4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
38 #include <sys/times.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
51 #include <linux/if_tun.h>
53 #include <arpa/inet.h>
56 #include <sys/select.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
70 #include <linux/rtc.h>
71 #include <sys/prctl.h>
73 /* For the benefit of older linux systems which don't supply it,
74 we use a local copy of hpet.h. */
75 /* #include <linux/hpet.h> */
78 #include <linux/ppdev.h>
79 #include <linux/parport.h>
83 #include <sys/ethernet.h>
84 #include <sys/sockio.h>
85 #include <netinet/arp.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h> // must come after ip.h
90 #include <netinet/udp.h>
91 #include <netinet/tcp.h>
99 #if defined(__OpenBSD__)
103 #if defined(CONFIG_VDE)
104 #include <libvdeplug.h>
110 #include <sys/timeb.h>
111 #include <mmsystem.h>
112 #define getopt_long_only getopt_long
113 #define memalign(align, size) malloc(size)
117 #if defined(__APPLE__) || defined(main)
119 int qemu_main(int argc
, char **argv
, char **envp
);
120 int main(int argc
, char **argv
)
122 return qemu_main(argc
, argv
, NULL
);
125 #define main qemu_main
127 #endif /* CONFIG_SDL */
131 #define main qemu_main
132 #endif /* CONFIG_COCOA */
135 #include "hw/boards.h"
137 #include "hw/pcmcia.h"
139 #include "hw/audiodev.h"
143 #include "hw/watchdog.h"
144 #include "hw/smbios.h"
152 #include "qemu-timer.h"
153 #include "qemu-char.h"
154 #include "cache-utils.h"
157 #include "audio/audio.h"
158 #include "migration.h"
161 #include "qemu-option.h"
165 #include "exec-all.h"
167 #include "qemu_socket.h"
169 #include "slirp/libslirp.h"
172 //#define DEBUG_SLIRP
174 #define DEFAULT_RAM_SIZE 128
176 /* Max number of USB devices that can be specified on the commandline. */
177 #define MAX_USB_CMDLINE 8
179 /* Max number of bluetooth switches on the commandline. */
180 #define MAX_BT_CMDLINE 10
182 static const char *data_dir
;
183 const char *bios_name
= NULL
;
184 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185 to store the VM snapshots */
186 DriveInfo drives_table
[MAX_DRIVES
+1];
188 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
189 static DisplayState
*display_state
;
190 DisplayType display_type
= DT_DEFAULT
;
191 const char* keyboard_layout
= NULL
;
192 int64_t ticks_per_sec
;
195 NICInfo nd_table
[MAX_NICS
];
197 static int autostart
;
198 static int rtc_utc
= 1;
199 static int rtc_date_offset
= -1; /* -1 means no change */
200 int cirrus_vga_enabled
= 1;
201 int std_vga_enabled
= 0;
202 int vmsvga_enabled
= 0;
203 int xenfb_enabled
= 0;
205 int graphic_width
= 1024;
206 int graphic_height
= 768;
207 int graphic_depth
= 8;
209 int graphic_width
= 800;
210 int graphic_height
= 600;
211 int graphic_depth
= 15;
213 static int full_screen
= 0;
215 static int no_frame
= 0;
218 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
219 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
220 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
222 int win2k_install_hack
= 0;
228 const char *vnc_display
;
229 int acpi_enabled
= 1;
231 int virtio_balloon
= 1;
232 const char *virtio_balloon_devaddr
;
237 int graphic_rotate
= 0;
241 WatchdogTimerModel
*watchdog
= NULL
;
242 int watchdog_action
= WDT_RESET
;
243 const char *option_rom
[MAX_OPTION_ROMS
];
245 int semihosting_enabled
= 0;
249 const char *qemu_name
;
251 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
252 unsigned int nb_prom_envs
= 0;
253 const char *prom_envs
[MAX_PROM_ENVS
];
256 struct drive_opt drives_opt
[MAX_DRIVES
];
259 uint64_t node_mem
[MAX_NODES
];
260 uint64_t node_cpumask
[MAX_NODES
];
262 static CPUState
*cur_cpu
;
263 static CPUState
*next_cpu
;
264 static int timer_alarm_pending
= 1;
265 /* Conversion factor from emulated instructions to virtual clock ticks. */
266 static int icount_time_shift
;
267 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
268 #define MAX_ICOUNT_SHIFT 10
269 /* Compensate for varying guest execution speed. */
270 static int64_t qemu_icount_bias
;
271 static QEMUTimer
*icount_rt_timer
;
272 static QEMUTimer
*icount_vm_timer
;
273 static QEMUTimer
*nographic_timer
;
275 uint8_t qemu_uuid
[16];
277 /***********************************************************/
278 /* x86 ISA bus support */
280 target_phys_addr_t isa_mem_base
= 0;
283 /***********************************************************/
284 void hw_error(const char *fmt
, ...)
290 fprintf(stderr
, "qemu: hardware error: ");
291 vfprintf(stderr
, fmt
, ap
);
292 fprintf(stderr
, "\n");
293 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
294 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
296 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
298 cpu_dump_state(env
, stderr
, fprintf
, 0);
305 static void set_proc_name(const char *s
)
311 name
[sizeof(name
) - 1] = 0;
312 strncpy(name
, s
, sizeof(name
));
313 /* Could rewrite argv[0] too, but that's a bit more complicated.
314 This simple way is enough for `top'. */
315 prctl(PR_SET_NAME
, name
);
322 static QEMUBalloonEvent
*qemu_balloon_event
;
323 void *qemu_balloon_event_opaque
;
325 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
327 qemu_balloon_event
= func
;
328 qemu_balloon_event_opaque
= opaque
;
331 void qemu_balloon(ram_addr_t target
)
333 if (qemu_balloon_event
)
334 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
337 ram_addr_t
qemu_balloon_status(void)
339 if (qemu_balloon_event
)
340 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
344 /***********************************************************/
347 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
348 static void *qemu_put_kbd_event_opaque
;
349 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
350 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
352 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
354 qemu_put_kbd_event_opaque
= opaque
;
355 qemu_put_kbd_event
= func
;
358 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
359 void *opaque
, int absolute
,
362 QEMUPutMouseEntry
*s
, *cursor
;
364 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
366 s
->qemu_put_mouse_event
= func
;
367 s
->qemu_put_mouse_event_opaque
= opaque
;
368 s
->qemu_put_mouse_event_absolute
= absolute
;
369 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
372 if (!qemu_put_mouse_event_head
) {
373 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
377 cursor
= qemu_put_mouse_event_head
;
378 while (cursor
->next
!= NULL
)
379 cursor
= cursor
->next
;
382 qemu_put_mouse_event_current
= s
;
387 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
389 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
391 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
394 cursor
= qemu_put_mouse_event_head
;
395 while (cursor
!= NULL
&& cursor
!= entry
) {
397 cursor
= cursor
->next
;
400 if (cursor
== NULL
) // does not exist or list empty
402 else if (prev
== NULL
) { // entry is head
403 qemu_put_mouse_event_head
= cursor
->next
;
404 if (qemu_put_mouse_event_current
== entry
)
405 qemu_put_mouse_event_current
= cursor
->next
;
406 qemu_free(entry
->qemu_put_mouse_event_name
);
411 prev
->next
= entry
->next
;
413 if (qemu_put_mouse_event_current
== entry
)
414 qemu_put_mouse_event_current
= prev
;
416 qemu_free(entry
->qemu_put_mouse_event_name
);
420 void kbd_put_keycode(int keycode
)
422 if (qemu_put_kbd_event
) {
423 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
427 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
429 QEMUPutMouseEvent
*mouse_event
;
430 void *mouse_event_opaque
;
433 if (!qemu_put_mouse_event_current
) {
438 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
440 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
443 if (graphic_rotate
) {
444 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
447 width
= graphic_width
- 1;
448 mouse_event(mouse_event_opaque
,
449 width
- dy
, dx
, dz
, buttons_state
);
451 mouse_event(mouse_event_opaque
,
452 dx
, dy
, dz
, buttons_state
);
456 int kbd_mouse_is_absolute(void)
458 if (!qemu_put_mouse_event_current
)
461 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
464 void do_info_mice(Monitor
*mon
)
466 QEMUPutMouseEntry
*cursor
;
469 if (!qemu_put_mouse_event_head
) {
470 monitor_printf(mon
, "No mouse devices connected\n");
474 monitor_printf(mon
, "Mouse devices available:\n");
475 cursor
= qemu_put_mouse_event_head
;
476 while (cursor
!= NULL
) {
477 monitor_printf(mon
, "%c Mouse #%d: %s\n",
478 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
479 index
, cursor
->qemu_put_mouse_event_name
);
481 cursor
= cursor
->next
;
485 void do_mouse_set(Monitor
*mon
, int index
)
487 QEMUPutMouseEntry
*cursor
;
490 if (!qemu_put_mouse_event_head
) {
491 monitor_printf(mon
, "No mouse devices connected\n");
495 cursor
= qemu_put_mouse_event_head
;
496 while (cursor
!= NULL
&& index
!= i
) {
498 cursor
= cursor
->next
;
502 qemu_put_mouse_event_current
= cursor
;
504 monitor_printf(mon
, "Mouse at given index not found\n");
507 /* compute with 96 bit intermediate result: (a*b)/c */
508 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
513 #ifdef WORDS_BIGENDIAN
523 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
524 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
527 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
531 /***********************************************************/
532 /* real time host monotonic timer */
534 #define QEMU_TIMER_BASE 1000000000LL
538 static int64_t clock_freq
;
540 static void init_get_clock(void)
544 ret
= QueryPerformanceFrequency(&freq
);
546 fprintf(stderr
, "Could not calibrate ticks\n");
549 clock_freq
= freq
.QuadPart
;
552 static int64_t get_clock(void)
555 QueryPerformanceCounter(&ti
);
556 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
561 static int use_rt_clock
;
563 static void init_get_clock(void)
566 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
567 || defined(__DragonFly__)
570 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
577 static int64_t get_clock(void)
579 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
580 || defined(__DragonFly__)
583 clock_gettime(CLOCK_MONOTONIC
, &ts
);
584 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
588 /* XXX: using gettimeofday leads to problems if the date
589 changes, so it should be avoided. */
591 gettimeofday(&tv
, NULL
);
592 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
597 /* Return the virtual CPU time, based on the instruction counter. */
598 static int64_t cpu_get_icount(void)
601 CPUState
*env
= cpu_single_env
;;
602 icount
= qemu_icount
;
605 fprintf(stderr
, "Bad clock read\n");
606 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
608 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
611 /***********************************************************/
612 /* guest cycle counter */
614 static int64_t cpu_ticks_prev
;
615 static int64_t cpu_ticks_offset
;
616 static int64_t cpu_clock_offset
;
617 static int cpu_ticks_enabled
;
619 /* return the host CPU cycle counter and handle stop/restart */
620 int64_t cpu_get_ticks(void)
623 return cpu_get_icount();
625 if (!cpu_ticks_enabled
) {
626 return cpu_ticks_offset
;
629 ticks
= cpu_get_real_ticks();
630 if (cpu_ticks_prev
> ticks
) {
631 /* Note: non increasing ticks may happen if the host uses
633 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
635 cpu_ticks_prev
= ticks
;
636 return ticks
+ cpu_ticks_offset
;
640 /* return the host CPU monotonic timer and handle stop/restart */
641 static int64_t cpu_get_clock(void)
644 if (!cpu_ticks_enabled
) {
645 return cpu_clock_offset
;
648 return ti
+ cpu_clock_offset
;
652 /* enable cpu_get_ticks() */
653 void cpu_enable_ticks(void)
655 if (!cpu_ticks_enabled
) {
656 cpu_ticks_offset
-= cpu_get_real_ticks();
657 cpu_clock_offset
-= get_clock();
658 cpu_ticks_enabled
= 1;
662 /* disable cpu_get_ticks() : the clock is stopped. You must not call
663 cpu_get_ticks() after that. */
664 void cpu_disable_ticks(void)
666 if (cpu_ticks_enabled
) {
667 cpu_ticks_offset
= cpu_get_ticks();
668 cpu_clock_offset
= cpu_get_clock();
669 cpu_ticks_enabled
= 0;
673 /***********************************************************/
676 #define QEMU_TIMER_REALTIME 0
677 #define QEMU_TIMER_VIRTUAL 1
681 /* XXX: add frequency */
689 struct QEMUTimer
*next
;
692 struct qemu_alarm_timer
{
696 int (*start
)(struct qemu_alarm_timer
*t
);
697 void (*stop
)(struct qemu_alarm_timer
*t
);
698 void (*rearm
)(struct qemu_alarm_timer
*t
);
702 #define ALARM_FLAG_DYNTICKS 0x1
703 #define ALARM_FLAG_EXPIRED 0x2
705 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
707 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
710 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
712 if (!alarm_has_dynticks(t
))
718 /* TODO: MIN_TIMER_REARM_US should be optimized */
719 #define MIN_TIMER_REARM_US 250
721 static struct qemu_alarm_timer
*alarm_timer
;
725 struct qemu_alarm_win32
{
728 } alarm_win32_data
= {0, -1};
730 static int win32_start_timer(struct qemu_alarm_timer
*t
);
731 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
732 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
736 static int unix_start_timer(struct qemu_alarm_timer
*t
);
737 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
741 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
742 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
743 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
745 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
746 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
748 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
749 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
751 #endif /* __linux__ */
755 /* Correlation between real and virtual time is always going to be
756 fairly approximate, so ignore small variation.
