2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licenced under the GPL
17 #define DPRINTF(fmt, args...) \
18 do { printf("mcf_fec: " fmt , ##args); } while (0)
20 #define DPRINTF(fmt, args...) do {} while(0)
23 #define FEC_MAX_FRAME_SIZE 2032
32 uint32_t rx_descriptor
;
33 uint32_t tx_descriptor
;
47 #define FEC_INT_HB 0x80000000
48 #define FEC_INT_BABR 0x40000000
49 #define FEC_INT_BABT 0x20000000
50 #define FEC_INT_GRA 0x10000000
51 #define FEC_INT_TXF 0x08000000
52 #define FEC_INT_TXB 0x04000000
53 #define FEC_INT_RXF 0x02000000
54 #define FEC_INT_RXB 0x01000000
55 #define FEC_INT_MII 0x00800000
56 #define FEC_INT_EB 0x00400000
57 #define FEC_INT_LC 0x00200000
58 #define FEC_INT_RL 0x00100000
59 #define FEC_INT_UN 0x00080000
64 /* Map interrupt flags onto IRQ lines. */
65 #define FEC_NUM_IRQ 13
66 static const uint32_t mcf_fec_irq_map
[FEC_NUM_IRQ
] = {
82 /* Buffer Descriptor. */
89 #define FEC_BD_R 0x8000
90 #define FEC_BD_E 0x8000
91 #define FEC_BD_O1 0x4000
92 #define FEC_BD_W 0x2000
93 #define FEC_BD_O2 0x1000
94 #define FEC_BD_L 0x0800
95 #define FEC_BD_TC 0x0400
96 #define FEC_BD_ABC 0x0200
97 #define FEC_BD_M 0x0100
98 #define FEC_BD_BC 0x0080
99 #define FEC_BD_MC 0x0040
100 #define FEC_BD_LG 0x0020
101 #define FEC_BD_NO 0x0010
102 #define FEC_BD_CR 0x0004
103 #define FEC_BD_OV 0x0002
104 #define FEC_BD_TR 0x0001
106 static void mcf_fec_read_bd(mcf_fec_bd
*bd
, uint32_t addr
)
108 cpu_physical_memory_read(addr
, (uint8_t *)bd
, sizeof(*bd
));
109 be16_to_cpus(&bd
->flags
);
110 be16_to_cpus(&bd
->length
);
111 be32_to_cpus(&bd
->data
);
114 static void mcf_fec_write_bd(mcf_fec_bd
*bd
, uint32_t addr
)
117 tmp
.flags
= cpu_to_be16(bd
->flags
);
118 tmp
.length
= cpu_to_be16(bd
->length
);
119 tmp
.data
= cpu_to_be32(bd
->data
);
120 cpu_physical_memory_write(addr
, (uint8_t *)&tmp
, sizeof(tmp
));
123 static void mcf_fec_update(mcf_fec_state
*s
)
130 active
= s
->eir
& s
->eimr
;
131 changed
= active
^s
->irq_state
;
132 for (i
= 0; i
< FEC_NUM_IRQ
; i
++) {
133 mask
= mcf_fec_irq_map
[i
];
134 if (changed
& mask
) {
135 DPRINTF("IRQ %d = %d\n", i
, (active
& mask
) != 0);
136 qemu_set_irq(s
->irq
[i
], (active
& mask
) != 0);
139 s
->irq_state
= active
;
142 static void mcf_fec_do_tx(mcf_fec_state
*s
)
148 uint8_t frame
[FEC_MAX_FRAME_SIZE
];
154 addr
= s
->tx_descriptor
;
156 mcf_fec_read_bd(&bd
, addr
);
157 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
158 addr
, bd
.flags
, bd
.length
, bd
.data
);
159 if ((bd
.flags
& FEC_BD_R
) == 0) {
160 /* Run out of descriptors to transmit. */
164 if (frame_size
+ len
> FEC_MAX_FRAME_SIZE
) {
165 len
= FEC_MAX_FRAME_SIZE
- frame_size
;
166 s
->eir
|= FEC_INT_BABT
;
168 cpu_physical_memory_read(bd
