kvm: bios: provide _MAT to acpi processor
[qemu-kvm/fedora.git] / qemu-kvm.c
blob051946e9a67174be9a502d1add600313c580e60f
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 int kvm_allowed = 1;
12 int kvm_irqchip = 1;
14 #include <string.h>
15 #include "hw/hw.h"
16 #include "sysemu.h"
18 #include "qemu-kvm.h"
19 #include <libkvm.h>
20 #include <pthread.h>
21 #include <sys/utsname.h>
23 extern void perror(const char *s);
25 kvm_context_t kvm_context;
27 extern int smp_cpus;
29 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
30 pthread_cond_t qemu_aio_cond = PTHREAD_COND_INITIALIZER;
31 __thread struct vcpu_info *vcpu;
33 struct qemu_kvm_signal_table {
34 sigset_t sigset;
35 sigset_t negsigset;
38 static struct qemu_kvm_signal_table io_signal_table;
40 #define SIG_IPI (SIGRTMIN+4)
42 struct vcpu_info {
43 CPUState *env;
44 int sipi_needed;
45 int init;
46 pthread_t thread;
47 int signalled;
48 int stop;
49 int stopped;
50 } vcpu_info[256];
52 CPUState *qemu_kvm_cpu_env(int index)
54 return vcpu_info[index].env;
57 static void sig_ipi_handler(int n)
61 void kvm_update_interrupt_request(CPUState *env)
63 if (env && vcpu && env != vcpu->env) {
64 if (vcpu_info[env->cpu_index].signalled)
65 return;
66 vcpu_info[env->cpu_index].signalled = 1;
67 if (vcpu_info[env->cpu_index].thread)
68 pthread_kill(vcpu_info[env->cpu_index].thread, SIG_IPI);
72 void kvm_update_after_sipi(CPUState *env)
74 vcpu_info[env->cpu_index].sipi_needed = 1;
75 kvm_update_interrupt_request(env);
78 void kvm_apic_init(CPUState *env)
80 if (env->cpu_index != 0)
81 vcpu_info[env->cpu_index].init = 1;
82 kvm_update_interrupt_request(env);
85 #include <signal.h>
87 static int try_push_interrupts(void *opaque)
89 return kvm_arch_try_push_interrupts(opaque);
92 static void post_kvm_run(void *opaque, int vcpu)
95 pthread_mutex_lock(&qemu_mutex);
96 kvm_arch_post_kvm_run(opaque, vcpu);
99 static int pre_kvm_run(void *opaque, int vcpu)
101 CPUState *env = cpu_single_env;
103 kvm_arch_pre_kvm_run(opaque, vcpu);
105 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
106 return 1;
107 pthread_mutex_unlock(&qemu_mutex);
108 return 0;
111 void kvm_load_registers(CPUState *env)
113 if (kvm_enabled())
114 kvm_arch_load_regs(env);
117 void kvm_save_registers(CPUState *env)
119 if (kvm_enabled())
120 kvm_arch_save_regs(env);
123 int kvm_cpu_exec(CPUState *env)
125 int r;
127 r = kvm_run(kvm_context, env->cpu_index);
128 if (r < 0) {
129 printf("kvm_run returned %d\n", r);
130 exit(1);
133 return 0;
136 extern int vm_running;
138 static int has_work(CPUState *env)
140 if (!vm_running || (env && vcpu_info[env->cpu_index].stopped))
141 return 0;
142 if (!(env->hflags & HF_HALTED_MASK))
143 return 1;
144 return kvm_arch_has_work(env);
147 static int kvm_eat_signal(CPUState *env, int timeout)
149 struct timespec ts;
150 int r, e, ret = 0;
151 siginfo_t siginfo;
152 struct sigaction sa;
154 ts.tv_sec = timeout / 1000;
155 ts.tv_nsec = (timeout % 1000) * 1000000;
156 r = sigtimedwait(&io_signal_table.sigset, &siginfo, &ts);
157 if (r == -1 && (errno == EAGAIN || errno == EINTR) && !timeout)
158 return 0;
159 e = errno;
160 pthread_mutex_lock(&qemu_mutex);
161 if (vcpu)
162 cpu_single_env = vcpu->env;
163 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
164 printf("sigtimedwait: %s\n", strerror(e));
165 exit(1);
167 if (r != -1) {
168 sigaction(siginfo.si_signo, NULL, &sa);
169 sa.sa_handler(siginfo.si_signo);
170 if (siginfo.si_signo == SIGUSR2)
171 pthread_cond_signal(&qemu_aio_cond);
172 ret = 1;
174 if (env && vcpu_info[env->cpu_index].stop) {
175 vcpu_info[env->cpu_index].stop = 0;
176 vcpu_info[env->cpu_index].stopped = 1;
177 pthread_kill(vcpu_info[0].thread, SIG_IPI);
179 pthread_mutex_unlock(&qemu_mutex);
181 return ret;
185 static void kvm_eat_signals(CPUState *env, int timeout)
187 int r = 0;
189 while (kvm_eat_signal(env, 0))
190 r = 1;
191 if (!r && timeout) {
192 r = kvm_eat_signal(env, timeout);
193 if (r)
194 while (kvm_eat_signal(env, 0))
198 * we call select() even if no signal was received, to account for
199 * for which there is no signal handler installed.
