2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
26 #if !defined(CONFIG_SOFTMMU)
38 #include <sys/ucontext.h>
42 #if defined(__sparc__) && !defined(HOST_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
45 #define env cpu_single_env
48 int tb_invalidated_flag
;
51 //#define DEBUG_SIGNAL
53 void cpu_loop_exit(void)
55 /* NOTE: the register at this point must be saved by hand because
56 longjmp restore them */
58 longjmp(env
->jmp_env
, 1);
61 /* exit the current TB from a signal handler. The host registers are
62 restored in a state compatible with the CPU emulator
64 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
66 #if !defined(CONFIG_SOFTMMU)
68 struct ucontext
*uc
= puc
;
69 #elif defined(__OpenBSD__)
70 struct sigcontext
*uc
= puc
;
76 /* XXX: restore cpu registers saved in host registers */
78 #if !defined(CONFIG_SOFTMMU)
80 /* XXX: use siglongjmp ? */
82 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
83 #elif defined(__OpenBSD__)
84 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
88 env
->exception_index
= -1;
89 longjmp(env
->jmp_env
, 1);
92 /* Execute the code without caching the generated code. An interpreter
93 could be used if available. */
94 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
96 unsigned long next_tb
;
99 /* Should never happen.
100 We only end up here when an existing TB is too long. */
101 if (max_cycles
> CF_COUNT_MASK
)
102 max_cycles
= CF_COUNT_MASK
;
104 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
106 env
->current_tb
= tb
;
107 /* execute the generated code */
108 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
110 if ((next_tb
& 3) == 2) {
111 /* Restore PC. This may happen if async event occurs before
112 the TB starts executing. */
113 cpu_pc_from_tb(env
, tb
);
115 tb_phys_invalidate(tb
, -1);
119 static TranslationBlock
*tb_find_slow(target_ulong pc
,
120 target_ulong cs_base
,
123 TranslationBlock
*tb
, **ptb1
;
125 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
127 tb_invalidated_flag
= 0;
129 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
131 /* find translated block using physical mappings */
132 phys_pc
= get_phys_addr_code(env
, pc
);
133 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
135 h
= tb_phys_hash_func(phys_pc
);
136 ptb1
= &tb_phys_hash
[h
];
142 tb
->page_addr
[0] == phys_page1
&&
143 tb
->cs_base
== cs_base
&&
144 tb
->flags
== flags
) {
145 /* check next page if needed */
146 if (tb
->page_addr
[1] != -1) {
147 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
149 phys_page2
= get_phys_addr_code(env
, virt_page2
);
150 if (tb
->page_addr
[1] == phys_page2
)
156 ptb1
= &tb
->phys_hash_next
;
159 /* if no translated code available, then translate it now */
160 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
163 /* we add the TB in the virtual pc hash table */
164 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
168 static inline TranslationBlock
*tb_find_fast(void)
170 TranslationBlock
*tb
;
171 target_ulong cs_base
, pc
;
174 /* we record a subset of the CPU state. It will
175 always be the same before a given translated block
177 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
178 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
179 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
180 tb
->flags
!= flags
)) {
181 tb
= tb_find_slow(pc
, cs_base
, flags
);
186 static CPUDebugExcpHandler
*debug_excp_handler
;
188 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
190 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
192 debug_excp_handler
= handler
;
196 static void cpu_handle_debug_exception(CPUState
*env
)
200 if (!env
->watchpoint_hit
)
201 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
202 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
204 if (debug_excp_handler
)
205 debug_excp_handler(env
);
208 /* main execution loop */
210 int cpu_exec(CPUState
*env1
)
212 #define DECLARE_HOST_REGS 1
213 #include "hostregs_helper.h"
214 int ret
, interrupt_request
;
215 TranslationBlock
*tb
;
217 unsigned long next_tb
;
219 if (cpu_halted(env1
) == EXCP_HALTED
)
222 cpu_single_env
= env1
;
224 /* first we save global registers */
225 #define SAVE_HOST_REGS 1
226 #include "hostregs_helper.h"
230 #if defined(TARGET_I386)
231 /* put eflags in CPU temporary format */
232 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
233 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
234 CC_OP
= CC_OP_EFLAGS
;
235 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
