4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
9 #include "config-host.h"
15 #include "qemu-common.h"
24 #include <sys/utsname.h>
25 #include <sys/syscall.h>
34 int kvm_pit_reinject
= 1;
36 kvm_context_t kvm_context
;
38 pthread_mutex_t qemu_mutex
= PTHREAD_MUTEX_INITIALIZER
;
39 pthread_cond_t qemu_vcpu_cond
= PTHREAD_COND_INITIALIZER
;
40 pthread_cond_t qemu_system_cond
= PTHREAD_COND_INITIALIZER
;
41 pthread_cond_t qemu_pause_cond
= PTHREAD_COND_INITIALIZER
;
42 pthread_cond_t qemu_work_cond
= PTHREAD_COND_INITIALIZER
;
43 __thread CPUState
*current_env
;
45 static int qemu_system_ready
;
47 #define SIG_IPI (SIGRTMIN+4)
50 static int io_thread_fd
= -1;
51 static int io_thread_sigfd
= -1;
53 static CPUState
*kvm_debug_cpu_requested
;
55 static uint64_t phys_ram_size
;
57 /* The list of ioperm_data */
58 static LIST_HEAD(, ioperm_data
) ioperm_head
;
60 static inline unsigned long kvm_get_thread_id(void)
62 return syscall(SYS_gettid
);
65 static void qemu_cond_wait(pthread_cond_t
*cond
)
67 CPUState
*env
= cpu_single_env
;
68 static const struct timespec ts
= {
73 pthread_cond_timedwait(cond
, &qemu_mutex
, &ts
);
77 static void sig_ipi_handler(int n
)
81 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
83 struct qemu_work_item wi
;
85 if (env
== current_env
) {
92 if (!env
->kvm_cpu_state
.queued_work_first
)
93 env
->kvm_cpu_state
.queued_work_first
= &wi
;
95 env
->kvm_cpu_state
.queued_work_last
->next
= &wi
;
96 env
->kvm_cpu_state
.queued_work_last
= &wi
;
100 pthread_kill(env
->kvm_cpu_state
.thread
, SIG_IPI
);
102 qemu_cond_wait(&qemu_work_cond
);
105 static void inject_interrupt(void *data
)
107 cpu_interrupt(current_env
, (long)data
);
110 void kvm_inject_interrupt(CPUState
*env
, int mask
)
112 on_vcpu(env
, inject_interrupt
, (void *)(long)mask
);
115 void kvm_update_interrupt_request(CPUState
*env
)
120 if (!current_env
|| !current_env
->kvm_cpu_state
.created
)
123 * Testing for created here is really redundant
125 if (current_env
&& current_env
->kvm_cpu_state
.created
&&
126 env
!= current_env
&& !env
->kvm_cpu_state
.signalled
)
130 env
->kvm_cpu_state
.signalled
= 1;
131 if (env
->kvm_cpu_state
.thread
)
132 pthread_kill(env
->kvm_cpu_state
.thread
, SIG_IPI
);
137 void kvm_update_after_sipi(CPUState
*env
)
139 env
->kvm_cpu_state
.sipi_needed
= 1;
140 kvm_update_interrupt_request(env
);
143 void kvm_apic_init(CPUState
*env
)
145 if (env
->cpu_index
!= 0)
146 env
->kvm_cpu_state
.init
= 1;
147 kvm_update_interrupt_request(env
);
152 static int try_push_interrupts(void *opaque
)
154 return kvm_arch_try_push_interrupts(opaque
);
157 static void post_kvm_run(void *opaque
, void *data
)
159 CPUState
*env
= (CPUState
*)data
;
161 pthread_mutex_lock(&qemu_mutex
);
162 kvm_arch_post_kvm_run(opaque
, env
);
165 static int pre_kvm_run(void *opaque
, void *data
)
167 CPUState
*env
= (CPUState
*)data
;
169 kvm_arch_pre_kvm_run(opaque
, env
);
171 if (env
->exit_request
)
173 pthread_mutex_unlock(&qemu_mutex