201 pthread_mutex_lock(&qemu_mutex);
202 cpu_single_env = vcpu->env;
203 if (env->cpu_index == 0)
204 main_loop_wait(0);
205 pthread_mutex_unlock(&qemu_mutex);
208 static void kvm_main_loop_wait(CPUState *env, int timeout)
210 pthread_mutex_unlock(&qemu_mutex);
211 kvm_eat_signals(env, timeout);
212 pthread_mutex_lock(&qemu_mutex);
213 cpu_single_env = env;
214 vcpu_info[env->cpu_index].signalled = 0;
217 static int all_threads_paused(void)
219 int i;
221 for (i = 1; i < smp_cpus; ++i)
222 if (vcpu_info[i].stopped)
223 return 0;
224 return 1;
227 static void pause_other_threads(void)
229 int i;
231 for (i = 1; i < smp_cpus; ++i) {
232 vcpu_info[i].stop = 1;
233 pthread_kill(vcpu_info[i].thread, SIG_IPI);
235 while (!all_threads_paused())
236 kvm_eat_signals(vcpu->env, 0);
239 static void resume_other_threads(void)
241 int i;
243 for (i = 1; i < smp_cpus; ++i) {
244 vcpu_info[i].stop = 0;
245 vcpu_info[i].stopped = 0;
246 pthread_kill(vcpu_info[i].thread, SIG_IPI);
250 static void kvm_vm_state_change_handler(void *context, int running)
252 if (running)
253 resume_other_threads();
254 else
255 pause_other_threads();
258 static void update_regs_for_sipi(CPUState *env)
260 kvm_arch_update_regs_for_sipi(env);
261 vcpu_info[env->cpu_index].sipi_needed = 0;
262 vcpu_info[env->cpu_index].init = 0;
265 static void update_regs_for_init(CPUState *env)
267 cpu_reset(env);
268 kvm_arch_load_regs(env);
271 static void setup_kernel_sigmask(CPUState *env)
273 sigset_t set;
275 sigprocmask(SIG_BLOCK, NULL, &set);
276 sigdelset(&set, SIG_IPI);
277 if (env->cpu_index == 0)
278 sigandset(&set, &set, &io_signal_table.negsigset);
280 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
283 static int kvm_main_loop_cpu(CPUState *env)
285 struct vcpu_info *info = &vcpu_info[env->cpu_index];
287 setup_kernel_sigmask(env);
288 pthread_mutex_lock(&qemu_mutex);
290 kvm_qemu_init_env(env);
291 env->ready_for_interrupt_injection = 1;
292 #ifdef TARGET_I386
293 kvm_tpr_vcpu_start(env);
294 #endif
296 cpu_single_env = env;
297 while (1) {
298 while (!has_work(env))
299 kvm_main_loop_wait(env, 10);
300 if (env->interrupt_request & CPU_INTERRUPT_HARD)
301 env->hflags &= ~HF_HALTED_MASK;
302 if (!kvm_irqchip_in_kernel(kvm_context) && info->sipi_needed)
303 update_regs_for_sipi(env);
304 if (!kvm_irqchip_in_kernel(kvm_context) && info->init)
305 update_regs_for_init(env);
306 if (!(env->hflags & HF_HALTED_MASK) && !info->init)
307 kvm_cpu_exec(env);
308 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
309 kvm_main_loop_wait(env, 0);
310 if (qemu_shutdown_requested())
311 break;
312 else if (qemu_powerdown_requested())
313 qemu_system_powerdown();
314 else if (qemu_reset_requested()) {
315 env->interrupt_request = 0;
316 qemu_system_reset();
317 kvm_arch_load_regs(env);
320 pthread_mutex_unlock(&qemu_mutex);
321 return 0;
324 static void *ap_main_loop(void *_env)
326 CPUState *env = _env;
327 sigset_t signals;
329 vcpu = &vcpu_info[env->cpu_index];
330 vcpu->env = env;
331 sigfillset(&signals);
332 //sigdelset(&signals, SIG_IPI);
333 sigprocmask(SIG_BLOCK, &signals, NULL);
334 kvm_create_vcpu(kvm_context, env->cpu_index);
335 kvm_qemu_init_env(env);
