reuse kvm_ioctl
[qemu-kvm/fedora.git] / kvm-all.c
blob0ec6475a6f306eebc319db210fd7eade4d7f934e
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 #ifdef KVM_UPSTREAM
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
52 typedef struct kvm_dirty_log KVMDirtyLog;
54 int kvm_allowed = 0;
56 struct KVMState
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 int broken_set_mem_region;
63 int migration_log;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 #endif
69 static KVMState *kvm_state;
71 static KVMSlot *kvm_alloc_slot(KVMState *s)
73 int i;
75 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
76 /* KVM private memory slots */
77 if (i >= 8 && i < 12)
78 continue;
79 if (s->slots[i].memory_size == 0)
80 return &s->slots[i];
83 fprintf(stderr, "%s: no free slot available\n", __func__);
84 abort();
87 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
88 target_phys_addr_t start_addr,
89 target_phys_addr_t end_addr)
91 int i;
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 KVMSlot *mem = &s->slots[i];
96 if (start_addr == mem->start_addr &&
97 end_addr == mem->start_addr + mem->memory_size) {
98 return mem;
102 return NULL;
106 * Find overlapping slot with lowest start address
108 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
109 target_phys_addr_t start_addr,
110 target_phys_addr_t end_addr)
112 KVMSlot *found = NULL;
113 int i;
115 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
116 KVMSlot *mem = &s->slots[i];
118 if (mem->memory_size == 0 ||
119 (found && found->start_addr < mem->start_addr)) {
120 continue;
123 if (end_addr > mem->start_addr &&
124 start_addr < mem->start_addr + mem->memory_size) {
125 found = mem;
129 return found;
132 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
134 struct kvm_userspace_memory_region mem;
136 mem.slot = slot->slot;
137 mem.guest_phys_addr = slot->start_addr;
138 mem.memory_size = slot->memory_size;
139 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
140 mem.flags = slot->flags;
141 if (s->migration_log) {
142 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
144 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147 static void kvm_reset_vcpu(void *opaque)
149 CPUState *env = opaque;
151 if (kvm_arch_put_registers(env)) {
152 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
153 abort();
157 int kvm_init_vcpu(CPUState *env)
159 KVMState *s = kvm_state;
160 long mmap_size;
161 int ret;
163 dprintf("kvm_init_vcpu\n");
165 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
166 if (ret < 0) {
167 dprintf("kvm_create_vcpu failed\n");
168 goto err;
171 env->kvm_fd = ret;
172 env->kvm_state = s;
174 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
175 if (mmap_size < 0) {
176 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
177 goto err;
180 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
181 env->kvm_fd, 0);
182 if (env->kvm_run == MAP_FAILED) {
183 ret = -errno;
184 dprintf("mmap'ing vcpu state failed\n");
185 goto err;
188 ret = kvm_arch_init_vcpu(env);
189 if (ret == 0) {
190 qemu_register_reset(kvm_reset_vcpu, env);
191 ret = kvm_arch_put_registers(env);
193 err:
194 return ret;
197 int kvm_put_mp_state(CPUState *env)
199 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
201 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
204 int kvm_get_mp_state(CPUState *env)
206 struct kvm_mp_state mp_state;
207 int ret;
209 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
210 if (ret < 0) {
211 return ret;
213 env->mp_state = mp_state.mp_state;
214 return 0;
218 * dirty pages logging control
220 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
221 ram_addr_t size, int flags, int mask)
223 KVMState *s = kvm_state;
224 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
225 int old_flags;
227 if (mem == NULL) {
228 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
229 TARGET_FMT_plx "\n", __func__, phys_addr,
230 phys_addr + size - 1);
231 return -EINVAL;
234 old_flags = mem->flags;
236 flags = (mem->flags & ~mask) | flags;
237 mem->flags = flags;
239 /* If nothing changed effectively, no need to issue ioctl */
240 if (s->migration_log) {
241 flags |= KVM_MEM_LOG_DIRTY_PAGES;
243 if (flags == old_flags) {
244 return 0;
247 return kvm_set_user_memory_region(s, mem);
250 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
252 return kvm_dirty_pages_log_change(phys_addr, size,
253 KVM_MEM_LOG_DIRTY_PAGES,
254 KVM_MEM_LOG_DIRTY_PAGES);
257 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
259 return kvm_dirty_pages_log_change(phys_addr, size,
261 KVM_MEM_LOG_DIRTY_PAGES);
264 int kvm_set_migration_log(int enable)
266 KVMState *s = kvm_state;
267 KVMSlot *mem;
268 int i, err;
270 s->migration_log = enable;
272 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
273 mem = &s->slots[i];
275 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
276 continue;
278 err = kvm_set_user_memory_region(s, mem);
279 if (err) {
280 return err;
283 return 0;
287 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
288 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
289 * This means all bits are set to dirty.
