
504 close(s->vmfd);
505 if (s->fd != -1)
506 close(s->fd);
508 qemu_free(s);
510 return ret;
513 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
514 int direction, int size, uint32_t count)
516 int i;
517 uint8_t *ptr = data;
519 for (i = 0; i < count; i++) {
520 if (direction == KVM_EXIT_IO_IN) {
521 switch (size) {
522 case 1:
523 stb_p(ptr, cpu_inb(env, port));
524 break;
525 case 2:
526 stw_p(ptr, cpu_inw(env, port));
527 break;
528 case 4:
529 stl_p(ptr, cpu_inl(env, port));
530 break;
532 } else {
533 switch (size) {
534 case 1:
535 cpu_outb(env, port, ldub_p(ptr));
536 break;
537 case 2:
538 cpu_outw(env, port, lduw_p(ptr));
539 break;
540 case 4:
541 cpu_outl(env, port, ldl_p(ptr));
542 break;
546 ptr += size;
549 return 1;
552 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
554 #ifdef KVM_CAP_COALESCED_MMIO
555 KVMState *s = kvm_state;
556 if (s->coalesced_mmio) {
557 struct kvm_coalesced_mmio_ring *ring;
559 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
560 while (ring->first != ring->last) {
561 struct kvm_coalesced_mmio *ent;
563 ent = &ring->coalesced_mmio[ring->first];
565 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
566 /* FIXME smp_wmb() */
567 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
570 #endif
573 int kvm_cpu_exec(CPUState *env)
575 struct kvm_run *run = env->kvm_run;
576 int ret;
578 dprintf("kvm_cpu_exec()\n");
580 do {
581 if (env->exit_request) {
582 dprintf("interrupt exit requested\n");
583 ret = 0;
584 break;
587 kvm_arch_pre_run(env, run);
588 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
589 kvm_arch_post_run(env, run);
591 if (ret == -EINTR || ret == -EAGAIN) {
592 dprintf("io window exit\n");
593 ret = 0;
594 break;
597 if (ret < 0) {
598 dprintf("kvm run failed %s\n", strerror(-ret));
599 abort();
602 kvm_run_coalesced_mmio(env, run);
604 ret = 0; /* exit loop */
605 switch (run->exit_reason) {
606 case KVM_EXIT_IO:
607 dprintf("handle_io\n");
608 ret = kvm_handle_io(env, run->io.port,
609 (uint8_t *)run + run->io.data_offset,
610 run->io.direction,
611 run->io.size,
612 run->io.count);
613 break;
614 case KVM_EXIT_MMIO:
615 dprintf("handle_mmio\n");
616 cpu_physical_memory_rw(run->mmio.phys_addr,
617 run->mmio.data,
618 run->mmio.len,
619 run->mmio.is_write);
620 ret = 1;
621 break;
622 case KVM_EXIT_IRQ_WINDOW_OPEN:
623 dprintf("irq_window_open\n");
624 break;
625 case KVM_EXIT_SHUTDOWN:
626 dprintf("shutdown\n");
627 qemu_system_reset_request();
628 ret = 1;
629 break;
630 case KVM_EXIT_UNKNOWN:
631 dprintf("kvm_exit_unknown\n");
632 break;
633 case KVM_EXIT_FAIL_ENTRY:
634 dprintf("kvm_exit_fail_entry\n");
635 break;
636 case KVM_EXIT_EXCEPTION:
637 dprintf("kvm_exit_exception\n");
638 break;
639 case KVM_EXIT_DEBUG:
640 dprintf("kvm_exit_debug\n");
641 #ifdef KVM_CAP_SET_GUEST_DEBUG
642 if (kvm_arch_debug(&run->debug.arch)) {
643 gdb_set_stop_cpu(env);
644 vm_stop(EXCP_DEBUG);
645 env->exception_index = EXCP_DEBUG;
646 return 0;
648 /* re-enter, this exception was guest-internal */
649 ret = 1;
650 #endif /* KVM_CAP_SET_GUEST_DEBUG */
651 break;
652 default:
653 dprintf("kvm_arch_handle_exit\n");
654 ret = kvm_arch_handle_exit(env, run);
655 break;
657 } while (ret > 0);
659 if (env->exit_request) {
660 env->exit_request = 0;
661 env->exception_index = EXCP_INTERRUPT;
664 return ret;
667 void kvm_set_phys_mem(target_phys_addr_t start_addr,
668 ram_addr_t size,
669 ram_addr_t phys_offset)
671 KVMState *s = kvm_state;
672 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
673 KVMSlot *mem, old;
674 int err;
676 if (start_addr & ~TARGET_PAGE_MASK) {
677 if (flags >= IO_MEM_UNASSIGNED) {
678 if (!kvm_lookup_overlapping_slot(s, start_addr,
679 start_addr + size)) {