236 #elif defined(TARGET_SPARC)
237 #elif defined(TARGET_M68K)
238 env
->cc_op
= CC_OP_FLAGS
;
239 env
->cc_dest
= env
->sr
& 0xf;
240 env
->cc_x
= (env
->sr
>> 4) & 1;
241 #elif defined(TARGET_ALPHA)
242 #elif defined(TARGET_ARM)
243 #elif defined(TARGET_PPC)
244 #elif defined(TARGET_MIPS)
245 #elif defined(TARGET_SH4)
246 #elif defined(TARGET_CRIS)
249 #error unsupported target CPU
251 env
->exception_index
= -1;
253 /* prepare setjmp context for exception handling */
255 if (setjmp(env
->jmp_env
) == 0) {
256 #if defined(__sparc__) && !defined(HOST_SOLARIS)
258 env
= cpu_single_env
;
259 #define env cpu_single_env
261 env
->current_tb
= NULL
;
262 /* if an exception is pending, we execute it here */
263 if (env
->exception_index
>= 0) {
264 if (env
->exception_index
>= EXCP_INTERRUPT
) {
265 /* exit request from the cpu execution loop */
266 ret
= env
->exception_index
;
267 if (ret
== EXCP_DEBUG
)
268 cpu_handle_debug_exception(env
);
271 #if defined(CONFIG_USER_ONLY)
272 /* if user mode only, we simulate a fake exception
273 which will be handled outside the cpu execution
275 #if defined(TARGET_I386)
276 do_interrupt_user(env
->exception_index
,
277 env
->exception_is_int
,
279 env
->exception_next_eip
);
280 /* successfully delivered */
281 env
->old_exception
= -1;
283 ret
= env
->exception_index
;
286 #if defined(TARGET_I386)
287 /* simulate a real cpu exception. On i386, it can
288 trigger new exceptions, but we do not handle
289 double or triple faults yet. */
290 do_interrupt(env
->exception_index
,
291 env
->exception_is_int
,
293 env
->exception_next_eip
, 0);
294 /* successfully delivered */
295 env
->old_exception
= -1;
296 #elif defined(TARGET_PPC)
298 #elif defined(TARGET_MIPS)
300 #elif defined(TARGET_SPARC)
302 #elif defined(TARGET_ARM)
304 #elif defined(TARGET_SH4)
306 #elif defined(TARGET_ALPHA)
308 #elif defined(TARGET_CRIS)
310 #elif defined(TARGET_M68K)
315 env
->exception_index
= -1;
318 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0 && env
->exit_request
== 0) {
320 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
321 ret
= kqemu_cpu_exec(env
);
322 /* put eflags in CPU temporary format */
323 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
324 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
325 CC_OP
= CC_OP_EFLAGS
;
326 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
329 longjmp(env
->jmp_env
, 1);
330 } else if (ret
== 2) {
331 /* softmmu execution needed */
333 if (env
->interrupt_request
!= 0 || env
->exit_request
!= 0) {
334 /* hardware interrupt will be executed just after */
336 /* otherwise, we restart */
337 longjmp(env
->jmp_env
, 1);
345 longjmp(env
->jmp_env
, 1);
348 next_tb
= 0; /* force lookup of first TB */
350 interrupt_request
= env
->interrupt_request
;
351 if (unlikely(interrupt_request
)) {
352 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
353 /* Mask out external interrupts for this step. */
354 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
359 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
360 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
361 env
->exception_index
= EXCP_DEBUG
;
364 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
365 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
366 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
367 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
369 env
->exception_index
= EXCP_HLT
;
373 #if defined(TARGET_I386)
374 if (env
->hflags2
& HF2_GIF_MASK
) {
375 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
376 !(env
->hflags
& HF_SMM_MASK
)) {
377 svm_check_intercept(SVM_EXIT_SMI
);
378 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
381 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
382 !(env
->hflags2
& HF2_NMI_MASK
)) {
383 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
384 env
->hflags2
|= HF2_NMI_MASK
;
385 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
387 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
388 (((env
->hflags2
& HF2_VINTR_MASK
) &&
389 (env
->hflags2
& HF2_HIF_MASK
)) ||
390 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
391 (env
->eflags
& IF_MASK
&&
392 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
394 svm_check_intercept(SVM_EXIT_INTR
);
395 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
396 intno
= cpu_get_pic_interrupt(env
);
397 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
398 #if defined(__sparc__) && !defined(HOST_SOLARIS)
400 env