291 * @start_add: start of logged region.
292 * @end_addr: end of logged region.
294 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
295 target_phys_addr_t end_addr)
297 KVMState *s = kvm_state;
298 unsigned long size, allocated_size = 0;
299 target_phys_addr_t phys_addr;
300 ram_addr_t addr;
301 KVMDirtyLog d;
302 KVMSlot *mem;
303 int ret = 0;
305 d.dirty_bitmap = NULL;
306 while (start_addr < end_addr) {
307 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
308 if (mem == NULL) {
309 break;
312 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
313 if (!d.dirty_bitmap) {
314 d.dirty_bitmap = qemu_malloc(size);
315 } else if (size > allocated_size) {
316 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
318 allocated_size = size;
319 memset(d.dirty_bitmap, 0, allocated_size);
321 d.slot = mem->slot;
323 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
324 dprintf("ioctl failed %d\n", errno);
325 ret = -1;
326 break;
329 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
330 phys_addr < mem->start_addr + mem->memory_size;
331 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
332 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
333 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
334 unsigned word = nr / (sizeof(*bitmap) * 8);
335 unsigned bit = nr % (sizeof(*bitmap) * 8);
337 if ((bitmap[word] >> bit) & 1) {
338 cpu_physical_memory_set_dirty(addr);
341 start_addr = phys_addr;
343 qemu_free(d.dirty_bitmap);
345 return ret;
348 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
350 int ret = -ENOSYS;
351 #ifdef KVM_CAP_COALESCED_MMIO
352 KVMState *s = kvm_state;
354 if (s->coalesced_mmio) {
355 struct kvm_coalesced_mmio_zone zone;
357 zone.addr = start;
358 zone.size = size;
360 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
362 #endif
364 return ret;
367 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
369 int ret = -ENOSYS;
370 #ifdef KVM_CAP_COALESCED_MMIO
371 KVMState *s = kvm_state;
373 if (s->coalesced_mmio) {
374 struct kvm_coalesced_mmio_zone zone;
376 zone.addr = start;
377 zone.size = size;
379 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
381 #endif
383 return ret;
386 int kvm_check_extension(KVMState *s, unsigned int extension)
388 int ret;
390 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
391 if (ret < 0) {
392 ret = 0;
395 return ret;
398 int kvm_init(int smp_cpus)
400 static const char upgrade_note[] =
401 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
402 "(see http://sourceforge.net/projects/kvm).\n";
403 KVMState *s;
404 int ret;
405 int i;
407 if (smp_cpus > 1) {
408 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
409 return -EINVAL;
412 s = qemu_mallocz(sizeof(KVMState));
414 #ifdef KVM_CAP_SET_GUEST_DEBUG
415 TAILQ_INIT(&s->kvm_sw_breakpoints);
416 #endif
417 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
418 s->slots[i].slot = i;
420 s->vmfd = -1;
421 s->fd = open("/dev/kvm", O_RDWR);
422 if (s->fd == -1) {
423 fprintf(stderr, "Could not access KVM kernel module: %m\n");
424 ret = -errno;
425 goto err;
428 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
429 if (ret < KVM_API_VERSION) {
430 if (ret > 0)
431 ret = -EINVAL;
432 fprintf(stderr, "kvm version too old\n");
433 goto err;
436 if (ret > KVM_API_VERSION) {
437 ret = -EINVAL;
438 fprintf(stderr, "kvm version not supported\n");
439 goto err;
442 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
443 if (s->vmfd < 0)
444 goto err;
446 /* initially, KVM allocated its own memory and we had to jump through
447 * hooks to make phys_ram_base point to this. Modern versions of KVM
448 * just use a user allocated buffer so we can use regular pages
449 * unmodified. Make sure we have a sufficiently modern version of KVM.