);
177 static void kvm_do_load_registers(void *_env
)
179 CPUState
*env
= _env
;
181 kvm_arch_load_regs(env
);
184 void kvm_load_registers(CPUState
*env
)
186 if (kvm_enabled() && qemu_system_ready
)
187 on_vcpu(env
, kvm_do_load_registers
, env
);
190 static void kvm_do_save_registers(void *_env
)
192 CPUState
*env
= _env
;
194 kvm_arch_save_regs(env
);
197 void kvm_save_registers(CPUState
*env
)
200 on_vcpu(env
, kvm_do_save_registers
, env
);
203 int kvm_cpu_exec(CPUState
*env
)
207 r
= kvm_run(kvm_context
, env
->cpu_index
, env
);
209 printf("kvm_run returned %d\n", r
);
216 static int has_work(CPUState
*env
)
218 if (!vm_running
|| (env
&& env
->kvm_cpu_state
.stopped
))
222 return kvm_arch_has_work(env
);
225 static void flush_queued_work(CPUState
*env
)
227 struct qemu_work_item
*wi
;
229 if (!env
->kvm_cpu_state
.queued_work_first
)
232 while ((wi
= env
->kvm_cpu_state
.queued_work_first
)) {
233 env
->kvm_cpu_state
.queued_work_first
= wi
->next
;
237 env
->kvm_cpu_state
.queued_work_last
= NULL
;
238 pthread_cond_broadcast(&qemu_work_cond
);
241 static void kvm_main_loop_wait(CPUState
*env
, int timeout
)
248 pthread_mutex_unlock(&qemu_mutex
);
250 ts
.tv_sec
= timeout
/ 1000;
251 ts
.tv_nsec
= (timeout
% 1000) * 1000000;
252 sigemptyset(&waitset
);
253 sigaddset(&waitset
, SIG_IPI
);
255 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
258 pthread_mutex_lock(&qemu_mutex
);
260 if (r
== -1 && !(e
== EAGAIN
|| e
== EINTR
)) {
261 printf("sigtimedwait: %s\n", strerror(e
));
265 cpu_single_env
= env
;
266 flush_queued_work(env
);
268 if (env
->kvm_cpu_state
.stop
) {
269 env
->kvm_cpu_state
.stop
= 0;
270 env
->kvm_cpu_state
.stopped
= 1;
271 pthread_cond_signal(&qemu_pause_cond
);
274 env
->kvm_cpu_state
.signalled
= 0;
277 static int all_threads_paused(void)
279 CPUState
*penv
= first_cpu
;
282 if (penv
->kvm_cpu_state
.stop
)
284 penv
= (CPUState
*)penv
->next_cpu
;
290 void qemu_kvm_pause_all_threads(void)
292 CPUState
*penv
= first_cpu
;
295 if (penv
!= cpu_single_env
) {
296 penv
->kvm_cpu_state
.stop
= 1;
297 pthread_kill(penv
->kvm_cpu_state
.thread
, SIG_IPI
);
299 penv
->kvm_cpu_state
.stop
= 0;
300 penv
->kvm_cpu_state
.stopped
= 1;
303 penv
= (CPUState
*)penv
->next_cpu
;
306 while (!all_threads_paused())
307 qemu_cond_wait(&qemu_pause_cond
);
310 void qemu_kvm_resume_all_threads(void)
312 CPUState
*penv
= first_cpu
;
314 assert(!cpu_single_env
);
317 penv
->kvm_cpu_state
.stop
= 0;
318 penv
->kvm_cpu_state
.stopped
= 0;
319 pthread_kill(penv
->kvm_cpu_state
.thread
, SIG_IPI
);
320 penv
= (CPUState
*)penv
->next_cpu
;
324 static void update_regs_for_sipi(CPUState
*env
)
326 kvm_arch_update_regs_for_sipi(env
);
327 env
->kvm_cpu_state
.sipi_needed
= 0;
330 static void update_regs_for_init(CPUState
*env
)
333 SegmentCache cs
= env
->segs
[R_CS
];
339 /* restore SIPI vector */
340 if(env
->kvm_cpu_state
.sipi_needed
)
341 env
->segs
[R_CS
] = cs
;
344 env
->kvm_cpu_state
.init
= 0;
345 kvm_arch_load_regs(env