757 When the guest is idle real and virtual time will be aligned in
759 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
761 static void icount_adjust(void)
766 static int64_t last_delta
;
767 /* If the VM is not running, then do nothing. */
771 cur_time
= cpu_get_clock();
772 cur_icount
= qemu_get_clock(vm_clock
);
773 delta
= cur_icount
- cur_time
;
774 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
776 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
777 && icount_time_shift
> 0) {
778 /* The guest is getting too far ahead. Slow time down. */
782 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
783 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
784 /* The guest is getting too far behind. Speed time up. */
788 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
791 static void icount_adjust_rt(void * opaque
)
793 qemu_mod_timer(icount_rt_timer
,
794 qemu_get_clock(rt_clock
) + 1000);
798 static void icount_adjust_vm(void * opaque
)
800 qemu_mod_timer(icount_vm_timer
,
801 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
805 static void init_icount_adjust(void)
807 /* Have both realtime and virtual time triggers for speed adjustment.
808 The realtime trigger catches emulated time passing too slowly,
809 the virtual time trigger catches emulated time passing too fast.
810 Realtime triggers occur even when idle, so use them less frequently
812 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
813 qemu_mod_timer(icount_rt_timer
,
814 qemu_get_clock(rt_clock
) + 1000);
815 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
816 qemu_mod_timer(icount_vm_timer
,
817 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
820 static struct qemu_alarm_timer alarm_timers
[] = {
823 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
824 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
825 /* HPET - if available - is preferred */
826 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
827 /* ...otherwise try RTC */
828 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
830 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
832 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
833 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
834 {"win32", 0, win32_start_timer
,
835 win32_stop_timer
, NULL
, &alarm_win32_data
},
840 static void show_available_alarms(void)
844 printf("Available alarm timers, in order of precedence:\n");
845 for (i
= 0; alarm_timers
[i
].name
; i
++)
846 printf("%s\n", alarm_timers
[i
].name
);
849 static void configure_alarms(char const *opt
)
853 int count
= ARRAY_SIZE(alarm_timers
) - 1;
856 struct qemu_alarm_timer tmp
;
858 if (!strcmp(opt
, "?")) {
859 show_available_alarms();
865 /* Reorder the array */
866 name
= strtok(arg
, ",");
868 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
869 if (!strcmp(alarm_timers
[i
].name
, name
))
874 fprintf(stderr
, "Unknown clock %s\n", name
);
883 tmp
= alarm_timers
[i
];
884 alarm_timers
[i
] = alarm_timers
[cur
];
885 alarm_timers
[cur
] = tmp
;
889 name
= strtok(NULL
, ",");
895 /* Disable remaining timers */
896 for (i
= cur
; i
< count
; i
++)
897 alarm_timers
[i
].name
= NULL
;
899 show_available_alarms();
907 static QEMUTimer
*active_timers
[2];
909 static QEMUClock
*qemu_new_clock(int type
)
912 clock
= qemu_mallocz(sizeof(QEMUClock
));
917 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
921 ts
= qemu_mallocz(sizeof(QEMUTimer
));
928 void qemu_free_timer(QEMUTimer
*ts
)
933 /* stop a timer, but do not dealloc it */
934 void qemu_del_timer(QEMUTimer
*ts
)
938 /* NOTE: this code must be signal safe because
939 qemu_timer_expired() can be called from a signal. */
940 pt
= &active_timers
[ts
->clock
->type
];
953 /* modify the current timer so that it will be fired when current_time
954 >= expire_time. The corresponding callback will be called. */
955 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
961 /* add the timer in the sorted list */
962 /* NOTE: this code must be signal safe because
963 qemu_timer_expired() can be called from a signal. */
964 pt
= &active_timers
[ts
->clock
->type
];
969 if (t
->expire_time
> expire_time
)
973 ts
->expire_time
= expire_time
;
977 /* Rearm if necessary */
978 if (pt
== &active_timers
[ts
->clock
->type
]) {
979 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
980 qemu_rearm_alarm_timer(alarm_timer
);
982 /* Interrupt execution to force deadline recalculation. */
988 int qemu_timer_pending(QEMUTimer
*ts
)
991 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
998 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1002 return (timer_head
->expire_time
<= current_time
);
1005 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1011 if (!ts
|| ts
->expire_time
> current_time
)
1013 /* remove timer from the list before calling the callback */
1014 *ptimer_head
= ts
->next
;
1017 /* run the callback (the timer list can be modified) */
1022 int64_t qemu_get_clock(QEMUClock
*clock
)
1024 switch(clock
->type
) {
1025 case QEMU_TIMER_REALTIME
:
1026 return get_clock() / 1000000;
1028 case QEMU_TIMER_VIRTUAL
:
1030 return cpu_get_icount();
1032 return cpu_get_clock();
1037 static void init_timers(void)
1040 ticks_per_sec
= QEMU_TIMER_BASE
;
1041 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1042 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1046 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1048 uint64_t expire_time
;
1050 if (qemu_timer_pending(ts
)) {
1051 expire_time
= ts
->expire_time
;
1055 qemu_put_be64(f
, expire_time
);
1058 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1060 uint64_t expire_time
;
1062 expire_time
= qemu_get_be64(f
);
1063 if (expire_time
!= -1) {
1064 qemu_mod_timer(ts
, expire_time
);
1070 static void timer_save(QEMUFile
*f
, void *opaque
)
1072 if (cpu_ticks_enabled
) {
1073 hw_error("cannot save state if virtual timers are running");
1075 qemu_put_be64(f
, cpu_ticks_offset
);
1076 qemu_put_be64(f
, ticks_per_sec
);
1077 qemu_put_be64(f
, cpu_clock_offset
);
1080 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1082 if (version_id
!= 1 && version_id
!= 2)
1084 if (cpu_ticks_enabled
) {
1087 cpu_ticks_offset
=qemu_get_be64(f
);
1088 ticks_per_sec
=qemu_get_be64(f
);
1089 if (version_id
== 2) {
1090 cpu_clock_offset
=qemu_get_be64(f
);
1095 static void qemu_event_increment(void);
1098 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1099 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1102 static void host_alarm_handler(int host_signum
)
1106 #define DISP_FREQ 1000
1108 static int64_t delta_min
= INT64_MAX
;
1109 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1111 ti
= qemu_get_clock(vm_clock
);
1112 if (last_clock
!= 0) {
1113 delta
= ti
- last_clock
;
1114 if (delta
< delta_min
)
1116 if (delta
> delta_max
)
1119 if (++count
== DISP_FREQ
) {
1120 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1121 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1122 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1123 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1124 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1126 delta_min
= INT64_MAX
;
1134 if (alarm_has_dynticks(alarm_timer
) ||
1136 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1137 qemu_get_clock(vm_clock
))) ||
1138 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1139 qemu_get_clock(rt_clock
))) {
1140 qemu_event_increment();
1141 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1143 #ifndef CONFIG_IOTHREAD
1145 /* stop the currently executing cpu because a timer occured */
1148 if (next_cpu
->kqemu_enabled
) {
1149 kqemu_cpu_interrupt(next_cpu
);
1154 timer_alarm_pending
= 1;
1155 qemu_notify_event();
1159 static int64_t qemu_next_deadline(void)
1163 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1164 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1165 qemu_get_clock(vm_clock
);
1167 /* To avoid problems with overflow limit this to 2^32. */
1177 #if defined(__linux__) || defined(_WIN32)
1178 static uint64_t qemu_next_deadline_dyntick(void)
1186 delta
= (qemu_next_deadline() + 999) / 1000;
1188 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1189 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1190 qemu_get_clock(rt_clock
))*1000;
1191 if (rtdelta
< delta
)
1195 if (delta
< MIN_TIMER_REARM_US
)
1196 delta
= MIN_TIMER_REARM_US
;
1204 /* Sets a specific flag */
1205 static int fcntl_setfl(int fd
, int flag
)
1209 flags
= fcntl(fd
, F_GETFL
);
1213 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1219 #if defined(__linux__)
1221 #define RTC_FREQ 1024
1223 static void enable_sigio_timer(int fd
)
1225 struct sigaction act
;
1228 sigfillset(&act
.sa_mask
);
1230 act
.sa_handler
= host_alarm_handler
;
1232 sigaction(SIGIO
, &act
, NULL
);
1233 fcntl_setfl(fd
, O_ASYNC
);
1234 fcntl(fd
, F_SETOWN
, getpid());
1237 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1239 struct hpet_info info
;
1242 fd
= open("/dev/hpet", O_RDONLY
);
1247 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1249 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1250 "error, but for better emulation accuracy type:\n"
1251 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255 /* Check capabilities */
1256 r
= ioctl(fd
, HPET_INFO
, &info
);
1260 /* Enable periodic mode */
1261 r
= ioctl(fd
, HPET_EPI
, 0);
1262 if (info
.hi_flags
&& (r
< 0))
1265 /* Enable interrupt */
1266 r
= ioctl(fd
, HPET_IE_ON
, 0);
1270 enable_sigio_timer(fd
);
1271 t
->priv
= (void *)(long)fd
;
1279 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1281 int fd
= (long)t
->priv
;
1286 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1289 unsigned long current_rtc_freq
= 0;
1291 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1294 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1295 if (current_rtc_freq
!= RTC_FREQ
&&
1296 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1297 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1298 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1299 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1302 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1308 enable_sigio_timer(rtc_fd
);
1310 t
->priv
= (void *)(long)rtc_fd
;
1315 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1317 int rtc_fd
= (long)t
->priv
;
1322 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1326 struct sigaction act
;
1328 sigfillset(&act
.sa_mask
);
1330 act
.sa_handler
= host_alarm_handler
;
1332 sigaction(SIGALRM
, &act
, NULL
);
1335 * Initialize ev struct to 0 to avoid valgrind complaining
1336 * about uninitialized data in timer_create call
1338 memset(&ev
, 0, sizeof(ev
));
1339 ev
.sigev_value
.sival_int
= 0;
1340 ev
.sigev_notify
= SIGEV_SIGNAL
;
1341 ev
.sigev_signo
= SIGALRM
;
1343 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1344 perror("timer_create");
1346 /* disable dynticks */
1347 fprintf(stderr
, "Dynamic Ticks disabled\n");
1352 t
->priv
= (void *)(long)host_timer
;
1357 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1359 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1361 timer_delete(host_timer
);
1364 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1366 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1367 struct itimerspec timeout
;
1368 int64_t nearest_delta_us
= INT64_MAX
;
1371 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1372 !active_timers
[QEMU_TIMER_VIRTUAL
])
1375 nearest_delta_us
= qemu_next_deadline_dyntick();
1377 /* check whether a timer is already running */
1378 if (timer_gettime(host_timer
, &timeout
)) {
1380 fprintf(stderr
, "Internal timer error: aborting\n");
1383 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1384 if (current_us
&& current_us
<= nearest_delta_us
)
1387 timeout
.it_interval
.tv_sec
= 0;
1388 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1389 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1390 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1391 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1393 fprintf(stderr
, "Internal timer error: aborting\n");
1398 #endif /* defined(__linux__) */
1400 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1402 struct sigaction act
;
1403 struct itimerval itv
;
1407 sigfillset(&act
.sa_mask
);
1409 act
.sa_handler
= host_alarm_handler
;
1411 sigaction(SIGALRM
, &act
, NULL
);
1413 itv
.it_interval
.tv_sec
= 0;
1414 /* for i386 kernel 2.6 to get 1 ms */
1415 itv
.it_interval
.tv_usec
= 999;
1416 itv
.it_value
.tv_sec
= 0;
1417 itv
.it_value
.tv_usec
= 10 * 1000;
1419 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1426 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1428 struct itimerval itv
;
1430 memset(&itv
, 0, sizeof(itv
));
1431 setitimer(ITIMER_REAL
, &itv
, NULL
);
1434 #endif /* !defined(_WIN32) */
1439 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1442 struct qemu_alarm_win32
*data
= t
->priv
;
1445 memset(&tc
, 0, sizeof(tc
));
1446 timeGetDevCaps(&tc
, sizeof(tc
));
1448 if (data
->period
< tc
.wPeriodMin
)
1449 data
->period
= tc
.wPeriodMin
;
1451 timeBeginPeriod(data
->period
);
1453 flags
= TIME_CALLBACK_FUNCTION
;
1454 if (alarm_has_dynticks(t
))
1455 flags
|= TIME_ONESHOT
;
1457 flags
|= TIME_PERIODIC
;
1459 data
->timerId
= timeSetEvent(1, // interval (ms)
1460 data
->period
, // resolution
1461 host_alarm_handler
, // function
1462 (DWORD
)t
, // parameter
1465 if (!data
->timerId
) {
1466 perror("Failed to initialize win32 alarm timer");
1467 timeEndPeriod(data
->period
);
1474 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1476 struct qemu_alarm_win32
*data
= t
->priv
;
1478 timeKillEvent(data
->timerId
);
1479 timeEndPeriod(data
->period
);
1482 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1484 struct qemu_alarm_win32
*data
= t
->priv
;
1485 uint64_t nearest_delta_us
;
1487 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1488 !active_timers
[QEMU_TIMER_VIRTUAL
])
1491 nearest_delta_us
= qemu_next_deadline_dyntick();
1492 nearest_delta_us
/= 1000;
1494 timeKillEvent(data
->timerId
);
1496 data
->timerId
= timeSetEvent(1,
1500 TIME_ONESHOT
| TIME_PERIODIC
);
1502 if (!data
->timerId
) {
1503 perror("Failed to re-arm win32 alarm timer");
1505 timeEndPeriod(data
->period
);
1512 static int init_timer_alarm(void)
1514 struct qemu_alarm_timer
*t
= NULL
;
1517 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1518 t