451 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
452 ret = -EINVAL;
453 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
454 upgrade_note);
455 goto err;
458 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
459 * destroyed properly. Since we rely on this capability, refuse to work
460 * with any kernel without this capability. */
461 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
462 ret = -EINVAL;
464 fprintf(stderr,
465 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
466 upgrade_note);
467 goto err;
470 #ifdef KVM_CAP_COALESCED_MMIO
471 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
472 #else
473 s->coalesced_mmio = 0;
474 #endif
476 s->broken_set_mem_region = 1;
477 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
478 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
479 if (ret > 0) {
480 s->broken_set_mem_region = 0;
482 #endif
484 ret = kvm_arch_init(s, smp_cpus);
485 if (ret < 0)
486 goto err;
488 kvm_state = s;
490 return 0;
492 err:
493 if (s) {
494 if (s->vmfd != -1)
495 close(s->vmfd);
496 if (s->fd != -1)
497 close(s->fd);
499 qemu_free(s);
501 return ret;
504 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
505 int direction, int size, uint32_t count)
507 int i;
508 uint8_t *ptr = data;
510 for (i = 0; i < count; i++) {
511 if (direction == KVM_EXIT_IO_IN) {
512 switch (size) {
513 case 1:
514 stb_p(ptr, cpu_inb(env, port));
515 break;
516 case 2:
517 stw_p(ptr, cpu_inw(env, port));
518 break;
519 case 4:
520 stl_p(ptr, cpu_inl(env, port));
521 break;
523 } else {
524 switch (size) {
525 case 1:
526 cpu_outb(env, port, ldub_p(ptr));
527 break;
528 case 2:
529 cpu_outw(env, port, lduw_p(ptr));
530 break;
531 case 4:
532 cpu_outl(env, port, ldl_p(ptr));
533 break;
537 ptr += size;
540 return 1;
543 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
545 #ifdef KVM_CAP_COALESCED_MMIO
546 KVMState *s = kvm_state;
547 if (s->coalesced_mmio) {
548 struct kvm_coalesced_mmio_ring *ring;
550 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
551 while (ring->first != ring->last) {
552 struct kvm_coalesced_mmio *ent;
554 ent = &ring->coalesced_mmio[ring->first];
556 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
557 /* FIXME smp_wmb() */
558 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
561 #endif
564 int kvm_cpu_exec(CPUState *env)
566 struct kvm_run *run = env->kvm_run;
567 int ret;
569 dprintf("kvm_cpu_exec()\n");
571 do {
572 if (env->exit_request) {
573 dprintf("interrupt exit requested\n");
574 ret = 0;
575 break;
578 kvm_arch_pre_run(env, run);
579 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
580 kvm_arch_post_run(env, run);
582 if (ret == -EINTR || ret == -EAGAIN) {
583 dprintf("io window exit\n");
584 ret = 0;
585 break;
588 if (ret < 0) {
589 dprintf("kvm run failed %s\n", strerror(-ret));
590 abort();
593 kvm_run_coalesced_mmio(env, run);
595 ret = 0; /* exit loop */
596 switch (run->exit_reason) {
597 case KVM_EXIT_IO:
598 dprintf("handle_io\n");
599 ret = kvm_handle_io(env, run->io.port,
600 (uint8_t *)run + run->io.data_offset,
601 run->io.direction,
602 run->io.size,
603 run->io.count);
604 break;
605 case KVM_EXIT_MMIO:
606 dprintf("handle_mmio\n");
607 cpu_physical_memory_rw(run->mmio.phys_addr,
608 run->mmio.data,
609 run->mmio.len,
610 run->mmio.is_write);
611 ret = 1;
612 break;
613 case KVM_EXIT_IRQ_WINDOW_OPEN:
614 dprintf("irq_window_open\n");
615 break;
616 case KVM_EXIT_SHUTDOWN:
617 dprintf("shutdown\n");
618 qemu_system_reset_request();
619 ret = 1;
620 break;
621 case KVM_EXIT_UNKNOWN:
622 dprintf("kvm_exit_unknown\n");
623 break;
624 case KVM_EXIT_FAIL_ENTRY:
625 dprintf("kvm_exit_fail_entry\n");
626 break;
627 case KVM_EXIT_EXCEPTION:
628 dprintf("kvm_exit_exception\n");
629 break;
630 case KVM_EXIT_DEBUG:
631 dprintf("kvm_exit_debug\n");
632 #ifdef KVM_CAP_SET_GUEST_DEBUG
633 if (kvm_arch_debug(&run->debug.arch)) {
634 gdb_set_stop_cpu(env);
635 vm_stop(EXCP_DEBUG);
636 env->exception_index = EXCP_DEBUG;
637 return 0;
639 /* re-enter, this exception was guest-internal */
640 ret = 1;
641 #endif /* KVM_CAP_SET_GUEST_DEBUG */