);
348 static void setup_kernel_sigmask(CPUState
*env
)
353 sigaddset(&set
, SIGUSR2
);
354 sigaddset(&set
, SIGIO
);
355 sigaddset(&set
, SIGALRM
);
356 sigprocmask(SIG_BLOCK
, &set
, NULL
);
358 sigprocmask(SIG_BLOCK
, NULL
, &set
);
359 sigdelset(&set
, SIG_IPI
);
361 kvm_set_signal_mask(kvm_context
, env
->cpu_index
, &set
);
364 static void qemu_kvm_system_reset(void)
366 CPUState
*penv
= first_cpu
;
368 qemu_kvm_pause_all_threads();
373 kvm_arch_cpu_reset(penv
);
374 penv
= (CPUState
*)penv
->next_cpu
;
377 qemu_kvm_resume_all_threads();
380 static int kvm_main_loop_cpu(CPUState
*env
)
382 setup_kernel_sigmask(env
);
384 pthread_mutex_lock(&qemu_mutex
);
385 if (kvm_irqchip_in_kernel(kvm_context
))
388 kvm_qemu_init_env(env
);
390 kvm_tpr_vcpu_start(env
);
393 cpu_single_env
= env
;
394 kvm_load_registers(env
);
397 while (!has_work(env
))
398 kvm_main_loop_wait(env
, 1000);
399 if (env
->interrupt_request
& (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_NMI
))
401 if (!kvm_irqchip_in_kernel(kvm_context
)) {
402 if (env
->kvm_cpu_state
.init
)
403 update_regs_for_init(env
);
404 if (env
->kvm_cpu_state
.sipi_needed
)
405 update_regs_for_sipi(env
);
407 if (!env
->halted
&& !env
->kvm_cpu_state
.init
)
409 env
->exit_request
= 0;
410 env
->exception_index
= EXCP_INTERRUPT
;
411 kvm_main_loop_wait(env
, 0);
413 pthread_mutex_unlock(&qemu_mutex
);
417 static void *ap_main_loop(void *_env
)
419 CPUState
*env
= _env
;
421 struct ioperm_data
*data
= NULL
;
424 env
->thread_id
= kvm_get_thread_id();
425 sigfillset(&signals
);
426 sigprocmask(SIG_BLOCK
, &signals
, NULL
);
427 kvm_create_vcpu(kvm_context
, env
->cpu_index
);
428 kvm_qemu_init_env(env
);
430 #ifdef USE_KVM_DEVICE_ASSIGNMENT
431 /* do ioperm for io ports of assigned devices */
432 LIST_FOREACH(data
, &ioperm_head
, entries
)
433 on_vcpu(env
, kvm_arch_do_ioperm
, data
);
436 /* signal VCPU creation */
437 pthread_mutex_lock(&qemu_mutex
);
438 current_env
->kvm_cpu_state
.created
= 1;
439 pthread_cond_signal(&qemu_vcpu_cond
);
441 /* and wait for machine initialization */
442 while (!qemu_system_ready
)
443 qemu_cond_wait(&qemu_system_cond
);
444 pthread_mutex_unlock(&qemu_mutex
);
446 kvm_main_loop_cpu(env
);
450 void kvm_init_vcpu(CPUState
*env
)
452 pthread_create(&env
->kvm_cpu_state
.thread
, NULL
, ap_main_loop
, env
);
454 while (env
->kvm_cpu_state
.created
== 0)
455 qemu_cond_wait(&qemu_vcpu_cond
);
458 int kvm_init_ap(void)
464 signal(SIG_IPI
, sig_ipi_handler
);
468 void qemu_kvm_notify_work(void)
474 if (io_thread_fd
== -1)
477 memcpy(buffer
, &value
, sizeof(value
));
482 len
= write(io_thread_fd
, buffer
+ offset
, 8 - offset
);
483 if (len
== -1 && errno
== EINTR
)
493 fprintf(stderr
, "failed to notify io thread\n");
496 /* If we have signalfd, we mask out the signals we want to handle and then
497 * use signalfd to listen for them. We rely on whatever the current signal
498 * handler is to dispatch the signals when we receive them.