= &alarm_timers
[i
];
1538 static void quit_timers(void)
1540 alarm_timer
->stop(alarm_timer
);
1544 /***********************************************************/
1545 /* host time/date access */
1546 void qemu_get_timedate(struct tm
*tm
, int offset
)
1553 if (rtc_date_offset
== -1) {
1557 ret
= localtime(&ti
);
1559 ti
-= rtc_date_offset
;
1563 memcpy(tm
, ret
, sizeof(struct tm
));
1566 int qemu_timedate_diff(struct tm
*tm
)
1570 if (rtc_date_offset
== -1)
1572 seconds
= mktimegm(tm
);
1574 seconds
= mktime(tm
);
1576 seconds
= mktimegm(tm
) + rtc_date_offset
;
1578 return seconds
- time(NULL
);
1582 static void socket_cleanup(void)
1587 static int socket_init(void)
1592 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1594 err
= WSAGetLastError();
1595 fprintf(stderr
, "WSAStartup: %d\n", err
);
1598 atexit(socket_cleanup
);
1603 int get_next_param_value(char *buf
, int buf_size
,
1604 const char *tag
, const char **pstr
)
1611 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1615 if (!strcmp(tag
, option
)) {
1616 *pstr
= get_opt_value(buf
, buf_size
, p
);
1617 if (**pstr
== ',') {
1622 p
= get_opt_value(NULL
, 0, p
);
1631 int get_param_value(char *buf
, int buf_size
,
1632 const char *tag
, const char *str
)
1634 return get_next_param_value(buf
, buf_size
, tag
, &str
);
1637 int check_params(char *buf
, int buf_size
,
1638 const char * const *params
, const char *str
)
1644 while (*p
!= '\0') {
1645 p
= get_opt_name(buf
, buf_size
, p
, '=');
1650 for (i
= 0; params
[i
] != NULL
; i
++) {
1651 if (!strcmp(params
[i
], buf
)) {
1655 if (params
[i
] == NULL
) {
1658 p
= get_opt_value(NULL
, 0, p
);
1667 /***********************************************************/
1668 /* Bluetooth support */
1671 static struct HCIInfo
*hci_table
[MAX_NICS
];
1673 static struct bt_vlan_s
{
1674 struct bt_scatternet_s net
;
1676 struct bt_vlan_s
*next
;
1679 /* find or alloc a new bluetooth "VLAN" */
1680 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1682 struct bt_vlan_s
**pvlan
, *vlan
;
1683 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1687 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1689 pvlan
= &first_bt_vlan
;
1690 while (*pvlan
!= NULL
)
1691 pvlan
= &(*pvlan
)->next
;
1696 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1700 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1705 static struct HCIInfo null_hci
= {
1706 .cmd_send
= null_hci_send
,
1707 .sco_send
= null_hci_send
,
1708 .acl_send
= null_hci_send
,
1709 .bdaddr_set
= null_hci_addr_set
,
1712 struct HCIInfo
*qemu_next_hci(void)
1714 if (cur_hci
== nb_hcis
)
1717 return hci_table
[cur_hci
++];
1720 static struct HCIInfo
*hci_init(const char *str
)
1723 struct bt_scatternet_s
*vlan
= 0;
1725 if (!strcmp(str
, "null"))
1728 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1730 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1731 else if (!strncmp(str
, "hci", 3)) {
1734 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1735 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1740 vlan
= qemu_find_bt_vlan(0);
1742 return bt_new_hci(vlan
);
1745 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1750 static int bt_hci_parse(const char *str
)
1752 struct HCIInfo
*hci
;
1755 if (nb_hcis
>= MAX_NICS
) {
1756 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
1760 hci
= hci_init(str
);
1769 bdaddr
.b
[5] = 0x56 + nb_hcis
;
1770 hci
->bdaddr_set(hci
, bdaddr
.b
);
1772 hci_table
[nb_hcis
++] = hci
;
1777 static void bt_vhci_add(int vlan_id
)
1779 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
1782 fprintf(stderr
, "qemu: warning: adding a VHCI to "
1783 "an empty scatternet %i\n", vlan_id
);
1785 bt_vhci_init(bt_new_hci(vlan
));
1788 static struct bt_device_s
*bt_device_add(const char *opt
)
1790 struct bt_scatternet_s
*vlan
;
1792 char *endp
= strstr(opt
, ",vlan=");
1793 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
1796 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
1799 vlan_id
= strtol(endp
+ 6, &endp
, 0);
1801 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
1806 vlan
= qemu_find_bt_vlan(vlan_id
);
1809 fprintf(stderr
, "qemu: warning: adding a slave device to "
1810 "an empty scatternet %i\n", vlan_id
);
1812 if (!strcmp(devname
, "keyboard"))
1813 return bt_keyboard_init(vlan
);
1815 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
1819 static int bt_parse(const char *opt
)
1821 const char *endp
, *p
;
1824 if (strstart(opt
, "hci", &endp
)) {
1825 if (!*endp
|| *endp
== ',') {
1827 if (!strstart(endp
, ",vlan=", 0))
1830 return bt_hci_parse(opt
);
1832 } else if (strstart(opt
, "vhci", &endp
)) {
1833 if (!*endp
|| *endp
== ',') {
1835 if (strstart(endp
, ",vlan=", &p
)) {
1836 vlan
= strtol(p
, (char **) &endp
, 0);
1838 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
1842 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
1851 } else if (strstart(opt
, "device:", &endp
))
1852 return !bt_device_add(endp
);
1854 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
1858 /***********************************************************/
1859 /* QEMU Block devices */
1861 #define HD_ALIAS "index=%d,media=disk"
1862 #define CDROM_ALIAS "index=2,media=cdrom"
1863 #define FD_ALIAS "index=%d,if=floppy"
1864 #define PFLASH_ALIAS "if=pflash"
1865 #define MTD_ALIAS "if=mtd"
1866 #define SD_ALIAS "index=0,if=sd"
1868 static int drive_opt_get_free_idx(void)
1872 for (index
= 0; index
< MAX_DRIVES
; index
++)
1873 if (!drives_opt
[index
].used
) {
1874 drives_opt
[index
].used
= 1;
1881 static int drive_get_free_idx(void)
1885 for (index
= 0; index
< MAX_DRIVES
; index
++)
1886 if (!drives_table
[index
].used
) {
1887 drives_table
[index
].used
= 1;
1894 int drive_add(const char *file
, const char *fmt
, ...)
1897 int index
= drive_opt_get_free_idx();
1899 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
1900 fprintf(stderr
, "qemu: too many drives\n");
1904 drives_opt
[index
].file
= file
;
1906 vsnprintf(drives_opt
[index
].opt
,
1907 sizeof(drives_opt
[0].opt
), fmt
, ap
);
1914 void drive_remove(int index
)
1916 drives_opt
[index
].used
= 0;
1920 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
1924 /* seek interface, bus and unit */
1926 for (index
= 0; index
< MAX_DRIVES
; index
++)
1927 if (drives_table
[index
].type
== type
&&
1928 drives_table
[index
].bus
== bus
&&
1929 drives_table
[index
].unit
== unit
&&
1930 drives_table
[index
].used
)
1936 int drive_get_max_bus(BlockInterfaceType type
)
1942 for (index
= 0; index
< nb_drives
; index
++) {
1943 if(drives_table
[index
].type
== type
&&
1944 drives_table
[index
].bus
> max_bus
)
1945 max_bus
= drives_table
[index
].bus
;
1950 const char *drive_get_serial(BlockDriverState
*bdrv
)
1954 for (index
= 0; index
< nb_drives
; index
++)
1955 if (drives_table
[index
].bdrv
== bdrv
)
1956 return drives_table
[index
].serial
;
1961 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
1965 for (index
= 0; index
< nb_drives
; index
++)
1966 if (drives_table
[index
].bdrv
== bdrv
)
1967 return drives_table
[index
].onerror
;
1969 return BLOCK_ERR_STOP_ENOSPC
;
1972 static void bdrv_format_print(void *opaque
, const char *name
)
1974 fprintf(stderr
, " %s", name
);
1977 void drive_uninit(BlockDriverState
*bdrv
)
1981 for (i
= 0; i
< MAX_DRIVES
; i
++)
1982 if (drives_table
[i
].bdrv
== bdrv
) {
1983 drives_table
[i
].bdrv
= NULL
;
1984 drives_table
[i
].used
= 0;
1985 drive_remove(drives_table
[i
].drive_opt_idx
);
1991 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
1997 const char *mediastr
= "";
1998 BlockInterfaceType type
;
1999 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2000 int bus_id
, unit_id
;
2001 int cyls
, heads
, secs
, translation
;
2002 BlockDriverState
*bdrv
;
2003 BlockDriver
*drv
= NULL
;
2004 QEMUMachine
*machine
= opaque
;
2008 int bdrv_flags
, onerror
;
2009 const char *devaddr
;
2010 int drives_table_idx
;
2011 char *str
= arg
->opt
;
2012 static const char * const params
[] = { "bus", "unit", "if", "index",
2013 "cyls", "heads", "secs", "trans",
2014 "media", "snapshot", "file",
2015 "cache", "format", "serial",
2019 if (check_params(buf
, sizeof(buf
), params
, str
) < 0) {
2020 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2026 cyls
= heads
= secs
= 0;
2029 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2033 if (machine
->use_scsi
) {
2035 max_devs
= MAX_SCSI_DEVS
;
2036 pstrcpy(devname
, sizeof(devname
), "scsi");
2039 max_devs
= MAX_IDE_DEVS
;
2040 pstrcpy(devname
, sizeof(devname
), "ide");
2044 /* extract parameters */
2046 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2047 bus_id
= strtol(buf
, NULL
, 0);
2049 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2054 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2055 unit_id
= strtol(buf
, NULL
, 0);
2057 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2062 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2063 pstrcpy(devname
, sizeof(devname
), buf
);
2064 if (!strcmp(buf
, "ide")) {
2066 max_devs
= MAX_IDE_DEVS
;
2067 } else if (!strcmp(buf
, "scsi")) {
2069 max_devs
= MAX_SCSI_DEVS
;
2070 } else if (!strcmp(buf
, "floppy")) {
2073 } else if (!strcmp(buf
, "pflash")) {
2076 } else if (!strcmp(buf
, "mtd")) {
2079 } else if (!strcmp(buf
, "sd")) {
2082 } else if (!strcmp(buf
, "virtio")) {
2085 } else if (!strcmp(buf
, "xen")) {
2089 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2094 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2095 index
= strtol(buf
, NULL
, 0);
2097 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2102 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2103 cyls
= strtol(buf
, NULL
, 0);
2106 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2107 heads
= strtol(buf
, NULL
, 0);
2110 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2111 secs
= strtol(buf
, NULL
, 0);
2114 if (cyls
|| heads
|| secs
) {
2115 if (cyls
< 1 || cyls
> 16383) {
2116 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2119 if (heads
< 1 || heads
> 16) {
2120 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2123 if (secs
< 1 || secs
> 63) {
2124 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2129 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2132 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2136 if (!strcmp(buf
, "none"))
2137 translation
= BIOS_ATA_TRANSLATION_NONE
;
2138 else if (!strcmp(buf
, "lba"))
2139 translation
= BIOS_ATA_TRANSLATION_LBA
;
2140 else if (!strcmp(buf
, "auto"))
2141 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2143 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2148 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2149 if (!strcmp(buf
, "disk")) {
2151 } else if (!strcmp(buf
, "cdrom")) {
2152 if (cyls
|| secs
|| heads
) {
2154 "qemu: '%s' invalid physical CHS format\n", str
);
2157 media
= MEDIA_CDROM
;
2159 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2164 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2165 if (!strcmp(buf
, "on"))
2167 else if (!strcmp(buf
, "off"))
2170 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2175 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2176 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2178 else if (!strcmp(buf
, "writethrough"))
2180 else if (!strcmp(buf
, "writeback"))
2183 fprintf(stderr
, "qemu: invalid cache option\n");
2188 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2189 if (strcmp(buf
, "?") == 0) {
2190 fprintf(stderr
, "qemu: Supported formats:");
2191 bdrv_iterate_format(bdrv_format_print
, NULL
);
2192 fprintf(stderr
, "\n");
2195 drv
= bdrv_find_format(buf
);
2197 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2202 if (arg
->file
== NULL
)
2203 get_param_value(file
, sizeof(file
), "file", str
);
2205 pstrcpy(file
, sizeof(file
), arg
->file
);
2207 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2208 memset(serial
, 0, sizeof(serial
));
2210 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2211 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2212 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2213 fprintf(stderr
, "werror is no supported by this format\n");
2216 if (!strcmp(buf
, "ignore"))
2217 onerror
= BLOCK_ERR_IGNORE
;
2218 else if (!strcmp(buf
, "enospc"))
2219 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2220 else if (!strcmp(buf
, "stop"))
2221 onerror
= BLOCK_ERR_STOP_ANY
;
2222 else if (!strcmp(buf
, "report"))
2223 onerror
= BLOCK_ERR_REPORT
;
2225 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2231 if (get_param_value(buf
, sizeof(buf
), "addr", str
)) {
2232 if (type
!= IF_VIRTIO
) {
2233 fprintf(stderr
, "addr is not supported by in '%s'\n", str
);
2236 devaddr
= strdup(buf
);
2239 /* compute bus and unit according index */
2242 if (bus_id
!= 0 || unit_id
!= -1) {
2244 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2252 unit_id
= index
% max_devs
;
2253 bus_id
= index
/ max_devs
;
2257 /* if user doesn't specify a unit_id,
2258 * try to find the first free
2261 if (unit_id
== -1) {
2263 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2265 if (max_devs
&& unit_id
>= max_devs
) {
2266 unit_id
-= max_devs
;
2274 if (max_devs
&& unit_id
>= max_devs
) {
2275 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2276 str
, unit_id
, max_devs
- 1);
2281 * ignore multiple definitions
2284 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2289 if (type
== IF_IDE
|| type
== IF_SCSI
)
2290 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2292 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2293 devname
, bus_id
, mediastr
, unit_id
);
2295 snprintf(buf
, sizeof(buf
), "%s%s%i",
2296 devname
, mediastr
, unit_id
);
2297 bdrv
= bdrv_new(buf
);
2298 drives_table_idx
= drive_get_free_idx();
2299 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2300 drives_table
[drives_table_idx
].devaddr
= devaddr
;
2301 drives_table
[drives_table_idx
].type
= type
;
2302 drives_table
[drives_table_idx
].bus
= bus_id
;
2303 drives_table
[drives_table_idx
].unit
= unit_id
;
2304 drives_table
[drives_table_idx
].onerror
= onerror
;
2305 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2306 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2316 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2317 bdrv_set_translation_hint(bdrv
, translation
);
2321 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2326 /* FIXME: This isn't really a floppy, but it's a reasonable