680 return;
682 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
683 } else {
684 fprintf(stderr, "Only page-aligned memory slots supported\n");
686 abort();
689 /* KVM does not support read-only slots */
690 phys_offset &= ~IO_MEM_ROM;
692 while (1) {
693 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
694 if (!mem) {
695 break;
698 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
699 (start_addr + size <= mem->start_addr + mem->memory_size) &&
700 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
701 /* The new slot fits into the existing one and comes with
702 * identical parameters - nothing to be done. */
703 return;
706 old = *mem;
708 /* unregister the overlapping slot */
709 mem->memory_size = 0;
710 err = kvm_set_user_memory_region(s, mem);
711 if (err) {
712 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
713 __func__, strerror(-err));
714 abort();
717 /* Workaround for older KVM versions: we can't join slots, even not by
718 * unregistering the previous ones and then registering the larger
719 * slot. We have to maintain the existing fragmentation. Sigh.
721 * This workaround assumes that the new slot starts at the same
722 * address as the first existing one. If not or if some overlapping
723 * slot comes around later, we will fail (not seen in practice so far)
724 * - and actually require a recent KVM version. */
725 if (s->broken_set_mem_region &&
726 old.start_addr == start_addr && old.memory_size < size &&
727 flags < IO_MEM_UNASSIGNED) {
728 mem = kvm_alloc_slot(s);
729 mem->memory_size = old.memory_size;
730 mem->start_addr = old.start_addr;
731 mem->phys_offset = old.phys_offset;
732 mem->flags = 0;
734 err = kvm_set_user_memory_region(s, mem);
735 if (err) {
736 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
737 strerror(-err));
738 abort();
741 start_addr += old.memory_size;
742 phys_offset += old.memory_size;
743 size -= old.memory_size;
744 continue;
747 /* register prefix slot */
748 if (old.start_addr < start_addr) {
749 mem = kvm_alloc_slot(s);
750 mem->memory_size = start_addr - old.start_addr;
751 mem->start_addr = old.start_addr;
752 mem->phys_offset = old.phys_offset;
753 mem->flags = 0;
755 err = kvm_set_user_memory_region(s, mem);
756 if (err) {
757 fprintf(stderr, "%s: error registering prefix slot: %s\n",
758 __func__, strerror(-err));
759 abort();
763 /* register suffix slot */
764 if (old.start_addr + old.memory_size > start_addr + size) {
765 ram_addr_t size_delta;
767 mem = kvm_alloc_slot(s);
768 mem->start_addr = start_addr + size;
769 size_delta = mem->start_addr - old.start_addr;
770 mem->memory_size = old.memory_size - size_delta;
771 mem->phys_offset = old.phys_offset + size_delta;
772 mem->flags = 0;
774 err = kvm_set_user_memory_region(s, mem);
775 if (err) {
776 fprintf(stderr, "%s: error registering suffix slot: %s\n",
777 __func__, strerror(-err));
778 abort();
783 /* in case the KVM bug workaround already "consumed" the new slot */
784 if (!size)
785 return;
787 /* KVM does not need to know about this memory */
788 if (flags >= IO_MEM_UNASSIGNED)
789 return;
791 mem = kvm_alloc_slot(s);
792 mem->memory_size = size;
793 mem->start_addr = start_addr;
794 mem->phys_offset = phys_offset;
795 mem->flags = 0;
797 err = kvm_set_user_memory_region(s, mem);
798 if (err) {
799 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
800 strerror(-err));
801 abort();
805 int kvm_ioctl(KVMState *s, int type, ...)
807 int ret;
808 void *arg;
809 va_list ap;
811 va_start(ap, type);
812 arg = va_arg(ap, void *);
813 va_end(ap);
815 ret = ioctl(s->fd, type, arg);
816 if (ret == -1)
817 ret = -errno;
819 return ret;
822 int kvm_vm_ioctl(KVMState *s, int type, ...)