501 static void sigfd_handler(void *opaque
)
503 int fd
= (unsigned long)opaque
;
504 struct qemu_signalfd_siginfo info
;
505 struct sigaction action
;
510 len
= read(fd
, &info
, sizeof(info
));
511 } while (len
== -1 && errno
== EINTR
);
513 if (len
== -1 && errno
== EAGAIN
)
516 if (len
!= sizeof(info
)) {
517 printf("read from sigfd returned %ld: %m\n", len
);
521 sigaction(info
.ssi_signo
, NULL
, &action
);
522 if (action
.sa_handler
)
523 action
.sa_handler(info
.ssi_signo
);
528 /* Used to break IO thread out of select */
529 static void io_thread_wakeup(void *opaque
)
531 int fd
= (unsigned long)opaque
;
538 len
= read(fd
, buffer
+ offset
, 8 - offset
);
539 if (len
== -1 && errno
== EINTR
)
549 int kvm_main_loop(void)
555 io_thread
= pthread_self();
556 qemu_system_ready
= 1;
558 if (qemu_eventfd(fds
) == -1) {
559 fprintf(stderr
, "failed to create eventfd\n");
563 qemu_set_fd_handler2(fds
[0], NULL
, io_thread_wakeup
, NULL
,
564 (void *)(unsigned long)fds
[0]);
566 io_thread_fd
= fds
[1];
569 sigaddset(&mask
, SIGIO
);
570 sigaddset(&mask
, SIGALRM
);
571 sigprocmask(SIG_BLOCK
, &mask
, NULL
);
573 sigfd
= qemu_signalfd(&mask
);
575 fprintf(stderr
, "failed to create signalfd\n");
579 fcntl(sigfd
, F_SETFL
, O_NONBLOCK
);
581 qemu_set_fd_handler2(sigfd
, NULL
, sigfd_handler
, NULL
,
582 (void *)(unsigned long)sigfd
);
584 pthread_cond_broadcast(&qemu_system_cond
);
586 io_thread_sigfd
= sigfd
;
587 cpu_single_env
= NULL
;
590 main_loop_wait(1000);
591 if (qemu_shutdown_requested())
593 else if (qemu_powerdown_requested())
594 qemu_system_powerdown();
595 else if (qemu_reset_requested())
596 qemu_kvm_system_reset();
597 #ifdef CONFIG_GDBSTUB
598 else if (kvm_debug_cpu_requested
) {
599 gdb_set_stop_cpu(kvm_debug_cpu_requested
);
601 kvm_debug_cpu_requested
= NULL
;
606 qemu_kvm_pause_all_threads();
607 pthread_mutex_unlock(&qemu_mutex
);
612 #ifdef KVM_CAP_SET_GUEST_DEBUG
613 static int kvm_debug(void *opaque
, void *data
,
614 struct kvm_debug_exit_arch
*arch_info
)
616 int handle
= kvm_arch_debug(arch_info
);
617 CPUState
*env
= data
;
620 kvm_debug_cpu_requested
= env
;
621 env
->kvm_cpu_state
.stopped
= 1;
627 static int kvm_inb(void *opaque
, uint16_t addr
, uint8_t *data
)
629 *data
= cpu_inb(0, addr
);
633 static int kvm_inw(void *opaque
, uint16_t addr
, uint16_t *data
)
635 *data
= cpu_inw(0, addr
);
639 static int kvm_inl(void *opaque
, uint16_t addr
, uint32_t *data
)
641 *data
= cpu_inl(0, addr
);
645 #define PM_IO_BASE 0xb000
647 static int kvm_outb(void *opaque
, uint16_t addr
, uint8_t data
)
652 cpu_outb(0, 0xb3, 0);
659 x
= cpu_inw(0, PM_IO_BASE
+ 4);
661 cpu_outw(0, PM_IO_BASE
+ 4, x
);
668 x
= cpu_inw(0, PM_IO_BASE
+ 4);
670 cpu_outw(0, PM_IO_BASE
+ 4, x
);
678 cpu_outb(0, addr
, data
);
682 static int kvm_outw(void *opaque
, uint16_t addr
, uint16_t data
)
684 cpu_outw(0, addr
, data
);
688 static int kvm_outl(void *opaque
, uint16_t addr
, uint32_t data
)
690 cpu_outl(0, addr
, data
);
694 static int kvm_mmio_read(void *opaque
, uint64_t addr
, uint8_t *data
, int len
)
696 cpu_physical_memory_rw(addr
, data
, len
, 0);
700 static int kvm_mmio_write(void *opaque
, uint64_t addr
, uint8_t *data
, int len
)
702 cpu_physical_memory_rw(addr
, data
, len
, 1);
706 static int kvm_io_window(void *opaque
)
712 static int kvm_halt(void *opaque