336 if (kvm_irqchip_in_kernel(kvm_context))
337 env->hflags &= ~HF_HALTED_MASK;
338 kvm_main_loop_cpu(env);
339 return NULL;
342 static void qemu_kvm_init_signal_table(struct qemu_kvm_signal_table *sigtab)
344 sigemptyset(&sigtab->sigset);
345 sigfillset(&sigtab->negsigset);
348 static void kvm_add_signal(struct qemu_kvm_signal_table *sigtab, int signum)
350 sigaddset(&sigtab->sigset, signum);
351 sigdelset(&sigtab->negsigset, signum);
354 void kvm_init_new_ap(int cpu, CPUState *env)
356 pthread_create(&vcpu_info[cpu].thread, NULL, ap_main_loop, env);
359 int kvm_init_ap(void)
361 CPUState *env = first_cpu->next_cpu;
362 int i;
364 #ifdef TARGET_I386
365 kvm_tpr_opt_setup();
366 #endif
367 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
368 qemu_kvm_init_signal_table(&io_signal_table);
369 kvm_add_signal(&io_signal_table, SIGIO);
370 kvm_add_signal(&io_signal_table, SIGALRM);
371 kvm_add_signal(&io_signal_table, SIGUSR2);
372 kvm_add_signal(&io_signal_table, SIG_IPI);
373 sigprocmask(SIG_BLOCK, &io_signal_table.sigset, NULL);
375 vcpu = &vcpu_info[0];
376 vcpu->env = first_cpu;
377 signal(SIG_IPI, sig_ipi_handler);
378 for (i = 1; i < smp_cpus; ++i) {
379 kvm_init_new_ap(i, env);
380 env = env->next_cpu;
382 return 0;
385 int kvm_main_loop(void)
387 vcpu_info[0].thread = pthread_self();
388 pthread_mutex_unlock(&qemu_mutex);
389 return kvm_main_loop_cpu(first_cpu);
392 static int kvm_debug(void *opaque, int vcpu)
394 CPUState *env = cpu_single_env;
396 env->exception_index = EXCP_DEBUG;
397 return 1;
400 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
402 *data = cpu_inb(0, addr);
403 return 0;
406 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
408 *data = cpu_inw(0, addr);
409 return 0;
412 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
414 *data = cpu_inl(0, addr);
415 return 0;
418 #define PM_IO_BASE 0xb000
420 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
422 if (addr == 0xb2) {
423 switch (data) {
424 case 0: {
425 cpu_outb(0, 0xb3, 0);
426 break;
428 case 0xf0: {
429 unsigned x;
431 /* enable acpi */
432 x = cpu_inw(0, PM_IO_BASE + 4);
433 x &= ~1;
434 cpu_outw(0, PM_IO_BASE + 4, x);
435 break;
437 case 0xf1: {
438 unsigned x;
440 /* enable acpi */
441 x = cpu_inw(0, PM_IO_BASE + 4);
442 x |= 1;
443 cpu_outw(0, PM_IO_BASE + 4, x);
444 break;
446 default:
447 break;
449 return 0;
451 cpu_outb(0, addr, data);
452 return 0;
455 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
457 cpu_outw(0, addr, data);
458 return 0;
461 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
463 cpu_outl(0, addr, data);
464 return 0;
467 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
469 cpu_physical_memory_rw(addr, data, len, 0);
470 return 0;
473 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
475 cpu_physical_memory_rw(addr, data, len, 1);
476 return 0;
479 static int kvm_io_window(void *opaque)
481 return 1;
485 static int kvm_halt(void *opaque, int vcpu)
487 return kvm_arch_halt(opaque, vcpu);
490 static int kvm_shutdown(void *opaque, int vcpu)
492 qemu_system_reset_request();
493 return 1;
496 static struct kvm_callbacks qemu_kvm_ops = {
497 .debug = kvm_debug,