2329 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2342 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2343 cache
= 2; /* always use write-back with snapshot */
2345 if (cache
== 0) /* no caching */
2346 bdrv_flags
|= BDRV_O_NOCACHE
;
2347 else if (cache
== 2) /* write-back */
2348 bdrv_flags
|= BDRV_O_CACHE_WB
;
2349 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2350 fprintf(stderr
, "qemu: could not open disk image %s\n",
2354 if (bdrv_key_required(bdrv
))
2356 return drives_table_idx
;
2359 static void numa_add(const char *optarg
)
2363 unsigned long long value
, endvalue
;
2366 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2367 if (!strcmp(option
, "node")) {
2368 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2369 nodenr
= nb_numa_nodes
;
2371 nodenr
= strtoull(option
, NULL
, 10);
2374 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2375 node_mem
[nodenr
] = 0;
2377 value
= strtoull(option
, &endptr
, 0);
2379 case 0: case 'M': case 'm':
2386 node_mem
[nodenr
] = value
;
2388 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2389 node_cpumask
[nodenr
] = 0;
2391 value
= strtoull(option
, &endptr
, 10);
2394 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2396 if (*endptr
== '-') {
2397 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2398 if (endvalue
>= 63) {
2401 "only 63 CPUs in NUMA mode supported.\n");
2403 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2408 node_cpumask
[nodenr
] = value
;
2415 /***********************************************************/
2418 static USBPort
*used_usb_ports
;
2419 static USBPort
*free_usb_ports
;
2421 /* ??? Maybe change this to register a hub to keep track of the topology. */
2422 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2423 usb_attachfn attach
)
2425 port
->opaque
= opaque
;
2426 port
->index
= index
;
2427 port
->attach
= attach
;
2428 port
->next
= free_usb_ports
;
2429 free_usb_ports
= port
;
2432 int usb_device_add_dev(USBDevice
*dev
)
2436 /* Find a USB port to add the device to. */
2437 port
= free_usb_ports
;
2441 /* Create a new hub and chain it on. */
2442 free_usb_ports
= NULL
;
2443 port
->next
= used_usb_ports
;
2444 used_usb_ports
= port
;
2446 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2447 usb_attach(port
, hub
);
2448 port
= free_usb_ports
;
2451 free_usb_ports
= port
->next
;
2452 port
->next
= used_usb_ports
;
2453 used_usb_ports
= port
;
2454 usb_attach(port
, dev
);
2458 static void usb_msd_password_cb(void *opaque
, int err
)
2460 USBDevice
*dev
= opaque
;
2463 usb_device_add_dev(dev
);
2465 dev
->handle_destroy(dev
);
2468 static int usb_device_add(const char *devname
, int is_hotplug
)
2473 if (!free_usb_ports
)
2476 if (strstart(devname
, "host:", &p
)) {
2477 dev
= usb_host_device_open(p
);
2478 } else if (!strcmp(devname
, "mouse")) {
2479 dev
= usb_mouse_init();
2480 } else if (!strcmp(devname
, "tablet")) {
2481 dev
= usb_tablet_init();
2482 } else if (!strcmp(devname
, "keyboard")) {
2483 dev
= usb_keyboard_init();
2484 } else if (strstart(devname
, "disk:", &p
)) {
2485 BlockDriverState
*bs
;
2487 dev
= usb_msd_init(p
);
2490 bs
= usb_msd_get_bdrv(dev
);
2491 if (bdrv_key_required(bs
)) {
2494 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2499 } else if (!strcmp(devname
, "wacom-tablet")) {
2500 dev
= usb_wacom_init();
2501 } else if (strstart(devname
, "serial:", &p
)) {
2502 dev
= usb_serial_init(p
);
2503 #ifdef CONFIG_BRLAPI
2504 } else if (!strcmp(devname
, "braille")) {
2505 dev
= usb_baum_init();
2507 } else if (strstart(devname
, "net:", &p
)) {
2510 if (net_client_init(NULL
, "nic", p
) < 0)
2512 nd_table
[nic
].model
= "usb";
2513 dev
= usb_net_init(&nd_table
[nic
]);
2514 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2515 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2516 bt_new_hci(qemu_find_bt_vlan(0)));
2523 return usb_device_add_dev(dev
);
2526 int usb_device_del_addr(int bus_num
, int addr
)
2532 if (!used_usb_ports
)
2538 lastp
= &used_usb_ports
;
2539 port
= used_usb_ports
;
2540 while (port
&& port
->dev
->addr
!= addr
) {
2541 lastp
= &port
->next
;
2549 *lastp
= port
->next
;
2550 usb_attach(port
, NULL
);
2551 dev
->handle_destroy(dev
);
2552 port
->next
= free_usb_ports
;
2553 free_usb_ports
= port
;
2557 static int usb_device_del(const char *devname
)
2562 if (strstart(devname
, "host:", &p
))
2563 return usb_host_device_close(p
);
2565 if (!used_usb_ports
)
2568 p
= strchr(devname
, '.');
2571 bus_num
= strtoul(devname
, NULL
, 0);
2572 addr
= strtoul(p
+ 1, NULL
, 0);
2574 return usb_device_del_addr(bus_num
, addr
);
2577 void do_usb_add(Monitor
*mon
, const char *devname
)
2579 usb_device_add(devname
, 1);
2582 void do_usb_del(Monitor
*mon
, const char *devname
)
2584 usb_device_del(devname
);
2587 void usb_info(Monitor
*mon
)
2591 const char *speed_str
;
2594 monitor_printf(mon
, "USB support not enabled\n");
2598 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2602 switch(dev
->speed
) {
2606 case USB_SPEED_FULL
:
2609 case USB_SPEED_HIGH
:
2616 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2617 0, dev
->addr
, speed_str
, dev
->devname
);
2621 /***********************************************************/
2622 /* PCMCIA/Cardbus */
2624 static struct pcmcia_socket_entry_s
{
2625 PCMCIASocket
*socket
;
2626 struct pcmcia_socket_entry_s
*next
;
2627 } *pcmcia_sockets
= 0;
2629 void pcmcia_socket_register(PCMCIASocket
*socket
)
2631 struct pcmcia_socket_entry_s
*entry
;
2633 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2634 entry
->socket
= socket
;
2635 entry
->next
= pcmcia_sockets
;
2636 pcmcia_sockets
= entry
;
2639 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2641 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2643 ptr
= &pcmcia_sockets
;
2644 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2645 if (entry
->socket
== socket
) {
2651 void pcmcia_info(Monitor
*mon
)
2653 struct pcmcia_socket_entry_s
*iter
;
2655 if (!pcmcia_sockets
)
2656 monitor_printf(mon
, "No PCMCIA sockets\n");
2658 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2659 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2660 iter
->socket
->attached
? iter
->socket
->card_string
:
2664 /***********************************************************/
2665 /* register display */
2667 struct DisplayAllocator default_allocator
= {
2668 defaultallocator_create_displaysurface
,
2669 defaultallocator_resize_displaysurface
,
2670 defaultallocator_free_displaysurface
2673 void register_displaystate(DisplayState
*ds
)
2683 DisplayState
*get_displaystate(void)
2685 return display_state
;
2688 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2690 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2691 return ds
->allocator
;
2696 static void dumb_display_init(void)
2698 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2699 ds
->allocator
= &default_allocator
;
2700 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2701 register_displaystate(ds
);
2704 /***********************************************************/
2707 typedef struct IOHandlerRecord
{
2709 IOCanRWHandler
*fd_read_poll
;
2711 IOHandler
*fd_write
;
2714 /* temporary data */
2716 struct IOHandlerRecord
*next
;
2719 static IOHandlerRecord
*first_io_handler
;
2721 /* XXX: fd_read_poll should be suppressed, but an API change is
2722 necessary in the character devices to suppress fd_can_read(). */
2723 int qemu_set_fd_handler2(int fd
,
2724 IOCanRWHandler
*fd_read_poll
,
2726 IOHandler
*fd_write
,
2729 IOHandlerRecord
**pioh
, *ioh
;
2731 if (!fd_read
&& !fd_write
) {
2732 pioh
= &first_io_handler
;
2737 if (ioh
->fd
== fd
) {
2744 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2748 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2749 ioh
->next
= first_io_handler
;
2750 first_io_handler
= ioh
;
2753 ioh
->fd_read_poll
= fd_read_poll
;
2754 ioh
->fd_read
= fd_read
;
2755 ioh
->fd_write
= fd_write
;
2756 ioh
->opaque
= opaque
;
2762 int qemu_set_fd_handler(int fd
,
2764 IOHandler
*fd_write
,
2767 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
2771 /***********************************************************/
2772 /* Polling handling */
2774 typedef struct PollingEntry
{
2777 struct PollingEntry
*next
;
2780 static PollingEntry
*first_polling_entry
;
2782 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
2784 PollingEntry
**ppe
, *pe
;
2785 pe
= qemu_mallocz(sizeof(PollingEntry
));
2787 pe
->opaque
= opaque
;
2788 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
2793 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
2795 PollingEntry
**ppe
, *pe
;
2796 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
2798 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
2806 /***********************************************************/
2807 /* Wait objects support */
2808 typedef struct WaitObjects
{
2810 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
2811 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
2812 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
2815 static WaitObjects wait_objects
= {0};
2817 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
2819 WaitObjects
*w
= &wait_objects
;
2821 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
2823 w
->events
[w
->num
] = handle
;
2824 w
->func
[w
->num
] = func
;
2825 w
->opaque
[w
->num
] = opaque
;
2830 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
2833 WaitObjects
*w
= &wait_objects
;
2836 for (i
= 0; i
< w
->num
; i
++) {
2837 if (w
->events
[i
] == handle
)
2840 w
->events
[i
] = w
->events
[i
+ 1];
2841 w
->func
[i
] = w
->func
[i
+ 1];
2842 w
->opaque
[i
] = w
->opaque
[i
+ 1];
2850 /***********************************************************/
2851 /* ram save/restore */
2853 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
2857 v
= qemu_get_byte(f
);
2860 if (qemu_get_buffer(f
, buf
, len
) != len
)
2864 v
= qemu_get_byte(f
);
2865 memset(buf
, v
, len
);
2871 if (qemu_file_has_error(f
))
2877 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
2882 if (qemu_get_be32(f
) != last_ram_offset
)
2884 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
2885 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
2892 #define BDRV_HASH_BLOCK_SIZE 1024
2893 #define IOBUF_SIZE 4096
2894 #define RAM_CBLOCK_MAGIC 0xfabe
2896 typedef struct RamDecompressState
{
2899 uint8_t buf
[IOBUF_SIZE
];
2900 } RamDecompressState
;
2902 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
2905 memset(s
, 0, sizeof(*s
));
2907 ret
= inflateInit(&s
->zstream
);
2913 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
2917 s
->zstream
.avail_out
= len
;
2918 s
->zstream
.next_out
= buf
;
2919 while (s
->zstream
.avail_out
> 0) {
2920 if (s
->zstream
.avail_in
== 0) {
2921 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
2923 clen
= qemu_get_be16(s
->f
);
2924 if (clen
> IOBUF_SIZE
)
2926 qemu_get_buffer(s
->f
, s
->buf
, clen
);
2927 s
->zstream
.avail_in
= clen
;
2928 s
->zstream
.next_in
= s
->buf
;
2930 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
2931 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
2938 static void ram_decompress_close(RamDecompressState
*s
)
2940 inflateEnd(&s
->zstream
);
2943 #define RAM_SAVE_FLAG_FULL 0x01
2944 #define RAM_SAVE_FLAG_COMPRESS 0x02
2945 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2946 #define RAM_SAVE_FLAG_PAGE 0x08
2947 #define RAM_SAVE_FLAG_EOS 0x10
2949 static int is_dup_page(uint8_t *page
, uint8_t ch
)
2951 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
2952 uint32_t *array
= (uint32_t *)page
;
2955 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
2956 if (array
[i
] != val
)
2963 static int ram_save_block(QEMUFile
*f
)
2965 static ram_addr_t current_addr
= 0;
2966 ram_addr_t saved_addr
= current_addr
;
2967 ram_addr_t addr
= 0;
2970 while (addr
< last_ram_offset
) {
2971 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
2974 cpu_physical_memory_reset_dirty(current_addr
,
2975 current_addr
+ TARGET_PAGE_SIZE
,
2976 MIGRATION_DIRTY_FLAG
);
2978 p
= qemu_get_ram_ptr(current_addr
);
2980 if (is_dup_page(p
, *p
)) {
2981 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
2982 qemu_put_byte(f
, *p
);
2984 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
2985 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
2991 addr
+= TARGET_PAGE_SIZE
;
2992 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
2998 static uint64_t bytes_transferred
= 0;
3000 static ram_addr_t
ram_save_remaining(void)
3003 ram_addr_t count
= 0;
3005 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3006 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3013 uint64_t ram_bytes_remaining(void)
3015 return ram_save_remaining() * TARGET_PAGE_SIZE
;
3018 uint64_t ram_bytes_transferred(void)
3020 return bytes_transferred
;
3023 uint64_t ram_bytes_total(void)
3025 return last_ram_offset
;
3028 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3031 uint64_t bytes_transferred_last
;
3033 uint64_t expected_time
= 0;
3035 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX
) != 0) {
3036 qemu_file_set_error(f
);
3041 /* Make sure all dirty bits are set */
3042 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3043 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3044 cpu_physical_memory_set_dirty(addr
);
3047 /* Enable dirty memory tracking */
3048 cpu_physical_memory_set_dirty_tracking(1);
3050 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3053 bytes_transferred_last
= bytes_transferred
;
3054 bwidth
= get_clock();
3056 while (!qemu_file_rate_limit(f
)) {
3059 ret
= ram_save_block(f
);
3060 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3061 if (ret
== 0) /* no more blocks */
3065 bwidth
= get_clock() - bwidth
;
3066 bwidth
= (bytes_transferred
- bytes_transferred_last
) / bwidth
;
3068 /* if we haven't transferred anything this round, force expected_time to a
3069 * a very high value, but without crashing */
3073 /* try transferring iterative blocks of memory */
3077 /* flush all remaining blocks regardless of rate limiting */
3078 while (ram_save_block(f
) != 0) {
3079 bytes_transferred
+= TARGET_PAGE_SIZE
;
3081 cpu_physical_memory_set_dirty_tracking(0);
3084 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3086 expected_time
= ram_save_remaining() * TARGET_PAGE_SIZE
/ bwidth