= cpu_single_env
;
401 #define env cpu_single_env
403 do_interrupt(intno
, 0, 0, 0, 1);
404 /* ensure that no TB jump will be modified as
405 the program flow was changed */
407 #if !defined(CONFIG_USER_ONLY)
408 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
409 (env
->eflags
& IF_MASK
) &&
410 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
412 /* FIXME: this should respect TPR */
413 svm_check_intercept(SVM_EXIT_VINTR
);
414 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
415 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
416 do_interrupt(intno
, 0, 0, 0, 1);
417 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
422 #elif defined(TARGET_PPC)
424 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
428 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
429 ppc_hw_interrupt(env
);
430 if (env
->pending_interrupts
== 0)
431 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
434 #elif defined(TARGET_MIPS)
435 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
436 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
437 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
438 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
439 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
440 !(env
->hflags
& MIPS_HFLAG_DM
)) {
442 env
->exception_index
= EXCP_EXT_INTERRUPT
;
447 #elif defined(TARGET_SPARC)
448 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
450 int pil
= env
->interrupt_index
& 15;
451 int type
= env
->interrupt_index
& 0xf0;
453 if (((type
== TT_EXTINT
) &&
454 (pil
== 15 || pil
> env
->psrpil
)) ||
456 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
457 env
->exception_index
= env
->interrupt_index
;
459 env
->interrupt_index
= 0;
460 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
465 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
466 //do_interrupt(0, 0, 0, 0, 0);
467 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
469 #elif defined(TARGET_ARM)
470 if (interrupt_request
& CPU_INTERRUPT_FIQ
471 && !(env
->uncached_cpsr
& CPSR_F
)) {
472 env
->exception_index
= EXCP_FIQ
;
476 /* ARMv7-M interrupt return works by loading a magic value
477 into the PC. On real hardware the load causes the
478 return to occur. The qemu implementation performs the
479 jump normally, then does the exception return when the
480 CPU tries to execute code at the magic address.
481 This will cause the magic PC value to be pushed to
482 the stack if an interrupt occured at the wrong time.
483 We avoid this by disabling interrupts when
484 pc contains a magic address. */
485 if (interrupt_request
& CPU_INTERRUPT_HARD
486 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
487 || !(env
->uncached_cpsr
& CPSR_I
))) {
488 env
->exception_index
= EXCP_IRQ
;
492 #elif defined(TARGET_SH4)
493 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
497 #elif defined(TARGET_ALPHA)
498 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request
& CPU_INTERRUPT_HARD
504 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
505 env
->exception_index
= EXCP_IRQ
;
509 if (interrupt_request
& CPU_INTERRUPT_NMI
510 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
511 env
->exception_index
= EXCP_NMI
;
515 #elif defined(TARGET_M68K)
516 if (interrupt_request
& CPU_INTERRUPT_HARD
517 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
518 < env
->pending_level
) {
519 /* Real hardware gets the interrupt vector via an
520 IACK cycle at this point. Current emulated
521 hardware doesn't rely on this, so we
522 provide/save the vector when the interrupt is
524 env
->exception_index
= env
->pending_vector
;
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
532 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
538 if (unlikely(env
->exit_request
)) {
539 env
->exit_request
= 0;
540 env
->exception_index
= EXCP_INTERRUPT
;
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
545 /* restore flags in standard format */
547 #if defined(TARGET_I386)
548 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
549 log_cpu_state(env
, X86_DUMP_CCOP
);
550 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
551 #elif defined(TARGET_ARM)
552 log_cpu_state(env
, 0);
553 #elif defined(TARGET_SPARC)
554 log_cpu_state(env
, 0);
555 #elif defined(TARGET_PPC)
556 log_cpu_state(env
, 0);
557 #elif defined(TARGET_M68K)
558 cpu_m68k_flush_flags(env
, env
->cc_op
);
559 env
->cc_op
= CC_OP_FLAGS
;
560 env
->sr
= (env
->sr
& 0xffe0)
561 | env
->cc_dest
| (env
->cc_x
<< 4);