824 int ret;
825 void *arg;
826 va_list ap;
828 va_start(ap, type);
829 arg = va_arg(ap, void *);
830 va_end(ap);
832 ret = ioctl(s->vmfd, type, arg);
833 if (ret == -1)
834 ret = -errno;
836 return ret;
839 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
841 int ret;
842 void *arg;
843 va_list ap;
845 va_start(ap, type);
846 arg = va_arg(ap, void *);
847 va_end(ap);
849 ret = ioctl(env->kvm_fd, type, arg);
850 if (ret == -1)
851 ret = -errno;
853 return ret;
856 int kvm_has_sync_mmu(void)
858 #ifdef KVM_CAP_SYNC_MMU
859 KVMState *s = kvm_state;
861 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
862 #else
863 return 0;
864 #endif
867 void kvm_setup_guest_memory(void *start, size_t size)
869 if (!kvm_has_sync_mmu()) {
870 #ifdef MADV_DONTFORK
871 int ret = madvise(start, size, MADV_DONTFORK);
873 if (ret) {
874 perror("madvice");
875 exit(1);
877 #else
878 fprintf(stderr,
879 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
880 exit(1);
881 #endif
885 #ifdef KVM_CAP_SET_GUEST_DEBUG
886 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
887 target_ulong pc)
889 struct kvm_sw_breakpoint *bp;
891 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
892 if (bp->pc == pc)
893 return bp;
895 return NULL;
898 int kvm_sw_breakpoints_active(CPUState *env)
900 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
903 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
905 struct kvm_guest_debug dbg;
907 dbg.control = 0;
908 if (env->singlestep_enabled)
909 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
911 kvm_arch_update_guest_debug(env, &dbg);
912 dbg.control |= reinject_trap;
914 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
917 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
918 target_ulong len, int type)
920 struct kvm_sw_breakpoint *bp;
921 CPUState *env;
922 int err;
924 if (type == GDB_BREAKPOINT_SW) {
925 bp = kvm_find_sw_breakpoint(current_env, addr);
926 if (bp) {
927 bp->use_count++;
928 return 0;
931 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
932 if (!bp)
933 return -ENOMEM;
935 bp->pc = addr;
936 bp->use_count = 1;
937 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
938 if (err) {
939 free(bp);
940 return err;
943 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
944 bp, entry);
945 } else {
946 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
947 if (err)
948 return err;
951 for (env = first_cpu; env != NULL; env = env->next_cpu) {
952 err = kvm_update_guest_debug(env, 0);
953 if (err)
954 return err;
956 return 0;
959 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
960 target_ulong len, int type)
962 struct kvm_sw_breakpoint *bp;
963 CPUState *env;
964 int err;
966 if (type == GDB_BREAKPOINT_SW) {
967 bp = kvm_find_sw_breakpoint(current_env, addr);
968 if (!bp)
969 return -ENOENT;
971 if (bp->use_count > 1) {
972 bp->use_count--;
973 return 0;
976 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
977 if (err)
978 return err;
980 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
981 qemu_free(bp);
982 } else {
983 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
984 if (err)
985 return err;
988 for (env = first_cpu; env != NULL; env = env->next_cpu) {
989 err = kvm_update_guest_debug(env, 0);
990 if (err)
991 return err;
993 return 0;
996 void kvm_remove_all_breakpoints(CPUState *current_env)
998 struct kvm_sw_breakpoint *bp, *next;
999 KVMState *s = current_env->kvm_state;
1000 CPUState *env;
1002 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1003 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1004 /* Try harder to find a CPU that currently sees the breakpoint. */
1005 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1006 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1007 break;
1011 kvm_arch_remove_all_hw_breakpoints();
1013 for (env = first_cpu; env != NULL; env = env->next_cpu)
1014 kvm_update_guest_debug(env, 0);
1017 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1019 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1021 return -EINVAL;
1024 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1025 target_ulong len, int type)
1027 return -EINVAL;
1030 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1031 target_ulong len, int type)
1033 return -EINVAL;
1036 void kvm_remove_all_breakpoints(CPUState *current_env)
1039 #endif /* !KVM_CAP_SET_GUEST_DEBUG */