498 .inb = kvm_inb,
499 .inw = kvm_inw,
500 .inl = kvm_inl,
501 .outb = kvm_outb,
502 .outw = kvm_outw,
503 .outl = kvm_outl,
504 .mmio_read = kvm_mmio_read,
505 .mmio_write = kvm_mmio_write,
506 .halt = kvm_halt,
507 .shutdown = kvm_shutdown,
508 .io_window = kvm_io_window,
509 .try_push_interrupts = try_push_interrupts,
510 .post_kvm_run = post_kvm_run,
511 .pre_kvm_run = pre_kvm_run,
512 #ifdef TARGET_I386
513 .tpr_access = handle_tpr_access,
514 #endif
515 #ifdef TARGET_PPC
516 .powerpc_dcr_read = handle_powerpc_dcr_read,
517 .powerpc_dcr_write = handle_powerpc_dcr_write,
518 #endif
521 int kvm_qemu_init()
523 /* Try to initialize kvm */
524 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
525 if (!kvm_context) {
526 return -1;
528 pthread_mutex_lock(&qemu_mutex);
530 return 0;
533 int kvm_qemu_create_context(void)
535 int r;
536 if (!kvm_irqchip) {
537 kvm_disable_irqchip_creation(kvm_context);
539 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
540 kvm_qemu_destroy();
541 return -1;
543 r = kvm_arch_qemu_create_context();
544 if(r <0)
545 kvm_qemu_destroy();
546 return 0;
549 void kvm_qemu_destroy(void)
551 kvm_finalize(kvm_context);
554 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
555 unsigned long size,
556 unsigned long phys_offset)
558 #ifdef KVM_CAP_USER_MEMORY
559 int r = 0;
561 r = kvm_check_extension(kvm_context, KVM_CAP_USER_MEMORY);
562 if (r) {
563 if (!(phys_offset & ~TARGET_PAGE_MASK)) {
564 r = kvm_is_allocated_mem(kvm_context, start_addr, size);
565 if (r)
566 return;
567 r = kvm_is_intersecting_mem(kvm_context, start_addr);
568 if (r)
569 kvm_create_mem_hole(kvm_context, start_addr, size);
570 r = kvm_register_userspace_phys_mem(kvm_context, start_addr,
571 phys_ram_base + phys_offset,
572 size, 0);
574 if (phys_offset & IO_MEM_ROM) {
575 phys_offset &= ~IO_MEM_ROM;
576 r = kvm_is_intersecting_mem(kvm_context, start_addr);
577 if (r)
578 kvm_create_mem_hole(kvm_context, start_addr, size);
579 r = kvm_register_userspace_phys_mem(kvm_context, start_addr,
580 phys_ram_base + phys_offset,
581 size, 0);
583 if (r < 0) {
584 printf("kvm_cpu_register_physical_memory: failed\n");
585 exit(1);
587 return;
589 #endif
590 if (phys_offset & IO_MEM_ROM) {
591 phys_offset &= ~IO_MEM_ROM;
592 memcpy(phys_ram_base + start_addr, phys_ram_base + phys_offset, size);
596 int kvm_qemu_check_extension(int ext)
598 return kvm_check_extension(kvm_context, ext);
601 int kvm_qemu_init_env(CPUState *cenv)
603 return kvm_arch_qemu_init_env(cenv);
606 int kvm_update_debugger(CPUState *env)
608 struct kvm_debug_guest dbg;
609 int i;
611 dbg.enabled = 0;
612 if (env->nb_breakpoints || env->singlestep_enabled) {
613 dbg.enabled = 1;
614 for (i = 0; i < 4 && i < env->nb_breakpoints; ++i) {
615 dbg.breakpoints[i].enabled = 1;
616 dbg.breakpoints[i].address = env->breakpoints[i];
618 dbg.singlestep = env->singlestep_enabled;
620 return kvm_guest_debug(kvm_context, env->cpu_index, &dbg);
625 * dirty pages logging
627 /* FIXME: use unsigned long pointer instead of unsigned char */
628 unsigned char *kvm_dirty_bitmap = NULL;
629 int kvm_physical_memory_set_dirty_tracking(int enable)
631 int r = 0;
633 if (!kvm_enabled())