562 log_cpu_state(env
, 0);
563 #elif defined(TARGET_MIPS)
564 log_cpu_state(env
, 0);
565 #elif defined(TARGET_SH4)
566 log_cpu_state(env
, 0);
567 #elif defined(TARGET_ALPHA)
568 log_cpu_state(env
, 0);
569 #elif defined(TARGET_CRIS)
570 log_cpu_state(env
, 0);
572 #error unsupported target CPU
578 /* Note: we do it here to avoid a gcc bug on Mac OS X when
579 doing it in tb_find_slow */
580 if (tb_invalidated_flag
) {
581 /* as some TB could have been invalidated because
582 of memory exceptions while generating the code, we
583 must recompute the hash index here */
585 tb_invalidated_flag
= 0;
588 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
589 (long)tb
->tc_ptr
, tb
->pc
,
590 lookup_symbol(tb
->pc
));
592 /* see if we can patch the calling TB. When the TB
593 spans two pages, we cannot safely do a direct
598 (env
->kqemu_enabled
!= 2) &&
600 tb
->page_addr
[1] == -1) {
601 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
604 spin_unlock(&tb_lock
);
605 env
->current_tb
= tb
;
607 /* cpu_interrupt might be called while translating the
608 TB, but before it is linked into a potentially
609 infinite loop and becomes env->current_tb. Avoid
610 starting execution if there is a pending interrupt. */
611 if (unlikely (env
->exit_request
))
612 env
->current_tb
= NULL
;
614 while (env
->current_tb
) {
616 /* execute the generated code */
617 #if defined(__sparc__) && !defined(HOST_SOLARIS)
619 env
= cpu_single_env
;
620 #define env cpu_single_env
622 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
623 env
->current_tb
= NULL
;
624 if ((next_tb
& 3) == 2) {
625 /* Instruction counter expired. */
627 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
629 cpu_pc_from_tb(env
, tb
);
630 insns_left
= env
->icount_decr
.u32
;
631 if (env
->icount_extra
&& insns_left
>= 0) {
632 /* Refill decrementer and continue execution. */
633 env
->icount_extra
+= insns_left
;
634 if (env
->icount_extra
> 0xffff) {
637 insns_left
= env
->icount_extra
;
639 env
->icount_extra
-= insns_left
;
640 env
->icount_decr
.u16
.low
= insns_left
;
642 if (insns_left
> 0) {
643 /* Execute remaining instructions. */
644 cpu_exec_nocache(insns_left
, tb
);
646 env
->exception_index
= EXCP_INTERRUPT
;
652 /* reset soft MMU for next block (it can currently
653 only be set by a memory fault) */
654 #if defined(USE_KQEMU)
655 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
656 if (kqemu_is_ok(env
) &&
657 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
668 #if defined(TARGET_I386)
669 /* restore flags in standard format */
670 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
671 #elif defined(TARGET_ARM)
672 /* XXX: Save/restore host fpu exception state?. */
673 #elif defined(TARGET_SPARC)
674 #elif defined(TARGET_PPC)
675 #elif defined(TARGET_M68K)
676 cpu_m68k_flush_flags(env
, env
->cc_op
);
677 env
->cc_op
= CC_OP_FLAGS
;
678 env
->sr
= (env
->sr
& 0xffe0)
679 | env
->cc_dest
| (env
->cc_x
<< 4);
680 #elif defined(TARGET_MIPS)
681 #elif defined(TARGET_SH4)
682 #elif defined(TARGET_ALPHA)
683 #elif defined(TARGET_CRIS)
686 #error unsupported target CPU
689 /* restore global registers */
690 #include "hostregs_helper.h"
692 /* fail safe : never use cpu_single_env outside cpu_exec() */
693 cpu_single_env
= NULL
;
697 /* must only be called from the generated code as an exception can be
699 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
701 /* XXX: cannot enable it yet because it yields to MMU exception
702 where NIP != read address on PowerPC */
704 target_ulong phys_addr
;
705 phys_addr
= get_phys_addr_code(env
, start
);
706 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
710 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
712 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
714 CPUX86State
*saved_env
;
718 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
720 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
721 (selector
<< 4), 0xffff, 0);
723 helper_load_seg(seg_reg
, selector
);
728 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
730 CPUX86State
*saved_env
;
735 helper_fsave(ptr
, data32
);
740 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
742 CPUX86State
*saved_env
;
747 helper_frstor(ptr
, data32
);
752 #endif /* TARGET_I386 */
754 #if !defined(CONFIG_SOFTMMU)
756 #if defined(TARGET_I386)
758 /* 'pc' is the host PC at which the exception was raised. 'address' is
759 the effective address of the memory exception. 'is_write' is 1 if a