, int vcpu
)
714 return kvm_arch_halt(opaque
, vcpu
);
717 static int kvm_shutdown(void *opaque
, void *data
)
719 CPUState
*env
= (CPUState
*)data
;
721 /* stop the current vcpu from going back to guest mode */
722 env
->kvm_cpu_state
.stopped
= 1;
724 qemu_system_reset_request();
728 static struct kvm_callbacks qemu_kvm_ops
= {
729 #ifdef KVM_CAP_SET_GUEST_DEBUG
738 .mmio_read
= kvm_mmio_read
,
739 .mmio_write
= kvm_mmio_write
,
741 .shutdown
= kvm_shutdown
,
742 .io_window
= kvm_io_window
,
743 .try_push_interrupts
= try_push_interrupts
,
744 #ifdef KVM_CAP_USER_NMI
745 .push_nmi
= kvm_arch_push_nmi
,
747 .post_kvm_run
= post_kvm_run
,
748 .pre_kvm_run
= pre_kvm_run
,
750 .tpr_access
= handle_tpr_access
,
753 .powerpc_dcr_read
= handle_powerpc_dcr_read
,
754 .powerpc_dcr_write
= handle_powerpc_dcr_write
,
760 /* Try to initialize kvm */
761 kvm_context
= kvm_init(&qemu_kvm_ops
, cpu_single_env
);
765 pthread_mutex_lock(&qemu_mutex
);
771 static int destroy_region_works
= 0;
774 int kvm_qemu_create_context(void)
780 kvm_disable_irqchip_creation(kvm_context
);
783 kvm_disable_pit_creation(kvm_context
);
785 if (kvm_create(kvm_context
, 0, NULL
) < 0) {
789 r
= kvm_arch_qemu_create_context();
792 if (kvm_pit
&& !kvm_pit_reinject
) {
793 if (kvm_reinject_control(kvm_context
, 0)) {
794 fprintf(stderr
, "failure to disable in-kernel PIT reinjection\n");
799 destroy_region_works
= kvm_destroy_memory_region_works(kvm_context
);
802 if (kvm_irqchip
&& kvm_has_gsi_routing(kvm_context
)) {
803 kvm_clear_gsi_routes(kvm_context
);
804 for (i
= 0; i
< 8; ++i
) {
807 r
= kvm_add_irq_route(kvm_context
, i
, KVM_IRQCHIP_PIC_MASTER
, i
);
811 for (i
= 8; i
< 16; ++i
) {
812 r
= kvm_add_irq_route(kvm_context
, i
, KVM_IRQCHIP_PIC_SLAVE
, i
- 8);
816 for (i
= 0; i
< 24; ++i
) {
817 r
= kvm_add_irq_route(kvm_context
, i
, KVM_IRQCHIP_IOAPIC
, i
);
821 kvm_commit_irq_routes(kvm_context
);
826 void kvm_qemu_destroy(void)
828 kvm_finalize(kvm_context
);
832 static int must_use_aliases_source(target_phys_addr_t addr
)
834 if (destroy_region_works
)
836 if (addr
== 0xa0000 || addr
== 0xa8000)
841 static int must_use_aliases_target(target_phys_addr_t addr
)
843 if (destroy_region_works
)
845 if (addr
>= 0xe0000000 && addr
< 0x100000000ull
)
850 static struct mapping
{
851 target_phys_addr_t phys
;
855 static int nr_mappings
;
857 static struct mapping
*find_ram_mapping(ram_addr_t ram_addr
)
861 for (p
= mappings
; p
< mappings
+ nr_mappings
; ++p
) {
862 if (p
->ram
<= ram_addr
&& ram_addr
< p
->ram
+ p
->len
) {
869 static struct mapping
*find_mapping(target_phys_addr_t start_addr
)
873 for (p
= mappings
; p
< mappings
+ nr_mappings
; ++p
) {
874 if (p
->phys
<= start_addr
&& start_addr
< p
->phys
+ p
->len
) {
881 static void drop_mapping(target_phys_addr_t start_addr
)
883 struct mapping
*p
= find_mapping(start_addr
);
886 *p
= mappings
[--nr_mappings
];
890 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr
,
892 unsigned long phys_offset
)
895 unsigned long area_flags
;
900 if (start_addr
+ size
> phys_ram_size
) {
901 phys_ram_size
= start_addr
+ size
;
904 phys_offset
&= ~IO_MEM_ROM
;
905 area_flags
= phys_offset
& ~TARGET_PAGE_MASK
;
907 if (area_flags
!= IO_MEM_RAM
) {
909 if (must_use_aliases_source(start_addr
)) {
910 kvm_destroy_memory_alias(kvm_context
, start_addr