642 break;
643 default:
644 dprintf("kvm_arch_handle_exit\n");
645 ret = kvm_arch_handle_exit(env, run);
646 break;
648 } while (ret > 0);
650 if (env->exit_request) {
651 env->exit_request = 0;
652 env->exception_index = EXCP_INTERRUPT;
655 return ret;
658 void kvm_set_phys_mem(target_phys_addr_t start_addr,
659 ram_addr_t size,
660 ram_addr_t phys_offset)
662 KVMState *s = kvm_state;
663 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
664 KVMSlot *mem, old;
665 int err;
667 if (start_addr & ~TARGET_PAGE_MASK) {
668 if (flags >= IO_MEM_UNASSIGNED) {
669 if (!kvm_lookup_overlapping_slot(s, start_addr,
670 start_addr + size)) {
671 return;
673 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
674 } else {
675 fprintf(stderr, "Only page-aligned memory slots supported\n");
677 abort();
680 /* KVM does not support read-only slots */
681 phys_offset &= ~IO_MEM_ROM;
683 while (1) {
684 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
685 if (!mem) {
686 break;
689 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
690 (start_addr + size <= mem->start_addr + mem->memory_size) &&
691 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
692 /* The new slot fits into the existing one and comes with
693 * identical parameters - nothing to be done. */
694 return;
697 old = *mem;
699 /* unregister the overlapping slot */
700 mem->memory_size = 0;
701 err = kvm_set_user_memory_region(s, mem);
702 if (err) {
703 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
704 __func__, strerror(-err));
705 abort();
708 /* Workaround for older KVM versions: we can't join slots, even not by
709 * unregistering the previous ones and then registering the larger
710 * slot. We have to maintain the existing fragmentation. Sigh.
712 * This workaround assumes that the new slot starts at the same
713 * address as the first existing one. If not or if some overlapping
714 * slot comes around later, we will fail (not seen in practice so far)
715 * - and actually require a recent KVM version. */
716 if (s->broken_set_mem_region &&
717 old.start_addr == start_addr && old.memory_size < size &&
718 flags < IO_MEM_UNASSIGNED) {
719 mem = kvm_alloc_slot(s);
720 mem->memory_size = old.memory_size;
721 mem->start_addr = old.start_addr;
722 mem->phys_offset = old.phys_offset;
723 mem->flags = 0;
725 err = kvm_set_user_memory_region(s, mem);
726 if (err) {
727 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
728 strerror(-err));
729 abort();
732 start_addr += old.memory_size;
733 phys_offset += old.memory_size;
734 size -= old.memory_size;
735 continue;
738 /* register prefix slot */
739 if (old.start_addr < start_addr) {
740 mem = kvm_alloc_slot(s);
741 mem->memory_size = start_addr - old.start_addr;
742 mem->start_addr = old.start_addr;
743 mem->phys_offset = old.phys_offset;
744 mem->flags = 0;
746 err = kvm_set_user_memory_region(s, mem);
747 if (err) {
748 fprintf(stderr, "%s: error registering prefix slot: %s\n",
749 __func__, strerror(-err));
750 abort();
754 /* register suffix slot */
755 if (old.start_addr + old.memory_size > start_addr + size) {
756 ram_addr_t size_delta;
758 mem = kvm_alloc_slot(s);
759 mem->start_addr = start_addr + size;
760 size_delta = mem->start_addr - old.start_addr;
761 mem->memory_size = old.memory_size - size_delta;
762 mem->phys_offset = old.phys_offset + size_delta;
763 mem->flags = 0;
765 err = kvm_set_user_memory_region(s, mem);
766 if (err) {
767 fprintf(stderr, "%s: error registering suffix slot: %s\n",
768 __func__, strerror(-err));
769 abort();
774 /* in case the KVM bug workaround already "consumed" the new slot */
775 if (!size)
776 return;
778 /* KVM does not need to know about this memory */
779 if (flags >= IO_MEM_UNASSIGNED)
780 return;
782 mem = kvm_alloc_slot(s);
783 mem->memory_size = size;
784 mem->start_addr = start_addr;
785 mem->phys_offset = phys_offset;
786 mem->flags = 0;
788 err = kvm_set_user_memory_region(s, mem);
789 if (err) {
790 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
791 strerror(-err));
792 abort();
796 #endif
797 int kvm_ioctl(KVMState *s, int type, ...)