760 write caused the exception and otherwise 0'. 'old_set' is the
761 signal set which should be restored */
762 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
763 int is_write
, sigset_t
*old_set
,
766 TranslationBlock
*tb
;
770 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
771 #if defined(DEBUG_SIGNAL)
772 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
773 pc
, address
, is_write
, *(unsigned long *)old_set
);
775 /* XXX: locking issue */
776 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
780 /* see if it is an MMU fault */
781 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
783 return 0; /* not an MMU fault */
785 return 1; /* the MMU fault was handled without causing real CPU fault */
786 /* now we have a real cpu fault */
789 /* the PC is inside the translated code. It means that we have
790 a virtual CPU fault */
791 cpu_restore_state(tb
, env
, pc
, puc
);
795 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
796 env
->eip
, env
->cr
[2], env
->error_code
);
798 /* we restore the process signal mask as the sigreturn should
799 do it (XXX: use sigsetjmp) */
800 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
801 raise_exception_err(env
->exception_index
, env
->error_code
);
803 /* activate soft MMU for this block */
804 env
->hflags
|= HF_SOFTMMU_MASK
;
805 cpu_resume_from_signal(env
, puc
);
807 /* never comes here */
811 #elif defined(TARGET_ARM)
812 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
813 int is_write
, sigset_t
*old_set
,
816 TranslationBlock
*tb
;
820 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
821 #if defined(DEBUG_SIGNAL)
822 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
823 pc
, address
, is_write
, *(unsigned long *)old_set
);
825 /* XXX: locking issue */
826 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
829 /* see if it is an MMU fault */
830 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
832 return 0; /* not an MMU fault */
834 return 1; /* the MMU fault was handled without causing real CPU fault */
835 /* now we have a real cpu fault */
838 /* the PC is inside the translated code. It means that we have
839 a virtual CPU fault */
840 cpu_restore_state(tb
, env
, pc
, puc
);
842 /* we restore the process signal mask as the sigreturn should
843 do it (XXX: use sigsetjmp) */
844 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
846 /* never comes here */
849 #elif defined(TARGET_SPARC)
850 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
851 int is_write
, sigset_t
*old_set
,
854 TranslationBlock
*tb
;
858 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
859 #if defined(DEBUG_SIGNAL)
860 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
861 pc
, address
, is_write
, *(unsigned long *)old_set
);
863 /* XXX: locking issue */
864 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
867 /* see if it is an MMU fault */
868 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
870 return 0; /* not an MMU fault */
872 return 1; /* the MMU fault was handled without causing real CPU fault */
873 /* now we have a real cpu fault */
876 /* the PC is inside the translated code. It means that we have
877 a virtual CPU fault */
878 cpu_restore_state(tb
, env
, pc
, puc
);
880 /* we restore the process signal mask as the sigreturn should
881 do it (XXX: use sigsetjmp) */
882 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
884 /* never comes here */
887 #elif defined (TARGET_PPC)
888 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
889 int is_write
, sigset_t
*old_set
,
892 TranslationBlock
*tb
;
896 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
897 #if defined(DEBUG_SIGNAL)
898 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
899 pc
, address
, is_write
, *(unsigned long *)old_set
);
901 /* XXX: locking issue */
902 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
906 /* see if it is an MMU fault */
907 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
909 return 0; /* not an MMU fault */
911 return 1; /* the MMU fault was handled without causing real CPU fault */
913 /* now we have a real cpu fault */
916 /* the PC is inside the translated code. It means that we have
917 a virtual CPU fault */
918 cpu_restore_state(tb
, env
, pc
, puc
);
922 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
923 env
->nip
, env
->error_code
, tb
);
925 /* we restore the process signal mask as the sigreturn should
926 do it (XXX: use sigsetjmp) */
927 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