;
3088 return (stage
== 2) && (expected_time
<= migrate_max_downtime());
3091 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3093 RamDecompressState s1
, *s
= &s1
;
3097 if (ram_decompress_open(s
, f
) < 0)
3099 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3100 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3101 fprintf(stderr
, "Error while reading ram block header\n");
3105 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3106 BDRV_HASH_BLOCK_SIZE
) < 0) {
3107 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3112 printf("Error block header\n");
3116 ram_decompress_close(s
);
3121 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3126 if (version_id
== 1)
3127 return ram_load_v1(f
, opaque
);
3129 if (version_id
== 2) {
3130 if (qemu_get_be32(f
) != last_ram_offset
)
3132 return ram_load_dead(f
, opaque
);
3135 if (version_id
!= 3)
3139 addr
= qemu_get_be64(f
);
3141 flags
= addr
& ~TARGET_PAGE_MASK
;
3142 addr
&= TARGET_PAGE_MASK
;
3144 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3145 if (addr
!= last_ram_offset
)
3149 if (flags
& RAM_SAVE_FLAG_FULL
) {
3150 if (ram_load_dead(f
, opaque
) < 0)
3154 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3155 uint8_t ch
= qemu_get_byte(f
);
3156 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3159 (!kvm_enabled() || kvm_has_sync_mmu())) {
3160 madvise(qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
, MADV_DONTNEED
);
3163 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3164 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3165 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3170 void qemu_service_io(void)
3172 qemu_notify_event();
3175 /***********************************************************/
3176 /* bottom halves (can be seen as timers which expire ASAP) */
3187 static QEMUBH
*first_bh
= NULL
;
3189 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3192 bh
= qemu_mallocz(sizeof(QEMUBH
));
3194 bh
->opaque
= opaque
;
3195 bh
->next
= first_bh
;
3200 int qemu_bh_poll(void)
3206 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3207 if (!bh
->deleted
&& bh
->scheduled
) {
3216 /* remove deleted bhs */
3230 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3238 void qemu_bh_schedule(QEMUBH
*bh
)
3244 /* stop the currently executing CPU to execute the BH ASAP */
3245 qemu_notify_event();
3248 void qemu_bh_cancel(QEMUBH
*bh
)
3253 void qemu_bh_delete(QEMUBH
*bh
)
3259 static void qemu_bh_update_timeout(int *timeout
)
3263 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3264 if (!bh
->deleted
&& bh
->scheduled
) {
3266 /* idle bottom halves will be polled at least
3268 *timeout
= MIN(10, *timeout
);
3270 /* non-idle bottom halves will be executed
3279 /***********************************************************/
3280 /* machine registration */
3282 static QEMUMachine
*first_machine
= NULL
;
3283 QEMUMachine
*current_machine
= NULL
;
3285 int qemu_register_machine(QEMUMachine
*m
)
3288 pm
= &first_machine
;
3296 static QEMUMachine
*find_machine(const char *name
)
3300 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3301 if (!strcmp(m
->name
, name
))
3307 static QEMUMachine
*find_default_machine(void)
3311 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3312 if (m
->is_default
) {
3319 /***********************************************************/
3320 /* main execution loop */
3322 static void gui_update(void *opaque
)
3324 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3325 DisplayState
*ds
= opaque
;
3326 DisplayChangeListener
*dcl
= ds
->listeners
;
3330 while (dcl
!= NULL
) {
3331 if (dcl
->gui_timer_interval
&&
3332 dcl
->gui_timer_interval
< interval
)
3333 interval
= dcl
->gui_timer_interval
;
3336 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3339 static void nographic_update(void *opaque
)
3341 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3343 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3346 struct vm_change_state_entry
{
3347 VMChangeStateHandler
*cb
;
3349 LIST_ENTRY (vm_change_state_entry
) entries
;
3352 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3354 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3357 VMChangeStateEntry
*e
;
3359 e
= qemu_mallocz(sizeof (*e
));
3363 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3367 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3369 LIST_REMOVE (e
, entries
);
3373 static void vm_state_notify(int running
, int reason
)
3375 VMChangeStateEntry
*e
;
3377 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3378 e
->cb(e
->opaque
, running
, reason
);
3382 static void resume_all_vcpus(void);
3383 static void pause_all_vcpus(void);
3390 vm_state_notify(1, 0);
3391 qemu_rearm_alarm_timer(alarm_timer
);
3396 /* reset/shutdown handler */
3398 typedef struct QEMUResetEntry
{
3399 QEMUResetHandler
*func
;
3401 struct QEMUResetEntry
*next
;
3404 static QEMUResetEntry
*first_reset_entry
;
3405 static int reset_requested
;
3406 static int shutdown_requested
;
3407 static int powerdown_requested
;
3408 static int debug_requested
;
3409 static int vmstop_requested
;
3411 int qemu_shutdown_requested(void)
3413 int r
= shutdown_requested
;
3414 shutdown_requested
= 0;
3418 int qemu_reset_requested(void)
3420 int r
= reset_requested
;
3421 reset_requested
= 0;
3425 int qemu_powerdown_requested(void)
3427 int r
= powerdown_requested
;
3428 powerdown_requested
= 0;
3432 static int qemu_debug_requested(void)
3434 int r
= debug_requested
;
3435 debug_requested
= 0;
3439 static int qemu_vmstop_requested(void)
3441 int r
= vmstop_requested
;
3442 vmstop_requested
= 0;
3446 static void do_vm_stop(int reason
)
3449 cpu_disable_ticks();
3452 vm_state_notify(0, reason
);
3456 void qemu_register_reset(QEMUResetHandler
*func
, void *opaque
)
3458 QEMUResetEntry
**pre
, *re
;
3460 pre
= &first_reset_entry
;
3461 while (*pre
!= NULL
)
3462 pre
= &(*pre
)->next
;
3463 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3465 re
->opaque
= opaque
;
3470 void qemu_system_reset(void)
3474 /* reset all devices */
3475 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3476 re
->func(re
->opaque
);
3480 void qemu_system_reset_request(void)
3483 shutdown_requested
= 1;
3485 reset_requested
= 1;
3487 qemu_notify_event();
3490 void qemu_system_shutdown_request(void)
3492 shutdown_requested
= 1;
3493 qemu_notify_event();
3496 void qemu_system_powerdown_request(void)
3498 powerdown_requested
= 1;
3499 qemu_notify_event();
3502 #ifdef CONFIG_IOTHREAD
3503 static void qemu_system_vmstop_request(int reason
)
3505 vmstop_requested
= reason
;
3506 qemu_notify_event();
3511 static int io_thread_fd
= -1;
3513 static void qemu_event_increment(void)
3515 static const char byte
= 0;
3517 if (io_thread_fd
== -1)
3520 write(io_thread_fd
, &byte
, sizeof(byte
));
3523 static void qemu_event_read(void *opaque
)
3525 int fd
= (unsigned long)opaque
;
3528 /* Drain the notify pipe */
3531 len
= read(fd
, buffer
, sizeof(buffer
));
3532 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3535 static int qemu_event_init(void)
3544 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3548 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3552 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3553 (void *)(unsigned long)fds
[0]);
3555 io_thread_fd
= fds
[1];
3564 HANDLE qemu_event_handle
;
3566 static void dummy_event_handler(void *opaque
)
3570 static int qemu_event_init(void)
3572 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3573 if (!qemu_event_handle
) {
3574 perror("Failed CreateEvent");
3577 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3581 static void qemu_event_increment(void)
3583 SetEvent(qemu_event_handle
);
3587 static int cpu_can_run(CPUState
*env
)
3596 #ifndef CONFIG_IOTHREAD
3597 static int qemu_init_main_loop(void)
3599 return qemu_event_init();
3602 void qemu_init_vcpu(void *_env
)
3604 CPUState
*env
= _env
;
3611 int qemu_cpu_self(void *env
)
3616 static void resume_all_vcpus(void)
3620 static void pause_all_vcpus(void)
3624 void qemu_cpu_kick(void *env
)
3629 void qemu_notify_event(void)
3631 CPUState
*env
= cpu_single_env
;
3636 if (env
->kqemu_enabled
)
3637 kqemu_cpu_interrupt(env
);
3642 #define qemu_mutex_lock_iothread() do { } while (0)
3643 #define qemu_mutex_unlock_iothread() do { } while (0)
3645 void vm_stop(int reason
)
3650 #else /* CONFIG_IOTHREAD */
3652 #include "qemu-thread.h"
3654 QemuMutex qemu_global_mutex
;
3655 static QemuMutex qemu_fair_mutex
;
3657 static QemuThread io_thread
;
3659 static QemuThread
*tcg_cpu_thread
;
3660 static QemuCond
*tcg_halt_cond
;
3662 static int qemu_system_ready
;
3664 static QemuCond qemu_cpu_cond
;
3666 static QemuCond qemu_system_cond
;
3667 static QemuCond qemu_pause_cond
;
3669 static void block_io_signals(void);
3670 static void unblock_io_signals(void);
3671 static int tcg_has_work(void);
3673 static int qemu_init_main_loop(void)
3677 ret
= qemu_event_init();
3681 qemu_cond_init(&qemu_pause_cond
);
3682 qemu_mutex_init(&qemu_fair_mutex
);
3683 qemu_mutex_init(&qemu_global_mutex
);
3684 qemu_mutex_lock(&qemu_global_mutex
);
3686 unblock_io_signals();
3687 qemu_thread_self(&io_thread
);
3692 static void qemu_wait_io_event(CPUState
*env
)
3694 while (!tcg_has_work())
3695 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3697 qemu_mutex_unlock(&qemu_global_mutex
);
3700 * Users of qemu_global_mutex can be starved, having no chance
3701 * to acquire it since this path will get to it first.
3702 * So use another lock to provide fairness.
3704 qemu_mutex_lock(&qemu_fair_mutex
);
3705 qemu_mutex_unlock(&qemu_fair_mutex
);
3707 qemu_mutex_lock(&qemu_global_mutex
);
3711 qemu_cond_signal(&qemu_pause_cond
);
3715 static int qemu_cpu_exec(CPUState
*env
);
3717 static void *kvm_cpu_thread_fn(void *arg
)
3719 CPUState
*env
= arg
;
3722 qemu_thread_self(env
->thread
);
3724 /* signal CPU creation */
3725 qemu_mutex_lock(&qemu_global_mutex
);
3727 qemu_cond_signal(&qemu_cpu_cond
);
3729 /* and wait for machine initialization */
3730 while (!qemu_system_ready
)
3731 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3734 if (cpu_can_run(env
))
3736 qemu_wait_io_event(env
);
3742 static void tcg_cpu_exec(void);
3744 static void *tcg_cpu_thread_fn(void *arg
)
3746 CPUState
*env
= arg
;
3749 qemu_thread_self(env
->thread
);
3751 /* signal CPU creation */
3752 qemu_mutex_lock(&qemu_global_mutex
);
3753 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3755 qemu_cond_signal(&qemu_cpu_cond
);
3757 /* and wait for machine initialization */
3758 while (!qemu_system_ready
)
3759 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3763 qemu_wait_io_event(cur_cpu
);
3769 void qemu_cpu_kick(void *_env
)
3771 CPUState
*env
= _env
;
3772 qemu_cond_broadcast(env
->halt_cond
);
3774 qemu_thread_signal(env
->thread
, SIGUSR1
);
3777 int qemu_cpu_self(void *env
)
3779 return (cpu_single_env
!= NULL
);
3782 static void cpu_signal(int sig
)
3785 cpu_exit(cpu_single_env
);
3788 static void block_io_signals(void)
3791 struct sigaction sigact
;
3794 sigaddset(&set
, SIGUSR2
);
3795 sigaddset(&set
, SIGIO
);
3796 sigaddset(&set
, SIGALRM
);
3797 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3800 sigaddset(&set
, SIGUSR1
);
3801 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3803 memset(&sigact
, 0, sizeof(sigact
));
3804 sigact
.sa_handler
= cpu_signal
;
3805 sigaction(SIGUSR1
, &sigact
, NULL
);
3808 static void unblock_io_signals(void)
3813 sigaddset(&set
, SIGUSR2
);
3814 sigaddset(&set
, SIGIO
);
3815 sigaddset(&set
, SIGALRM
);
3816 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3819 sigaddset(&set
, SIGUSR1
);
3820 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3823 static void qemu_signal_lock(unsigned int msecs
)
3825 qemu_mutex_lock(&qemu_fair_mutex
);
3827 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
3828 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
3829 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
3832 qemu_mutex_unlock(&qemu_fair_mutex
);
3835 static void qemu_mutex_lock_iothread(void)
3837 if (kvm_enabled()) {
3838 qemu_mutex_lock(&qemu_fair_mutex
);
3839 qemu_mutex_lock(&qemu_global_mutex
);
3840 qemu_mutex_unlock(&qemu_fair_mutex
);
3842 qemu_signal_lock(100);
3845 static void qemu_mutex_unlock_iothread(void)
3847 qemu_mutex_unlock(&qemu_global_mutex
);
3850 static int all_vcpus_paused(void)
3852 CPUState
*penv
= first_cpu
;
3857 penv
= (CPUState
*)penv
->next_cpu
;
3863 static void pause_all_vcpus(void)
3865 CPUState
*penv
= first_cpu
;
3869 qemu_thread_signal(penv
->thread
, SIGUSR1
);
3870 qemu_cpu_kick(penv
);
3871 penv
= (CPUState
*)penv
->next_cpu
;
3874 while (!all_vcpus_paused()) {
3875 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
3878 qemu_thread_signal(penv
->thread
, SIGUSR1
);
3879 penv
= (CPUState
*)penv
->next_cpu
;
3884 static void resume_all_vcpus(void)
3886 CPUState
*penv
= first_cpu
;
3891 qemu_thread_signal(penv
->thread
, SIGUSR1
);
3892 qemu_cpu_kick(penv
);
3893 penv
= (CPUState
*)penv
->next_cpu
;
3897 static void tcg_init_vcpu(void *_env
)
3899 CPUState
*env
= _env
;
3900 /* share a single thread for all cpus with TCG */
3901 if (!tcg_cpu_thread
) {
3902 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
3903 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
3904 qemu_cond_init(env
->halt_cond
);
3905 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
3906 while (env
->created
== 0)
3907 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
3908 tcg_cpu_thread
= env
->thread
;
3909 tcg_halt_cond
= env
->halt_cond
;
3911 env
->thread
= tcg_cpu_thread
;
3912 env
->halt_cond
= tcg_halt_cond
;
3916 static void kvm_start_vcpu(CPUState
*env
)
3919 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
3920 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
3921 qemu_cond_init(env
->halt_cond
);
3922 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
3923 while (env
->created
== 0)
3924 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
3927 void qemu_init_vcpu(void *_env
)
3929 CPUState
*env
= _env
;
3932 kvm_start_vcpu(env
);
3937 void qemu_notify_event(void)
3939 qemu_event_increment();
3942 void vm_stop(int reason
)
3945 qemu_thread_self(&me
);
3947 if (!qemu_thread_equal(&me
, &io_thread
)) {
3948 qemu_system_vmstop_request(reason
);
3950 * FIXME: should not return to device code in case
3951 * vm_stop() has been requested.