.data
, ptr
, len
);
171 if (bd
.flags
& FEC_BD_L
) {
172 /* Last buffer in frame. */
173 DPRINTF("Sending packet\n");
174 qemu_send_packet(s
->vc
, frame
, len
);
177 s
->eir
|= FEC_INT_TXF
;
179 s
->eir
|= FEC_INT_TXB
;
180 bd
.flags
&= ~FEC_BD_R
;
181 /* Write back the modified descriptor. */
182 mcf_fec_write_bd(&bd
, addr
);
183 /* Advance to the next descriptor. */
184 if ((bd
.flags
& FEC_BD_W
) != 0) {
190 s
->tx_descriptor
= addr
;
193 static void mcf_fec_enable_rx(mcf_fec_state
*s
)
197 mcf_fec_read_bd(&bd
, s
->rx_descriptor
);
198 s
->rx_enabled
= ((bd
.flags
& FEC_BD_E
) != 0);
200 DPRINTF("RX buffer full\n");
203 static void mcf_fec_reset(mcf_fec_state
*s
)
216 static uint32_t mcf_fec_read(void *opaque
, target_phys_addr_t addr
)
218 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
219 switch (addr
& 0x3ff) {
220 case 0x004: return s
->eir
;
221 case 0x008: return s
->eimr
;
222 case 0x010: return s
->rx_enabled
? (1 << 24) : 0; /* RDAR */
223 case 0x014: return 0; /* TDAR */
224 case 0x024: return s
->ecr
;
225 case 0x040: return s
->mmfr
;
226 case 0x044: return s
->mscr
;
227 case 0x064: return 0; /* MIBC */
228 case 0x084: return s
->rcr
;
229 case 0x0c4: return s
->tcr
;
230 case 0x0e4: /* PALR */
231 return (s
->macaddr
[0] << 24) | (s
->macaddr
[1] << 16)
232 | (s
->macaddr
[2] << 8) | s
->macaddr
[3];
234 case 0x0e8: /* PAUR */
235 return (s
->macaddr
[4] << 24) | (s
->macaddr
[5] << 16) | 0x8808;
236 case 0x0ec: return 0x10000; /* OPD */
237 case 0x118: return 0;
238 case 0x11c: return 0;
239 case 0x120: return 0;
240 case 0x124: return 0;
241 case 0x144: return s
->tfwr
;
242 case 0x14c: return 0x600;
243 case 0x150: return s
->rfsr
;
244 case 0x180: return s
->erdsr
;
245 case 0x184: return s
->etdsr
;
246 case 0x188: return s
->emrbr
;
248 cpu_abort(cpu_single_env
, "mcf_fec_read: Bad address 0x%x\n",
254 static void mcf_fec_write(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
256 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
257 switch (addr
& 0x3ff) {
264 case 0x010: /* RDAR */
265 if ((s
->ecr
& FEC_EN
) && !s
->rx_enabled
) {
266 DPRINTF("RX enable\n");
267 mcf_fec_enable_rx(s
);
270 case 0x014: /* TDAR */
271 if (s
->ecr
& FEC_EN
) {
277 if (value
& FEC_RESET
) {
281 if ((s
->ecr
& FEC_EN
) == 0) {
286 /* TODO: Implement MII. */
290 s
->mscr
= value
& 0xfe;
293 /* TODO: Implement MIB. */
296 s
->rcr
= value
& 0x07ff003f;
297 /* TODO: Implement LOOP mode. */
299 case 0x0c4: /* TCR */
300 /* We transmit immediately, so raise GRA immediately. */
303 s
->eir
|= FEC_INT_GRA
;
305 case 0x0e4: /* PALR */
306 s
->macaddr
[0] = value
>> 24;
307 s
->macaddr
[1] = value
>> 16;
308 s
->macaddr
[2] = value
>> 8;
309 s
->macaddr