930 /* activate soft MMU for this block */
931 cpu_resume_from_signal(env
, puc
);
933 /* never comes here */
937 #elif defined(TARGET_M68K)
938 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
939 int is_write
, sigset_t
*old_set
,
942 TranslationBlock
*tb
;
946 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
947 #if defined(DEBUG_SIGNAL)
948 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
949 pc
, address
, is_write
, *(unsigned long *)old_set
);
951 /* XXX: locking issue */
952 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
955 /* see if it is an MMU fault */
956 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
958 return 0; /* not an MMU fault */
960 return 1; /* the MMU fault was handled without causing real CPU fault */
961 /* now we have a real cpu fault */
964 /* the PC is inside the translated code. It means that we have
965 a virtual CPU fault */
966 cpu_restore_state(tb
, env
, pc
, puc
);
968 /* we restore the process signal mask as the sigreturn should
969 do it (XXX: use sigsetjmp) */
970 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
972 /* never comes here */
976 #elif defined (TARGET_MIPS)
977 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
978 int is_write
, sigset_t
*old_set
,
981 TranslationBlock
*tb
;
985 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
986 #if defined(DEBUG_SIGNAL)
987 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
988 pc
, address
, is_write
, *(unsigned long *)old_set
);
990 /* XXX: locking issue */
991 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
995 /* see if it is an MMU fault */
996 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
998 return 0; /* not an MMU fault */
1000 return 1; /* the MMU fault was handled without causing real CPU fault */
1002 /* now we have a real cpu fault */
1003 tb
= tb_find_pc(pc
);
1005 /* the PC is inside the translated code. It means that we have
1006 a virtual CPU fault */
1007 cpu_restore_state(tb
, env
, pc
, puc
);
1011 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1012 env
->PC
, env
->error_code
, tb
);
1014 /* we restore the process signal mask as the sigreturn should
1015 do it (XXX: use sigsetjmp) */
1016 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1019 /* activate soft MMU for this block */
1020 cpu_resume_from_signal(env
, puc
);
1022 /* never comes here */
1026 #elif defined (TARGET_SH4)
1027 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1028 int is_write
, sigset_t
*old_set
,
1031 TranslationBlock
*tb
;
1035 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1036 #if defined(DEBUG_SIGNAL)
1037 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1038 pc
, address
, is_write
, *(unsigned long *)old_set
);
1040 /* XXX: locking issue */
1041 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1045 /* see if it is an MMU fault */
1046 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1048 return 0; /* not an MMU fault */
1050 return 1; /* the MMU fault was handled without causing real CPU fault */
1052 /* now we have a real cpu fault */
1053 tb
= tb_find_pc(pc
);
1055 /* the PC is inside the translated code. It means that we have
1056 a virtual CPU fault */
1057 cpu_restore_state(tb
, env
, pc
, puc
);
1060 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1061 env
->nip
, env
->error_code
, tb
);
1063 /* we restore the process signal mask as the sigreturn should
1064 do it (XXX: use sigsetjmp) */
1065 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1067 /* never comes here */
1071 #elif defined (TARGET_ALPHA)
1072 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1073 int is_write
, sigset_t
*old_set
,
1076 TranslationBlock
*tb
;
1080 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1081 #if defined(DEBUG_SIGNAL)
1082 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1083 pc
, address
, is_write
, *(unsigned long *)old_set
);
1085 /* XXX: locking issue */
1086 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1090 /* see if it is an MMU fault */
1091 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1093 return 0; /* not an MMU fault */
1095 return 1; /* the MMU fault was handled without causing real CPU fault */
1097 /* now we have a real cpu fault */
1098 tb
= tb_find_pc(pc
);
1100 /* the PC is inside the translated code. It means that we have
1101 a virtual CPU fault */
1102 cpu_restore_state(tb
, env
, pc
, puc
);
1105 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1106 env
->nip
, env
->error_code