3953 if (cpu_single_env
) {
3954 cpu_exit(cpu_single_env
);
3955 cpu_single_env
->stop
= 1;
3966 static void host_main_loop_wait(int *timeout
)
3972 /* XXX: need to suppress polling by better using win32 events */
3974 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
3975 ret
|= pe
->func(pe
->opaque
);
3979 WaitObjects
*w
= &wait_objects
;
3981 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
3982 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
3983 if (w
->func
[ret
- WAIT_OBJECT_0
])
3984 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
3986 /* Check for additional signaled events */
3987 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
3989 /* Check if event is signaled */
3990 ret2
= WaitForSingleObject(w
->events
[i
], 0);
3991 if(ret2
== WAIT_OBJECT_0
) {
3993 w
->func
[i
](w
->opaque
[i
]);
3994 } else if (ret2
== WAIT_TIMEOUT
) {
3996 err
= GetLastError();
3997 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4000 } else if (ret
== WAIT_TIMEOUT
) {
4002 err
= GetLastError();
4003 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4010 static void host_main_loop_wait(int *timeout
)
4015 void main_loop_wait(int timeout
)
4017 IOHandlerRecord
*ioh
;
4018 fd_set rfds
, wfds
, xfds
;
4022 qemu_bh_update_timeout(&timeout
);
4024 host_main_loop_wait(&timeout
);
4026 /* poll any events */
4027 /* XXX: separate device handlers from system ones */
4032 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4036 (!ioh
->fd_read_poll
||
4037 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4038 FD_SET(ioh
->fd
, &rfds
);
4042 if (ioh
->fd_write
) {
4043 FD_SET(ioh
->fd
, &wfds
);
4049 tv
.tv_sec
= timeout
/ 1000;
4050 tv
.tv_usec
= (timeout
% 1000) * 1000;
4052 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4054 qemu_mutex_unlock_iothread();
4055 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4056 qemu_mutex_lock_iothread();
4058 IOHandlerRecord
**pioh
;
4060 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4061 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4062 ioh
->fd_read(ioh
->opaque
);
4064 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4065 ioh
->fd_write(ioh
->opaque
);
4069 /* remove deleted IO handlers */
4070 pioh
= &first_io_handler
;
4081 slirp_select_poll(&rfds
, &wfds
, &xfds
, (ret
< 0));
4083 /* rearm timer, if not periodic */
4084 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4085 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4086 qemu_rearm_alarm_timer(alarm_timer
);
4089 /* vm time timers */
4091 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4092 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4093 qemu_get_clock(vm_clock
));
4096 /* real time timers */
4097 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4098 qemu_get_clock(rt_clock
));
4100 /* Check bottom-halves last in case any of the earlier events triggered
4106 static int qemu_cpu_exec(CPUState
*env
)
4109 #ifdef CONFIG_PROFILER
4113 #ifdef CONFIG_PROFILER
4114 ti
= profile_getclock();
4119 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4120 env
->icount_decr
.u16
.low
= 0;
4121 env
->icount_extra
= 0;
4122 count
= qemu_next_deadline();
4123 count
= (count
+ (1 << icount_time_shift
) - 1)
4124 >> icount_time_shift
;
4125 qemu_icount
+= count
;
4126 decr
= (count
> 0xffff) ? 0xffff : count
;
4128 env
->icount_decr
.u16
.low
= decr
;
4129 env
->icount_extra
= count
;
4131 ret
= cpu_exec(env
);
4132 #ifdef CONFIG_PROFILER
4133 qemu_time
+= profile_getclock() - ti
;
4136 /* Fold pending instructions back into the
4137 instruction counter, and clear the interrupt flag. */
4138 qemu_icount
-= (env
->icount_decr
.u16
.low
4139 + env
->icount_extra
);
4140 env
->icount_decr
.u32
= 0;
4141 env
->icount_extra
= 0;
4146 static void tcg_cpu_exec(void)
4150 if (next_cpu
== NULL
)
4151 next_cpu
= first_cpu
;
4152 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4153 CPUState
*env
= cur_cpu
= next_cpu
;
4157 if (timer_alarm_pending
) {
4158 timer_alarm_pending
= 0;
4161 if (cpu_can_run(env
))
4162 ret
= qemu_cpu_exec(env
);
4163 if (ret
== EXCP_DEBUG
) {
4164 gdb_set_stop_cpu(env
);
4165 debug_requested
= 1;
4171 static int cpu_has_work(CPUState
*env
)
4179 if (qemu_cpu_has_work(env
))
4184 static int tcg_has_work(void)
4188 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4189 if (cpu_has_work(env
))
4194 static int qemu_calculate_timeout(void)
4196 #ifndef CONFIG_IOTHREAD
4201 else if (tcg_has_work())
4203 else if (!use_icount
)
4206 /* XXX: use timeout computed from timers */
4209 /* Advance virtual time to the next event. */
4210 if (use_icount
== 1) {
4211 /* When not using an adaptive execution frequency
4212 we tend to get badly out of sync with real time,
4213 so just delay for a reasonable amount of time. */
4216 delta
= cpu_get_icount() - cpu_get_clock();
4219 /* If virtual time is ahead of real time then just
4221 timeout
= (delta
/ 1000000) + 1;
4223 /* Wait for either IO to occur or the next
4225 add
= qemu_next_deadline();
4226 /* We advance the timer before checking for IO.
4227 Limit the amount we advance so that early IO
4228 activity won't get the guest too far ahead. */
4232 add
= (add
+ (1 << icount_time_shift
) - 1)
4233 >> icount_time_shift
;
4235 timeout
= delta
/ 1000000;
4242 #else /* CONFIG_IOTHREAD */
4247 static int vm_can_run(void)
4249 if (powerdown_requested
)
4251 if (reset_requested
)
4253 if (shutdown_requested
)
4255 if (debug_requested
)
4260 static void main_loop(void)
4264 #ifdef CONFIG_IOTHREAD
4265 qemu_system_ready
= 1;
4266 qemu_cond_broadcast(&qemu_system_cond
);
4271 #ifdef CONFIG_PROFILER
4274 #ifndef CONFIG_IOTHREAD
4277 #ifdef CONFIG_PROFILER
4278 ti
= profile_getclock();
4280 main_loop_wait(qemu_calculate_timeout());
4281 #ifdef CONFIG_PROFILER
4282 dev_time
+= profile_getclock() - ti
;
4284 } while (vm_can_run());
4286 if (qemu_debug_requested())
4287 vm_stop(EXCP_DEBUG
);
4288 if (qemu_shutdown_requested()) {
4295 if (qemu_reset_requested()) {
4297 qemu_system_reset();
4300 if (qemu_powerdown_requested())
4301 qemu_system_powerdown();
4302 if ((r
= qemu_vmstop_requested()))
4308 static void version(void)
4310 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4313 static void help(int exitcode
)
4316 printf("usage: %s [options] [disk_image]\n"
4318 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4320 #define DEF(option, opt_arg, opt_enum, opt_help) \
4322 #define DEFHEADING(text) stringify(text) "\n"
4323 #include "qemu-options.h"
4328 "During emulation, the following keys are useful:\n"
4329 "ctrl-alt-f toggle full screen\n"
4330 "ctrl-alt-n switch to virtual console 'n'\n"
4331 "ctrl-alt toggle mouse and keyboard grab\n"
4333 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4338 DEFAULT_NETWORK_SCRIPT
,
4339 DEFAULT_NETWORK_DOWN_SCRIPT
,
4341 DEFAULT_GDBSTUB_PORT
,
4346 #define HAS_ARG 0x0001
4349 #define DEF(option, opt_arg, opt_enum, opt_help) \
4351 #define DEFHEADING(text)
4352 #include "qemu-options.h"
4358 typedef struct QEMUOption
{
4364 static const QEMUOption qemu_options
[] = {
4365 { "h", 0, QEMU_OPTION_h
},
4366 #define DEF(option, opt_arg, opt_enum, opt_help) \
4367 { option, opt_arg, opt_enum },
4368 #define DEFHEADING(text)
4369 #include "qemu-options.h"
4377 struct soundhw soundhw
[] = {
4378 #ifdef HAS_AUDIO_CHOICE
4379 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4385 { .init_isa
= pcspk_audio_init
}
4392 "Creative Sound Blaster 16",
4395 { .init_isa
= SB16_init
}
4399 #ifdef CONFIG_CS4231A
4405 { .init_isa
= cs4231a_init
}
4413 "Yamaha YMF262 (OPL3)",
4415 "Yamaha YM3812 (OPL2)",
4419 { .init_isa
= Adlib_init
}
4426 "Gravis Ultrasound GF1",
4429 { .init_isa
= GUS_init
}
4436 "Intel 82801AA AC97 Audio",
4439 { .init_pci
= ac97_init
}
4443 #ifdef CONFIG_ES1370
4446 "ENSONIQ AudioPCI ES1370",
4449 { .init_pci
= es1370_init
}
4453 #endif /* HAS_AUDIO_CHOICE */
4455 { NULL
, NULL
, 0, 0, { NULL
} }
4458 static void select_soundhw (const char *optarg
)
4462 if (*optarg
== '?') {
4465 printf ("Valid sound card names (comma separated):\n");
4466 for (c
= soundhw
; c
->name
; ++c
) {
4467 printf ("%-11s %s\n", c
->name
, c
->descr
);
4469 printf ("\n-soundhw all will enable all of the above\n");
4470 exit (*optarg
!= '?');
4478 if (!strcmp (optarg
, "all")) {
4479 for (c
= soundhw
; c
->name
; ++c
) {
4487 e
= strchr (p
, ',');
4488 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4490 for (c
= soundhw
; c
->name
; ++c
) {
4491 if (!strncmp (c
->name
, p
, l
)) {
4500 "Unknown sound card name (too big to show)\n");
4503 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4508 p
+= l
+ (e
!= NULL
);
4512 goto show_valid_cards
;
4517 static void select_vgahw (const char *p
)
4521 cirrus_vga_enabled
= 0;
4522 std_vga_enabled
= 0;
4525 if (strstart(p
, "std", &opts
)) {
4526 std_vga_enabled
= 1;
4527 } else if (strstart(p
, "cirrus", &opts
)) {
4528 cirrus_vga_enabled
= 1;
4529 } else if (strstart(p
, "vmware", &opts
)) {
4531 } else if (strstart(p
, "xenfb", &opts
)) {
4533 } else if (!strstart(p
, "none", &opts
)) {
4535 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4539 const char *nextopt
;
4541 if (strstart(opts
, ",retrace=", &nextopt
)) {
4543 if (strstart(opts
, "dumb", &nextopt
))
4544 vga_retrace_method
= VGA_RETRACE_DUMB
;
4545 else if (strstart(opts
, "precise", &nextopt
))
4546 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4547 else goto invalid_vga
;
4548 } else goto invalid_vga
;
4554 static int balloon_parse(const char *arg
)
4559 if (!strcmp(arg
, "none")) {
4561 } else if (!strncmp(arg
, "virtio", 6)) {
4563 if (arg
[6] == ',') {
4565 if (get_param_value(buf
, sizeof(buf
), "addr", p
)) {
4566 virtio_balloon_devaddr
= strdup(buf
);
4577 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4579 exit(STATUS_CONTROL_C_EXIT
);
4584 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4588 if(strlen(str
) != 36)
4591 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4592 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4593 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4599 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4605 #define MAX_NET_CLIENTS 32
4609 static void termsig_handler(int signal
)
4611 qemu_system_shutdown_request();
4614 static void sigchld_handler(int signal
)
4616 waitpid(-1, NULL
, WNOHANG
);
4619 static void sighandler_setup(void)
4621 struct sigaction act
;
4623 memset(&act
, 0, sizeof(act
));
4624 act
.sa_handler
= termsig_handler
;
4625 sigaction(SIGINT
, &act
, NULL
);
4626 sigaction(SIGHUP
, &act
, NULL
);
4627 sigaction(SIGTERM
, &act
, NULL
);
4629 act
.sa_handler
= sigchld_handler
;
4630 act
.sa_flags
= SA_NOCLDSTOP
;
4631 sigaction(SIGCHLD
, &act
, NULL
);
4637 /* Look for support files in the same directory as the executable. */
4638 static char *find_datadir(const char *argv0
)
4644 len
= GetModuleFileName(NULL
, buf
, sizeof(buf
) - 1);
4651 while (p
!= buf
&& *p
!= '\\')
4654 if (access(buf
, R_OK
) == 0) {
4655 return qemu_strdup(buf
);
4661 /* Find a likely location for support files using the location of the binary.