634 return 0;
636 if (enable) {
637 if (!kvm_dirty_bitmap) {
638 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
639 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
640 if (kvm_dirty_bitmap == NULL) {
641 perror("Failed to allocate dirty pages bitmap");
642 r=-1;
644 else {
645 r = kvm_dirty_pages_log_enable_all(kvm_context);
649 else {
650 if (kvm_dirty_bitmap) {
651 r = kvm_dirty_pages_log_reset(kvm_context);
652 qemu_free(kvm_dirty_bitmap);
653 kvm_dirty_bitmap = NULL;
656 return r;
659 /* get kvm's dirty pages bitmap and update qemu's */
660 int kvm_get_dirty_pages_log_range(unsigned long start_addr,
661 unsigned char *bitmap,
662 unsigned int offset,
663 unsigned long mem_size)
665 unsigned int i, j, n=0;
666 unsigned char c;
667 unsigned page_number, addr, addr1;
668 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
671 * bitmap-traveling is faster than memory-traveling (for addr...)
672 * especially when most of the memory is not dirty.
674 for (i=0; i<len; i++) {
675 c = bitmap[i];
676 while (c>0) {
677 j = ffsl(c) - 1;
678 c &= ~(1u<<j);
679 page_number = i * 8 + j;
680 addr1 = page_number * TARGET_PAGE_SIZE;
681 addr = offset + addr1;
682 cpu_physical_memory_set_dirty(addr);
683 n++;
686 return 0;
688 int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
689 void *bitmap, void *opaque)
691 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
695 * get kvm's dirty pages bitmap and update qemu's
696 * we only care about physical ram, which resides in slots 0 and 3
698 int kvm_update_dirty_pages_log(void)
700 int r = 0;
703 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
704 kvm_dirty_bitmap, NULL,
705 kvm_get_dirty_bitmap_cb);
706 return r;
709 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
711 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
712 unsigned int brsize = BITMAP_SIZE(ram_size);
713 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
714 unsigned int extra_bytes = (extra_pages +7)/8;
715 unsigned int hole_start = BITMAP_SIZE(0xa0000);
716 unsigned int hole_end = BITMAP_SIZE(0xc0000);
718 memset(bitmap, 0xFF, brsize + extra_bytes);
719 memset(bitmap + hole_start, 0, hole_end - hole_start);
720 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
722 return 0;
725 #ifdef KVM_CAP_IRQCHIP
727 int kvm_set_irq(int irq, int level)
729 return kvm_set_irq_level(kvm_context, irq, level);
732 #endif
734 void qemu_kvm_aio_wait_start(void)
738 void qemu_kvm_aio_wait(void)
740 if (!cpu_single_env || cpu_single_env->cpu_index == 0) {
741 pthread_mutex_unlock(&qemu_mutex);
742 kvm_eat_signal(cpu_single_env, 1000);
743 pthread_mutex_lock(&qemu_mutex);
744 } else {
745 pthread_cond_wait(&qemu_aio_cond, &qemu_mutex);
749 void qemu_kvm_aio_wait_end(void)
753 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
755 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
758 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
759 unsigned long size, int log, int writable)
761 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
764 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
765 unsigned long size)
767 kvm_destroy_phys_mem(kvm_context, start_addr, size);