);
913 if (must_use_aliases_target(start_addr
))
917 p
= find_mapping(start_addr
);
919 kvm_unregister_memory_area(kvm_context
, p
->phys
, p
->len
);
920 drop_mapping(p
->phys
);
922 start_addr
+= TARGET_PAGE_SIZE
;
923 if (size
> TARGET_PAGE_SIZE
) {
924 size
-= TARGET_PAGE_SIZE
;
932 r
= kvm_is_containing_region(kvm_context
, start_addr
, size
);
936 if (area_flags
>= TLB_MMIO
)
940 if (must_use_aliases_source(start_addr
)) {
941 p
= find_ram_mapping(phys_offset
);
943 kvm_create_memory_alias(kvm_context
, start_addr
, size
,
944 p
->phys
+ (phys_offset
- p
->ram
));
950 r
= kvm_register_phys_mem(kvm_context
, start_addr
,
951 qemu_get_ram_ptr(phys_offset
),
954 printf("kvm_cpu_register_physical_memory: failed\n");
959 drop_mapping(start_addr
);
960 p
= &mappings
[nr_mappings
++];
961 p
->phys
= start_addr
;
962 p
->ram
= phys_offset
;
969 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr
,
970 target_phys_addr_t size
,
971 unsigned long phys_offset
)
973 kvm_unregister_memory_area(kvm_context
, start_addr
, size
);
976 int kvm_setup_guest_memory(void *area
, unsigned long size
)
981 if (kvm_enabled() && !kvm_has_sync_mmu())
982 ret
= madvise(area
, size
, MADV_DONTFORK
);
991 int kvm_qemu_check_extension(int ext
)
993 return kvm_check_extension(kvm_context
, ext
);
996 int kvm_qemu_init_env(CPUState
*cenv
)
998 return kvm_arch_qemu_init_env(cenv
);
1001 #ifdef KVM_CAP_SET_GUEST_DEBUG
1002 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
=
1003 TAILQ_HEAD_INITIALIZER(kvm_sw_breakpoints
);
1005 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(target_ulong pc
)
1007 struct kvm_sw_breakpoint
*bp
;
1009 TAILQ_FOREACH(bp
, &kvm_sw_breakpoints
, entry
) {
1016 struct kvm_set_guest_debug_data
{
1017 struct kvm_guest_debug dbg
;
1021 static void kvm_invoke_set_guest_debug(void *data
)
1023 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1025 dbg_data
->err
= kvm_set_guest_debug(kvm_context
, cpu_single_env
->cpu_index
,
1029 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1031 struct kvm_set_guest_debug_data data
;
1033 data
.dbg
.control
= 0;
1034 if (env
->singlestep_enabled
)
1035 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1037 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1038 data
.dbg
.control
|= reinject_trap
;
1040 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
1044 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1045 target_ulong len
, int type
)
1047 struct kvm_sw_breakpoint
*bp
;
1051 if (type
== GDB_BREAKPOINT_SW
) {
1052 bp
= kvm_find_sw_breakpoint(addr
);
1058 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1064 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1070 TAILQ_INSERT_HEAD(&kvm_sw_breakpoints
, bp
, entry
);
1072 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1077 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1078 err
= kvm_update_guest_debug(env
, 0);
1085 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1086 target_ulong len
, int type
)
1088 struct kvm_sw_breakpoint
*bp
;
1092 if (type
== GDB_BREAKPOINT_SW
) {
1093 bp
= kvm_find_sw_breakpoint(addr
);
1097 if (bp
->use_count
> 1) {
1102 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1106 TAILQ_REMOVE(&kvm_sw_breakpoints
, bp
, entry
);
1109 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1114 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1115 err