, tb
);
1108 /* we restore the process signal mask as the sigreturn should
1109 do it (XXX: use sigsetjmp) */
1110 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1112 /* never comes here */
1115 #elif defined (TARGET_CRIS)
1116 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1117 int is_write
, sigset_t
*old_set
,
1120 TranslationBlock
*tb
;
1124 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1125 #if defined(DEBUG_SIGNAL)
1126 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1127 pc
, address
, is_write
, *(unsigned long *)old_set
);
1129 /* XXX: locking issue */
1130 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1134 /* see if it is an MMU fault */
1135 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1137 return 0; /* not an MMU fault */
1139 return 1; /* the MMU fault was handled without causing real CPU fault */
1141 /* now we have a real cpu fault */
1142 tb
= tb_find_pc(pc
);
1144 /* the PC is inside the translated code. It means that we have
1145 a virtual CPU fault */
1146 cpu_restore_state(tb
, env
, pc
, puc
);
1148 /* we restore the process signal mask as the sigreturn should
1149 do it (XXX: use sigsetjmp) */
1150 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1152 /* never comes here */
1157 #error unsupported target CPU
1160 #if defined(__i386__)
1162 #if defined(__APPLE__)
1163 # include <sys/ucontext.h>
1165 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1166 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1167 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1169 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1170 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1171 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1174 int cpu_signal_handler(int host_signum
, void *pinfo
,
1177 siginfo_t
*info
= pinfo
;
1178 struct ucontext
*uc
= puc
;
1186 #define REG_TRAPNO TRAPNO
1189 trapno
= TRAP_sig(uc
);
1190 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1192 (ERROR_sig(uc
) >> 1) & 1 : 0,
1193 &uc
->uc_sigmask
, puc
);
1196 #elif defined(__x86_64__)
1199 #define REG_ERR _REG_ERR
1200 #define REG_TRAPNO _REG_TRAPNO
1202 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
1203 #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
1205 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
1206 #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
1209 int cpu_signal_handler(int host_signum
, void *pinfo
,
1212 siginfo_t
*info
= pinfo
;
1215 ucontext_t
*uc
= puc
;
1217 struct ucontext
*uc
= puc
;
1220 pc
= QEMU_UC_MACHINE_PC(uc
);
1221 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1222 QEMU_UC_MCONTEXT_GREGS(uc
, REG_TRAPNO
) == 0xe ?
1223 (QEMU_UC_MCONTEXT_GREGS(uc
, REG_ERR
) >> 1) & 1 : 0,
1224 &uc
->uc_sigmask
, puc
);
1227 #elif defined(_ARCH_PPC)
1229 /***********************************************************************
1230 * signal context platform-specific definitions
1234 /* All Registers access - only for local access */
1235 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1236 /* Gpr Registers access */
1237 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1238 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1239 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1240 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1241 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1242 # define LR_sig(context) REG_sig(link, context) /* Link register */
1243 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1244 /* Float Registers access */
1245 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1246 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1247 /* Exception Registers access */
1248 # define DAR_sig(context) REG_sig(dar, context)
1249 # define DSISR_sig(context) REG_sig(dsisr, context)
1250 # define TRAP_sig(context) REG_sig(trap, context)
1254 # include <sys/ucontext.h>
1255 typedef struct ucontext SIGCONTEXT
;
1256 /* All Registers access - only for local access */
1257 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1258 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1259 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1260 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1261 /* Gpr Registers access */
1262 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1263 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1264 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1265 # define CTR_sig(context) REG_sig(ctr, context)