4662 For installed binaries this will be "$bindir/../share/qemu". When
4663 running from the build tree this will be "$bindir/../pc-bios". */
4664 #define SHARE_SUFFIX "/share/qemu"
4665 #define BUILD_SUFFIX "/pc-bios"
4666 static char *find_datadir(const char *argv0
)
4676 #if defined(__linux__)
4679 len
= readlink("/proc/self/exe", buf
, sizeof(buf
) - 1);
4685 #elif defined(__FreeBSD__)
4688 len
= readlink("/proc/curproc/file", buf
, sizeof(buf
) - 1);
4695 /* If we don't have any way of figuring out the actual executable
4696 location then try argv[0]. */
4701 p
= realpath(argv0
, p
);
4709 max_len
= strlen(dir
) +
4710 MAX(strlen(SHARE_SUFFIX
), strlen(BUILD_SUFFIX
)) + 1;
4711 res
= qemu_mallocz(max_len
);
4712 snprintf(res
, max_len
, "%s%s", dir
, SHARE_SUFFIX
);
4713 if (access(res
, R_OK
)) {
4714 snprintf(res
, max_len
, "%s%s", dir
, BUILD_SUFFIX
);
4715 if (access(res
, R_OK
)) {
4729 char *qemu_find_file(int type
, const char *name
)
4735 /* If name contains path separators then try it as a straight path. */
4736 if ((strchr(name
, '/') || strchr(name
, '\\'))
4737 && access(name
, R_OK
) == 0) {
4738 return strdup(name
);
4741 case QEMU_FILE_TYPE_BIOS
:
4744 case QEMU_FILE_TYPE_KEYMAP
:
4745 subdir
= "keymaps/";
4750 len
= strlen(data_dir
) + strlen(name
) + strlen(subdir
) + 2;
4751 buf
= qemu_mallocz(len
);
4752 snprintf(buf
, len
, "%s/%s%s", data_dir
, subdir
, name
);
4753 if (access(buf
, R_OK
)) {
4760 int main(int argc
, char **argv
, char **envp
)
4762 const char *gdbstub_dev
= NULL
;
4763 uint32_t boot_devices_bitmap
= 0;
4765 int snapshot
, linux_boot
, net_boot
;
4766 const char *initrd_filename
;
4767 const char *kernel_filename
, *kernel_cmdline
;
4768 const char *boot_devices
= "";
4770 DisplayChangeListener
*dcl
;
4771 int cyls
, heads
, secs
, translation
;
4772 const char *net_clients
[MAX_NET_CLIENTS
];
4774 const char *bt_opts
[MAX_BT_CMDLINE
];
4778 const char *r
, *optarg
;
4779 CharDriverState
*monitor_hd
= NULL
;
4780 const char *monitor_device
;
4781 const char *serial_devices
[MAX_SERIAL_PORTS
];
4782 int serial_device_index
;
4783 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4784 int parallel_device_index
;
4785 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4786 int virtio_console_index
;
4787 const char *loadvm
= NULL
;
4788 QEMUMachine
*machine
;
4789 const char *cpu_model
;
4790 const char *usb_devices
[MAX_USB_CMDLINE
];
4791 int usb_devices_index
;
4796 const char *pid_file
= NULL
;
4797 const char *incoming
= NULL
;
4800 struct passwd
*pwd
= NULL
;
4801 const char *chroot_dir
= NULL
;
4802 const char *run_as
= NULL
;
4805 int show_vnc_port
= 0;
4807 qemu_cache_utils_init(envp
);
4809 LIST_INIT (&vm_change_state_head
);
4812 struct sigaction act
;
4813 sigfillset(&act
.sa_mask
);
4815 act
.sa_handler
= SIG_IGN
;
4816 sigaction(SIGPIPE
, &act
, NULL
);
4819 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
4820 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4821 QEMU to run on a single CPU */
4826 h
= GetCurrentProcess();
4827 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
4828 for(i
= 0; i
< 32; i
++) {
4829 if (mask
& (1 << i
))
4834 SetProcessAffinityMask(h
, mask
);
4840 module_call_init(MODULE_INIT_MACHINE
);
4841 machine
= find_default_machine();
4843 initrd_filename
= NULL
;
4846 kernel_filename
= NULL
;
4847 kernel_cmdline
= "";
4848 cyls
= heads
= secs
= 0;
4849 translation
= BIOS_ATA_TRANSLATION_AUTO
;
4850 monitor_device
= "vc:80Cx24C";
4852 serial_devices
[0] = "vc:80Cx24C";
4853 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
4854 serial_devices
[i
] = NULL
;
4855 serial_device_index
= 0;
4857 parallel_devices
[0] = "vc:80Cx24C";
4858 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
4859 parallel_devices
[i
] = NULL
;
4860 parallel_device_index
= 0;
4862 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
4863 virtio_consoles
[i
] = NULL
;
4864 virtio_console_index
= 0;
4866 for (i
= 0; i
< MAX_NODES
; i
++) {
4868 node_cpumask
[i
] = 0;
4871 usb_devices_index
= 0;
4885 register_watchdogs();
4893 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
4895 const QEMUOption
*popt
;
4898 /* Treat --foo the same as -foo. */
4901 popt
= qemu_options
;
4904 fprintf(stderr
, "%s: invalid option -- '%s'\n",
4908 if (!strcmp(popt
->name
, r
+ 1))
4912 if (popt
->flags
& HAS_ARG
) {
4913 if (optind
>= argc
) {
4914 fprintf(stderr
, "%s: option '%s' requires an argument\n",
4918 optarg
= argv
[optind
++];
4923 switch(popt
->index
) {
4925 machine
= find_machine(optarg
);
4928 printf("Supported machines are:\n");
4929 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
4930 printf("%-10s %s%s\n",
4932 m
->is_default
? " (default)" : "");
4934 exit(*optarg
!= '?');
4937 case QEMU_OPTION_cpu
:
4938 /* hw initialization will check this */
4939 if (*optarg
== '?') {
4940 /* XXX: implement xxx_cpu_list for targets that still miss it */
4941 #if defined(cpu_list)
4942 cpu_list(stdout
, &fprintf
);
4949 case QEMU_OPTION_initrd
:
4950 initrd_filename
= optarg
;
4952 case QEMU_OPTION_hda
:
4954 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
4956 hda_index
= drive_add(optarg
, HD_ALIAS
4957 ",cyls=%d,heads=%d,secs=%d%s",
4958 0, cyls
, heads
, secs
,
4959 translation
== BIOS_ATA_TRANSLATION_LBA
?
4961 translation
== BIOS_ATA_TRANSLATION_NONE
?
4962 ",trans=none" : "");
4964 case QEMU_OPTION_hdb
:
4965 case QEMU_OPTION_hdc
:
4966 case QEMU_OPTION_hdd
:
4967 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
4969 case QEMU_OPTION_drive
:
4970 drive_add(NULL
, "%s", optarg
);
4972 case QEMU_OPTION_mtdblock
:
4973 drive_add(optarg
, MTD_ALIAS
);
4975 case QEMU_OPTION_sd
:
4976 drive_add(optarg
, SD_ALIAS
);
4978 case QEMU_OPTION_pflash
:
4979 drive_add(optarg
, PFLASH_ALIAS
);
4981 case QEMU_OPTION_snapshot
:
4984 case QEMU_OPTION_hdachs
:
4988 cyls
= strtol(p
, (char **)&p
, 0);
4989 if (cyls
< 1 || cyls
> 16383)
4994 heads
= strtol(p
, (char **)&p
, 0);
4995 if (heads
< 1 || heads
> 16)
5000 secs
= strtol(p
, (char **)&p
, 0);
5001 if (secs
< 1 || secs
> 63)
5005 if (!strcmp(p
, "none"))
5006 translation
= BIOS_ATA_TRANSLATION_NONE
;
5007 else if (!strcmp(p
, "lba"))
5008 translation
= BIOS_ATA_TRANSLATION_LBA
;
5009 else if (!strcmp(p
, "auto"))
5010 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5013 } else if (*p
!= '\0') {
5015 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5018 if (hda_index
!= -1)
5019 snprintf(drives_opt
[hda_index
].opt
,
5020 sizeof(drives_opt
[hda_index
].opt
),
5021 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5022 0, cyls
, heads
, secs
,
5023 translation
== BIOS_ATA_TRANSLATION_LBA
?
5025 translation
== BIOS_ATA_TRANSLATION_NONE
?
5026 ",trans=none" : "");
5029 case QEMU_OPTION_numa
:
5030 if (nb_numa_nodes
>= MAX_NODES
) {
5031 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5036 case QEMU_OPTION_nographic
:
5037 display_type
= DT_NOGRAPHIC
;
5039 #ifdef CONFIG_CURSES
5040 case QEMU_OPTION_curses
:
5041 display_type
= DT_CURSES
;
5044 case QEMU_OPTION_portrait
:
5047 case QEMU_OPTION_kernel
:
5048 kernel_filename
= optarg
;
5050 case QEMU_OPTION_append
:
5051 kernel_cmdline
= optarg
;
5053 case QEMU_OPTION_cdrom
:
5054 drive_add(optarg
, CDROM_ALIAS
);
5056 case QEMU_OPTION_boot
:
5057 boot_devices
= optarg
;
5058 /* We just do some generic consistency checks */
5060 /* Could easily be extended to 64 devices if needed */
5063 boot_devices_bitmap
= 0;
5064 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5065 /* Allowed boot devices are:
5066 * a b : floppy disk drives
5067 * c ... f : IDE disk drives
5068 * g ... m : machine implementation dependant drives
5069 * n ... p : network devices
5070 * It's up to each machine implementation to check
5071 * if the given boot devices match the actual hardware
5072 * implementation and firmware features.
5074 if (*p
< 'a' || *p
> 'q') {
5075 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5078 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5080 "Boot device '%c' was given twice\n",*p
);
5083 boot_devices_bitmap
|= 1 << (*p
- 'a');
5087 case QEMU_OPTION_fda
:
5088 case QEMU_OPTION_fdb
:
5089 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5092 case QEMU_OPTION_no_fd_bootchk
:
5096 case QEMU_OPTION_net
:
5097 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5098 fprintf(stderr
, "qemu: too many network clients\n");
5101 net_clients
[nb_net_clients
] = optarg
;
5105 case QEMU_OPTION_tftp
:
5106 legacy_tftp_prefix
= optarg
;
5108 case QEMU_OPTION_bootp
:
5109 legacy_bootp_filename
= optarg
;
5112 case QEMU_OPTION_smb
:
5113 net_slirp_smb(optarg
);
5116 case QEMU_OPTION_redir
:
5117 net_slirp_redir(optarg
);
5120 case QEMU_OPTION_bt
:
5121 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5122 fprintf(stderr
, "qemu: too many bluetooth options\n");
5125 bt_opts
[nb_bt_opts
++] = optarg
;
5128 case QEMU_OPTION_audio_help
:
5132 case QEMU_OPTION_soundhw
:
5133 select_soundhw (optarg
);
5139 case QEMU_OPTION_version
:
5143 case QEMU_OPTION_m
: {
5147 value
= strtoul(optarg
, &ptr
, 10);
5149 case 0: case 'M': case 'm':
5156 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5160 /* On 32-bit hosts, QEMU is limited by virtual address space */
5161 if (value
> (2047 << 20)
5162 #ifndef CONFIG_KQEMU
5163 && HOST_LONG_BITS
== 32
5166 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5169 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5170 fprintf(stderr
, "qemu: ram size too large\n");
5179 const CPULogItem
*item
;
5181 mask
= cpu_str_to_log_mask(optarg
);
5183 printf("Log items (comma separated):\n");
5184 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5185 printf("%-10s %s\n", item
->name
, item
->help
);
5193 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5195 case QEMU_OPTION_gdb
:
5196 gdbstub_dev
= optarg
;
5201 case QEMU_OPTION_bios
:
5204 case QEMU_OPTION_singlestep
:
5212 keyboard_layout
= optarg
;
5215 case QEMU_OPTION_localtime
:
5218 case QEMU_OPTION_vga
:
5219 select_vgahw (optarg
);
5221 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5227 w
= strtol(p
, (char **)&p
, 10);
5230 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5236 h
= strtol(p
, (char **)&p
, 10);
5241 depth
= strtol(p
, (char **)&p
, 10);
5242 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5243 depth
!= 24 && depth
!= 32)
5245 } else if (*p
== '\0') {
5246 depth
= graphic_depth
;
5253 graphic_depth
= depth
;
5257 case QEMU_OPTION_echr
:
5260 term_escape_char
= strtol(optarg
, &r
, 0);
5262 printf("Bad argument to echr\n");
5265 case QEMU_OPTION_monitor
:
5266 monitor_device
= optarg
;
5268 case QEMU_OPTION_serial
:
5269 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5270 fprintf(stderr
, "qemu: too many serial ports\n");
5273 serial_devices
[serial_device_index
] = optarg
;
5274 serial_device_index
++;
5276 case QEMU_OPTION_watchdog
:
5277 i
= select_watchdog(optarg
);
5279 exit (i
== 1 ? 1 : 0);
5281 case QEMU_OPTION_watchdog_action
:
5282 if (select_watchdog_action(optarg
) == -1) {
5283 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5287 case QEMU_OPTION_virtiocon
:
5288 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5289 fprintf(stderr
, "qemu: too many virtio consoles\n");
5292 virtio_consoles
[virtio_console_index
] = optarg
;
5293 virtio_console_index
++;
5295 case QEMU_OPTION_parallel
:
5296 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5297 fprintf(stderr
, "qemu: too many parallel ports\n");
5300 parallel_devices
[parallel_device_index
] = optarg
;
5301 parallel_device_index
++;
5303 case QEMU_OPTION_loadvm
:
5306 case QEMU_OPTION_full_screen
:
5310 case QEMU_OPTION_no_frame
:
5313 case QEMU_OPTION_alt_grab
:
5316 case QEMU_OPTION_no_quit
:
5319 case QEMU_OPTION_sdl
:
5320 display_type
= DT_SDL
;
5323 case QEMU_OPTION_pidfile
:
5327 case QEMU_OPTION_win2k_hack
:
5328 win2k_install_hack
= 1;
5330 case QEMU_OPTION_rtc_td_hack
:
5333 case QEMU_OPTION_acpitable
:
5334 if(acpi_table_add(optarg
) < 0) {
5335 fprintf(stderr
, "Wrong acpi table provided\n");
5339 case QEMU_OPTION_smbios
:
5340 if(smbios_entry_add(optarg
) < 0) {
5341 fprintf(stderr
, "Wrong smbios provided\n");
5347 case QEMU_OPTION_enable_kqemu
:
5350 case QEMU_OPTION_kernel_kqemu
:
5355 case QEMU_OPTION_enable_kvm
:
5362 case QEMU_OPTION_usb
:
5365 case QEMU_OPTION_usbdevice
:
5367 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5368 fprintf(stderr
, "Too many USB devices\n");
5371 usb_devices
[usb_devices_index
] = optarg
;
5372 usb_devices_index
++;
5374 case QEMU_OPTION_smp
:
5375 smp_cpus
= atoi(optarg
);
5377 fprintf(stderr
, "Invalid number of CPUs\n");
5381 case QEMU_OPTION_vnc
:
5382 display_type
= DT_VNC
;
5383 vnc_display
= optarg
;
5386 case QEMU_OPTION_no_acpi
:
5389 case QEMU_OPTION_no_hpet
:
5392 case QEMU_OPTION_balloon
:
5393 if (balloon_parse(optarg
) < 0) {
5394 fprintf(stderr
, "Unknown -balloon argument %s\n", optarg
);
5399 case QEMU_OPTION_no_reboot
:
5402 case QEMU_OPTION_no_shutdown
:
5405 case QEMU_OPTION_show_cursor
:
5408 case QEMU_OPTION_uuid
:
5409 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5410 fprintf(stderr
, "Fail to parse UUID string."