= kvm_update_guest_debug(env
, 0);
1122 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1124 struct kvm_sw_breakpoint
*bp
, *next
;
1127 TAILQ_FOREACH_SAFE(bp
, &kvm_sw_breakpoints
, entry
, next
) {
1128 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1129 /* Try harder to find a CPU that currently sees the breakpoint. */
1130 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1131 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1136 kvm_arch_remove_all_hw_breakpoints();
1138 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1139 kvm_update_guest_debug(env
, 0);
1142 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1144 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1149 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1150 target_ulong len
, int type
)
1155 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1156 target_ulong len
, int type
)
1161 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1164 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1167 * dirty pages logging
1169 /* FIXME: use unsigned long pointer instead of unsigned char */
1170 unsigned char *kvm_dirty_bitmap
= NULL
;
1171 int kvm_physical_memory_set_dirty_tracking(int enable
)
1179 if (!kvm_dirty_bitmap
) {
1180 unsigned bitmap_size
= BITMAP_SIZE(phys_ram_size
);
1181 kvm_dirty_bitmap
= qemu_malloc(bitmap_size
);
1182 if (kvm_dirty_bitmap
== NULL
) {
1183 perror("Failed to allocate dirty pages bitmap");
1187 r
= kvm_dirty_pages_log_enable_all(kvm_context
);
1192 if (kvm_dirty_bitmap
) {
1193 r
= kvm_dirty_pages_log_reset(kvm_context
);
1194 qemu_free(kvm_dirty_bitmap
);
1195 kvm_dirty_bitmap
= NULL
;
1201 /* get kvm's dirty pages bitmap and update qemu's */
1202 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
1203 unsigned char *bitmap
,
1204 unsigned int offset
,
1205 unsigned long mem_size
)
1207 unsigned int i
, j
, n
=0;
1209 unsigned long page_number
, addr
, addr1
;
1210 ram_addr_t ram_addr
;
1211 unsigned int len
= ((mem_size
/TARGET_PAGE_SIZE
) + 7) / 8;
1214 * bitmap-traveling is faster than memory-traveling (for addr...)
1215 * especially when most of the memory is not dirty.
1217 for (i
=0; i
<len
; i
++) {
1222 page_number
= i
* 8 + j
;
1223 addr1
= page_number
* TARGET_PAGE_SIZE
;
1224 addr
= offset
+ addr1
;
1225 ram_addr
= cpu_get_physical_page_desc(addr
);
1226 cpu_physical_memory_set_dirty(ram_addr
);
1232 static int kvm_get_dirty_bitmap_cb(unsigned long start
, unsigned long len
,
1233 void *bitmap
, void *opaque
)
1235 return kvm_get_dirty_pages_log_range(start
, bitmap
, start
, len
);
1239 * get kvm's dirty pages bitmap and update qemu's
1240 * we only care about physical ram, which resides in slots 0 and 3
1242 int kvm_update_dirty_pages_log(void)
1247 r
= kvm_get_dirty_pages_range(kvm_context
, 0, phys_ram_size
,
1248 kvm_dirty_bitmap
, NULL
,
1249 kvm_get_dirty_bitmap_cb
);
1253 void kvm_qemu_log_memory(target_phys_addr_t start
, target_phys_addr_t size
,
1257 kvm_dirty_pages_log_enable_slot(kvm_context
, start
, size
);
1260 if (must_use_aliases_target(start
))
1263 kvm_dirty_pages_log_disable_slot(kvm_context
, start
, size
);
1267 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap
)
1269 unsigned int bsize
= BITMAP_SIZE(phys_ram_size
);
1270 unsigned int brsize