1266 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1267 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1268 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1269 /* Float Registers access */
1270 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1271 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1272 /* Exception Registers access */
1273 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1274 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1275 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1276 #endif /* __APPLE__ */
1278 int cpu_signal_handler(int host_signum
, void *pinfo
,
1281 siginfo_t
*info
= pinfo
;
1282 struct ucontext
*uc
= puc
;
1290 if (DSISR_sig(uc
) & 0x00800000)
1293 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1296 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1297 is_write
, &uc
->uc_sigmask
, puc
);
1300 #elif defined(__alpha__)
1302 int cpu_signal_handler(int host_signum
, void *pinfo
,
1305 siginfo_t
*info
= pinfo
;
1306 struct ucontext
*uc
= puc
;
1307 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1308 uint32_t insn
= *pc
;
1311 /* XXX: need kernel patch to get write flag faster */
1312 switch (insn
>> 26) {
1327 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1328 is_write
, &uc
->uc_sigmask
, puc
);
1330 #elif defined(__sparc__)
1332 int cpu_signal_handler(int host_signum
, void *pinfo
,
1335 siginfo_t
*info
= pinfo
;
1338 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1339 uint32_t *regs
= (uint32_t *)(info
+ 1);
1340 void *sigmask
= (regs
+ 20);
1341 /* XXX: is there a standard glibc define ? */
1342 unsigned long pc
= regs
[1];
1345 struct sigcontext
*sc
= puc
;
1346 unsigned long pc
= sc
->sigc_regs
.tpc
;
1347 void *sigmask
= (void *)sc
->sigc_mask
;
1348 #elif defined(__OpenBSD__)
1349 struct sigcontext
*uc
= puc
;
1350 unsigned long pc
= uc
->sc_pc
;
1351 void *sigmask
= (void *)(long)uc
->sc_mask
;
1355 /* XXX: need kernel patch to get write flag faster */
1357 insn
= *(uint32_t *)pc
;
1358 if ((insn
>> 30) == 3) {
1359 switch((insn
>> 19) & 0x3f) {
1371 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1372 is_write
, sigmask
, NULL
);
1375 #elif defined(__arm__)
1377 int cpu_signal_handler(int host_signum
, void *pinfo
,
1380 siginfo_t
*info
= pinfo
;
1381 struct ucontext
*uc
= puc
;
1385 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1386 pc
= uc
->uc_mcontext
.gregs
[R15
];
1388 pc
= uc
->uc_mcontext
.arm_pc
;
1390 /* XXX: compute is_write */
1392 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1394 &uc
->uc_sigmask
, puc
);
1397 #elif defined(__mc68000)
1399 int cpu_signal_handler(int host_signum
, void *pinfo
,
1402 siginfo_t
*info
= pinfo
;
1403 struct ucontext
*uc
= puc
;
1407 pc
= uc
->uc_mcontext
.gregs
[16];
1408 /* XXX: compute is_write */
1410 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1412 &uc
->uc_sigmask
, puc
);
1415 #elif defined(__ia64)
1418 /* This ought to be in <bits/siginfo.h>... */
1419 # define __ISR_VALID 1
1422 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1424 siginfo_t
*info
= pinfo
;
1425 struct ucontext
*uc
= puc
;
1429 ip
= uc
->uc_mcontext
.sc_ip
;
1430 switch (host_signum
) {
1436 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1437 /* ISR.W (write-access) is bit 33: */
1438 is_write
= (info
->si_isr
>> 33) & 1;
1444 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1446 &uc
->uc_sigmask
, puc
);
1449 #elif defined(__s390__)
1451 int cpu_signal_handler(int host_signum
, void *pinfo
,
1454 siginfo_t
*info
= pinfo
;
1455 struct ucontext
*uc
= puc
;
1459 pc
= uc
->uc_mcontext
.psw
.addr
;
1460 /* XXX: compute is_write */
1462 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1463 is_write
, &uc
->uc_sigmask
, puc
);
1466 #elif defined(__mips__)
1468 int cpu_signal_handler(int host_signum
, void *pinfo
,
1471 siginfo_t
*info
= pinfo
;
1472 struct ucontext
*uc
= puc
;
1473 greg_t pc
= uc
->uc_mcontext
.pc
;
1476 /* XXX: compute is_write */
1478 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1479 is_write
, &uc
->uc_sigmask
, puc
);
1482 #elif defined(__hppa__)
1484 int cpu_signal_handler(int host_signum
, void *pinfo
,
1487 struct siginfo
*info
= pinfo
;
1488 struct ucontext
*uc
= puc
;
1492 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1493 /* FIXME: compute is_write */
1495 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1497 &uc
->uc_sigmask
, puc
);
1502 #error host CPU specific signal handler needed
1506 #endif /* !defined(CONFIG_SOFTMMU) */