5411 " Wrong format.\n");
5416 case QEMU_OPTION_daemonize
:
5420 case QEMU_OPTION_option_rom
:
5421 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5422 fprintf(stderr
, "Too many option ROMs\n");
5425 option_rom
[nb_option_roms
] = optarg
;
5428 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5429 case QEMU_OPTION_semihosting
:
5430 semihosting_enabled
= 1;
5433 case QEMU_OPTION_name
:
5434 qemu_name
= qemu_strdup(optarg
);
5436 char *p
= strchr(qemu_name
, ',');
5439 if (strncmp(p
, "process=", 8)) {
5440 fprintf(stderr
, "Unknown subargument %s to -name", p
);
5448 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5449 case QEMU_OPTION_prom_env
:
5450 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5451 fprintf(stderr
, "Too many prom variables\n");
5454 prom_envs
[nb_prom_envs
] = optarg
;
5459 case QEMU_OPTION_old_param
:
5463 case QEMU_OPTION_clock
:
5464 configure_alarms(optarg
);
5466 case QEMU_OPTION_startdate
:
5469 time_t rtc_start_date
;
5470 if (!strcmp(optarg
, "now")) {
5471 rtc_date_offset
= -1;
5473 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5481 } else if (sscanf(optarg
, "%d-%d-%d",
5484 &tm
.tm_mday
) == 3) {
5493 rtc_start_date
= mktimegm(&tm
);
5494 if (rtc_start_date
== -1) {
5496 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5497 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5500 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5504 case QEMU_OPTION_tb_size
:
5505 tb_size
= strtol(optarg
, NULL
, 0);
5509 case QEMU_OPTION_icount
:
5511 if (strcmp(optarg
, "auto") == 0) {
5512 icount_time_shift
= -1;
5514 icount_time_shift
= strtol(optarg
, NULL
, 0);
5517 case QEMU_OPTION_incoming
:
5521 case QEMU_OPTION_chroot
:
5522 chroot_dir
= optarg
;
5524 case QEMU_OPTION_runas
:
5529 case QEMU_OPTION_xen_domid
:
5530 xen_domid
= atoi(optarg
);
5532 case QEMU_OPTION_xen_create
:
5533 xen_mode
= XEN_CREATE
;
5535 case QEMU_OPTION_xen_attach
:
5536 xen_mode
= XEN_ATTACH
;
5543 /* If no data_dir is specified then try to find it relative to the
5546 data_dir
= find_datadir(argv
[0]);
5548 /* If all else fails use the install patch specified when building. */
5550 data_dir
= CONFIG_QEMU_SHAREDIR
;
5553 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5554 if (kvm_allowed
&& kqemu_allowed
) {
5556 "You can not enable both KVM and kqemu at the same time\n");
5561 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5562 if (smp_cpus
> machine
->max_cpus
) {
5563 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5564 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5569 if (display_type
== DT_NOGRAPHIC
) {
5570 if (serial_device_index
== 0)
5571 serial_devices
[0] = "stdio";
5572 if (parallel_device_index
== 0)
5573 parallel_devices
[0] = "null";
5574 if (strncmp(monitor_device
, "vc", 2) == 0)
5575 monitor_device
= "stdio";
5582 if (pipe(fds
) == -1)
5593 len
= read(fds
[0], &status
, 1);
5594 if (len
== -1 && (errno
== EINTR
))
5599 else if (status
== 1) {
5600 fprintf(stderr
, "Could not acquire pidfile\n");
5617 signal(SIGTSTP
, SIG_IGN
);
5618 signal(SIGTTOU
, SIG_IGN
);
5619 signal(SIGTTIN
, SIG_IGN
);
5622 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5625 write(fds
[1], &status
, 1);
5627 fprintf(stderr
, "Could not acquire pid file\n");
5636 if (qemu_init_main_loop()) {
5637 fprintf(stderr
, "qemu_init_main_loop failed\n");
5640 linux_boot
= (kernel_filename
!= NULL
);
5642 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5643 fprintf(stderr
, "-append only allowed with -kernel option\n");
5647 if (!linux_boot
&& initrd_filename
!= NULL
) {
5648 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5652 /* boot to floppy or the default cd if no hard disk defined yet */
5653 if (!boot_devices
[0]) {
5654 boot_devices
= "cad";
5656 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5659 if (init_timer_alarm() < 0) {
5660 fprintf(stderr
, "could not initialize alarm timer\n");
5663 if (use_icount
&& icount_time_shift
< 0) {
5665 /* 125MIPS seems a reasonable initial guess at the guest speed.
5666 It will be corrected fairly quickly anyway. */
5667 icount_time_shift
= 3;
5668 init_icount_adjust();
5675 /* init network clients */
5676 if (nb_net_clients
== 0) {
5677 /* if no clients, we use a default config */
5678 net_clients
[nb_net_clients
++] = "nic";
5680 net_clients
[nb_net_clients
++] = "user";
5684 for(i
= 0;i
< nb_net_clients
; i
++) {
5685 if (net_client_parse(net_clients
[i
]) < 0)
5689 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5690 net_set_boot_mask(net_boot
);
5694 /* init the bluetooth world */
5695 for (i
= 0; i
< nb_bt_opts
; i
++)
5696 if (bt_parse(bt_opts
[i
]))
5699 /* init the memory */
5701 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5704 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5705 guest ram allocation. It needs to go away. */
5706 if (kqemu_allowed
) {
5707 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5708 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5709 if (!kqemu_phys_ram_base
) {
5710 fprintf(stderr
, "Could not allocate physical memory\n");
5716 /* init the dynamic translator */
5717 cpu_exec_init_all(tb_size
* 1024 * 1024);
5721 /* we always create the cdrom drive, even if no disk is there */
5723 if (nb_drives_opt
< MAX_DRIVES
)
5724 drive_add(NULL
, CDROM_ALIAS
);
5726 /* we always create at least one floppy */
5728 if (nb_drives_opt
< MAX_DRIVES
)
5729 drive_add(NULL
, FD_ALIAS
, 0);
5731 /* we always create one sd slot, even if no card is in it */
5733 if (nb_drives_opt
< MAX_DRIVES
)
5734 drive_add(NULL
, SD_ALIAS
);
5736 /* open the virtual block devices */
5738 for(i
= 0; i
< nb_drives_opt
; i
++)
5739 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5742 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5743 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5746 /* must be after terminal init, SDL library changes signal handlers */
5750 /* Maintain compatibility with multiple stdio monitors */
5751 if (!strcmp(monitor_device
,"stdio")) {
5752 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5753 const char *devname
= serial_devices
[i
];
5754 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5755 monitor_device
= NULL
;
5757 } else if (devname
&& !strcmp(devname
,"stdio")) {
5758 monitor_device
= NULL
;
5759 serial_devices
[i
] = "mon:stdio";
5765 if (nb_numa_nodes
> 0) {
5768 if (nb_numa_nodes
> smp_cpus
) {
5769 nb_numa_nodes
= smp_cpus
;
5772 /* If no memory size if given for any node, assume the default case
5773 * and distribute the available memory equally across all nodes
5775 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5776 if (node_mem
[i
] != 0)
5779 if (i
== nb_numa_nodes
) {
5780 uint64_t usedmem
= 0;
5782 /* On Linux, the each node's border has to be 8MB aligned,
5783 * the final node gets the rest.
5785 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5786 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5787 usedmem
+= node_mem
[i
];
5789 node_mem
[i
] = ram_size
- usedmem
;
5792 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5793 if (node_cpumask
[i
] != 0)
5796 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5797 * must cope with this anyway, because there are BIOSes out there in
5798 * real machines which also use this scheme.
5800 if (i
== nb_numa_nodes
) {
5801 for (i
= 0; i
< smp_cpus
; i
++) {
5802 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5807 if (kvm_enabled()) {
5810 ret
= kvm_init(smp_cpus
);
5812 fprintf(stderr
, "failed to initialize KVM\n");
5817 if (monitor_device
) {
5818 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5820 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
5825 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5826 const char *devname
= serial_devices
[i
];
5827 if (devname
&& strcmp(devname
, "none")) {
5829 snprintf(label
, sizeof(label
), "serial%d", i
);
5830 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5831 if (!serial_hds
[i
]) {
5832 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
5839 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
5840 const char *devname
= parallel_devices
[i
];
5841 if (devname
&& strcmp(devname
, "none")) {
5843 snprintf(label
, sizeof(label
), "parallel%d", i
);
5844 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5845 if (!parallel_hds
[i
]) {
5846 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
5853 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
5854 const char *devname
= virtio_consoles
[i
];
5855 if (devname
&& strcmp(devname
, "none")) {
5857 snprintf(label
, sizeof(label
), "virtcon%d", i
);
5858 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5859 if (!virtcon_hds
[i
]) {
5860 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
5867 module_call_init(MODULE_INIT_DEVICE
);
5869 machine
->init(ram_size
, boot_devices
,
5870 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
5873 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
5874 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5875 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
5881 current_machine
= machine
;
5883 /* init USB devices */
5885 for(i
= 0; i
< usb_devices_index
; i
++) {
5886 if (usb_device_add(usb_devices
[i
], 0) < 0) {
5887 fprintf(stderr
, "Warning: could not add USB device %s\n",
5894 dumb_display_init();
5895 /* just use the first displaystate for the moment */
5898 if (display_type
== DT_DEFAULT
) {
5899 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5900 display_type
= DT_SDL
;
5902 display_type
= DT_VNC
;
5903 vnc_display
= "localhost:0,to=99";
5909 switch (display_type
) {
5912 #if defined(CONFIG_CURSES)
5914 curses_display_init(ds
, full_screen
);
5917 #if defined(CONFIG_SDL)
5919 sdl_display_init(ds
, full_screen
, no_frame
);
5921 #elif defined(CONFIG_COCOA)
5923 cocoa_display_init(ds
, full_screen
);
5927 vnc_display_init(ds
);
5928 if (vnc_display_open(ds
, vnc_display
) < 0)
5931 if (show_vnc_port
) {
5932 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
5940 dcl
= ds
->listeners
;
5941 while (dcl
!= NULL
) {
5942 if (dcl
->dpy_refresh
!= NULL
) {
5943 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
5944 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
5949 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
5950 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
5951 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
5954 text_consoles_set_display(display_state
);
5955 qemu_chr_initial_reset();
5957 if (monitor_device
&& monitor_hd
)
5958 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
5960 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5961 const char *devname
= serial_devices
[i
];
5962 if (devname
&& strcmp(devname
, "none")) {
5963 if (strstart(devname
, "vc", 0))
5964 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
5968 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
5969 const char *devname
= parallel_devices
[i
];
5970 if (devname
&& strcmp(devname
, "none")) {
5971 if (strstart(devname
, "vc", 0))
5972 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
5976 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
5977 const char *devname
= virtio_consoles
[i
];
5978 if (virtcon_hds
[i
] && devname
) {
5979 if (strstart(devname
, "vc", 0))
5980 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
5984 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
5985 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
5991 do_loadvm(cur_mon
, loadvm
);
5994 autostart
= 0; /* fixme how to deal with -daemonize */
5995 qemu_start_incoming_migration(incoming
);
6007 len
= write(fds
[1], &status
, 1);
6008 if (len
== -1 && (errno
== EINTR
))
6015 TFR(fd
= open("/dev/null", O_RDWR
));
6021 pwd
= getpwnam(run_as
);
6023 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6029 if (chroot(chroot_dir
) < 0) {
6030 fprintf(stderr
, "chroot failed\n");
6037 if (setgid(pwd
->pw_gid
) < 0) {
6038 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6041 if (setuid(pwd
->pw_uid
) < 0) {
6042 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6045 if (setuid(0) != -1) {
6046 fprintf(stderr
, "Dropping privileges failed\n");