= BITMAP_SIZE(ram_size
);
1271 unsigned int extra_pages
= (phys_ram_size
- ram_size
) / TARGET_PAGE_SIZE
;
1272 unsigned int extra_bytes
= (extra_pages
+7)/8;
1273 unsigned int hole_start
= BITMAP_SIZE(0xa0000);
1274 unsigned int hole_end
= BITMAP_SIZE(0xc0000);
1276 memset(bitmap
, 0xFF, brsize
+ extra_bytes
);
1277 memset(bitmap
+ hole_start
, 0, hole_end
- hole_start
);
1278 memset(bitmap
+ brsize
+ extra_bytes
, 0, bsize
- brsize
- extra_bytes
);
1283 #ifdef KVM_CAP_IRQCHIP
1285 int kvm_set_irq(int irq
, int level
, int *status
)
1287 return kvm_set_irq_level(kvm_context
, irq
, level
, status
);
1292 int qemu_kvm_get_dirty_pages(unsigned long phys_addr
, void *buf
)
1294 return kvm_get_dirty_pages(kvm_context
, phys_addr
, buf
);
1297 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr
,
1298 unsigned long size
, int log
, int writable
)
1300 return kvm_create_phys_mem(kvm_context
, start_addr
, size
, log
, writable
);
1303 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr
,
1306 kvm_destroy_phys_mem(kvm_context
, start_addr
, size
);
1309 void kvm_mutex_unlock(void)
1311 assert(!cpu_single_env
);
1312 pthread_mutex_unlock(&qemu_mutex
);
1315 void kvm_mutex_lock(void)
1317 pthread_mutex_lock(&qemu_mutex
);
1318 cpu_single_env
= NULL
;
1321 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr
, unsigned int size
)
1323 return kvm_register_coalesced_mmio(kvm_context
, addr
, size
);
1326 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr
,
1329 return kvm_unregister_coalesced_mmio(kvm_context
, addr
, size
);
1332 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
1334 return kvm_register_coalesced_mmio(kvm_context
, start
, size
);
1337 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
1339 return kvm_unregister_coalesced_mmio(kvm_context
, start
, size
);
1342 #ifdef USE_KVM_DEVICE_ASSIGNMENT
1343 void kvm_add_ioperm_data(struct ioperm_data
*data
)
1345 LIST_INSERT_HEAD(&ioperm_head
, data
, entries
);
1348 void kvm_remove_ioperm_data(unsigned long start_port
, unsigned long num
)
1350 struct ioperm_data
*data
;
1352 data
= LIST_FIRST(&ioperm_head
);
1354 struct ioperm_data
*next
= LIST_NEXT(data
, entries
);
1356 if (data
->start_port
== start_port
&& data
->num
== num
) {
1357 LIST_REMOVE(data
, entries
);
1365 void kvm_ioperm(CPUState
*env
, void *data
)
1367 if (kvm_enabled() && qemu_system_ready
)
1368 on_vcpu(env
, kvm_arch_do_ioperm
, data
);
1373 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1379 if (must_use_aliases_source(start_addr
))
1383 buf
= qemu_malloc((end_addr
- start_addr
) / 8 + 2);
1384 kvm_get_dirty_pages_range(kvm_context
, start_addr
, end_addr
- start_addr
,
1385 buf
, NULL
, kvm_get_dirty_bitmap_cb
);
1390 int kvm_log_start(target_phys_addr_t phys_addr
, target_phys_addr_t len
)
1393 if (must_use_aliases_source(phys_addr
))
1398 kvm_qemu_log_memory(phys_addr
, len
, 1);
1403 int kvm_log_stop(target_phys_addr_t phys_addr
, target_phys_addr_t len
)
1406 if (must_use_aliases_source(phys_addr
))
1411 kvm_qemu_log_memory(phys_addr
, len
, 0);
1416 /* hack: both libkvm and upstream qemu define kvm_has_sync_mmu(), differently */
1417 #undef kvm_has_sync_mmu
1418 int qemu_kvm_has_sync_mmu(void)
1420 return kvm_has_sync_mmu(kvm_context
);
1423 void qemu_kvm_cpu_stop(CPUState
*env
)
1426 env
->kvm_cpu_state
.stopped
= 1;