[3] = value
;
311 case 0x0e8: /* PAUR */
312 s
->macaddr
[4] = value
>> 24;
313 s
->macaddr
[5] = value
>> 16;
322 /* TODO: implement MAC hash filtering. */
328 /* FRBR writes ignored. */
331 s
->rfsr
= (value
& 0x3fc) | 0x400;
334 s
->erdsr
= value
& ~3;
335 s
->rx_descriptor
= s
->erdsr
;
338 s
->etdsr
= value
& ~3;
339 s
->tx_descriptor
= s
->etdsr
;
342 s
->emrbr
= value
& 0x7f0;
345 cpu_abort(cpu_single_env
, "mcf_fec_write Bad address 0x%x\n",
351 static int mcf_fec_can_receive(void *opaque
)
353 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
354 return s
->rx_enabled
;
357 static void mcf_fec_receive(void *opaque
, const uint8_t *buf
, int size
)
359 mcf_fec_state
*s
= (mcf_fec_state
*)opaque
;
366 unsigned int buf_len
;
368 DPRINTF("do_rx len %d\n", size
);
369 if (!s
->rx_enabled
) {
370 fprintf(stderr
, "mcf_fec_receive: Unexpected packet\n");
372 /* 4 bytes for the CRC. */
374 crc
= cpu_to_be32(crc32(~0, buf
, size
));
375 crc_ptr
= (uint8_t *)&crc
;
376 /* Huge frames are truncted. */
377 if (size
> FEC_MAX_FRAME_SIZE
) {
378 size
= FEC_MAX_FRAME_SIZE
;
379 flags
|= FEC_BD_TR
| FEC_BD_LG
;
381 /* Frames larger than the user limit just set error flags. */
382 if (size
> (s
->rcr
>> 16)) {
385 addr
= s
->rx_descriptor
;
387 mcf_fec_read_bd(&bd
, addr
);
388 if ((bd
.flags
& FEC_BD_E
) == 0) {
389 /* No descriptors available. Bail out. */
390 /* FIXME: This is wrong. We should probably either save the
391 remainder for when more RX buffers are available, or
393 fprintf(stderr
, "mcf_fec: Lost end of frame\n");
396 buf_len
= (size
<= s
->emrbr
) ? size
: s
->emrbr
;
399 DPRINTF("rx_bd %x length %d\n", addr
, bd
.length
);
400 /* The last 4 bytes are the CRC. */
404 cpu_physical_memory_write(buf_addr
, buf
, buf_len
);
407 cpu_physical_memory_write(buf_addr
+ buf_len
, crc_ptr
, 4 - size
);
410 bd
.flags
&= ~FEC_BD_E
;
412 /* Last buffer in frame. */
413 bd
.flags
|= flags
| FEC_BD_L
;
414 DPRINTF("rx frame flags %04x\n", bd
.flags
);
415 s
->eir
|= FEC_INT_RXF
;
417 s
->eir
|= FEC_INT_RXB
;
419 mcf_fec_write_bd(&bd
, addr
);
420 /* Advance to the next descriptor. */
421 if ((bd
.flags
& FEC_BD_W
) != 0) {
427 s
->rx_descriptor
= addr
;
428 mcf_fec_enable_rx(s
);
432 static CPUReadMemoryFunc
*mcf_fec_readfn
[] = {
438 static CPUWriteMemoryFunc
*mcf_fec_writefn
[] = {
444 void mcf_fec_init(NICInfo
*nd
, target_phys_addr_t base
, qemu_irq
*irq
)
449 s
= (mcf_fec_state
*)qemu_mallocz(sizeof(mcf_fec_state
));
451 iomemtype
= cpu_register_io_memory(0, mcf_fec_readfn
,
453 cpu_register_physical_memory(base
, 0x400, iomemtype
);
455 s
->vc
= qemu_new_vlan_client(nd
->vlan
, mcf_fec_receive
,
456 mcf_fec_can_receive
, s
);
457 memcpy(s
->macaddr
, nd
->macaddr
, 6);