799 int ret;
800 void *arg;
801 va_list ap;
803 va_start(ap, type);
804 arg = va_arg(ap, void *);
805 va_end(ap);
807 ret = ioctl(s->fd, type, arg);
808 if (ret == -1)
809 ret = -errno;
811 return ret;
814 int kvm_vm_ioctl(KVMState *s, int type, ...)
816 int ret;
817 void *arg;
818 va_list ap;
820 va_start(ap, type);
821 arg = va_arg(ap, void *);
822 va_end(ap);
824 ret = ioctl(s->vmfd, type, arg);
825 if (ret == -1)
826 ret = -errno;
828 return ret;
831 #ifdef KVM_UPSTREAM
832 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
834 int ret;
835 void *arg;
836 va_list ap;
838 va_start(ap, type);
839 arg = va_arg(ap, void *);
840 va_end(ap);
842 ret = ioctl(env->kvm_fd, type, arg);
843 if (ret == -1)
844 ret = -errno;
846 return ret;
849 int kvm_has_sync_mmu(void)
851 #ifdef KVM_CAP_SYNC_MMU
852 KVMState *s = kvm_state;
854 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
855 #else
856 return 0;
857 #endif
860 void kvm_setup_guest_memory(void *start, size_t size)
862 if (!kvm_has_sync_mmu()) {
863 #ifdef MADV_DONTFORK
864 int ret = madvise(start, size, MADV_DONTFORK);
866 if (ret) {
867 perror("madvice");
868 exit(1);
870 #else
871 fprintf(stderr,
872 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
873 exit(1);
874 #endif
878 #endif /* KVM_UPSTREAM */
880 #ifdef KVM_CAP_SET_GUEST_DEBUG
881 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
882 target_ulong pc)
884 struct kvm_sw_breakpoint *bp;
886 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
887 if (bp->pc == pc)
888 return bp;
890 return NULL;
893 int kvm_sw_breakpoints_active(CPUState *env)
895 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
898 #ifdef KVM_UPSTREAM
899 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
901 struct kvm_guest_debug dbg;
903 dbg.control = 0;
904 if (env->singlestep_enabled)
905 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
907 kvm_arch_update_guest_debug(env, &dbg);
908 dbg.control |= reinject_trap;
910 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
912 #endif
914 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
915 target_ulong len, int type)
917 struct kvm_sw_breakpoint *bp;
918 CPUState *env;
919 int err;
921 if (type == GDB_BREAKPOINT_SW) {
922 bp = kvm_find_sw_breakpoint(current_env, addr);
923 if (bp) {
924 bp->use_count++;
925 return 0;
928 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
929 if (!bp)
930 return -ENOMEM;
932 bp->pc = addr;
933 bp->use_count = 1;
934 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
935 if (err) {
936 free(bp);
937 return err;
940 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
941 bp, entry);
942 } else {
943 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
944 if (err)
945 return err;
948 for (env = first_cpu; env != NULL; env = env->next_cpu) {
949 err = kvm_update_guest_debug(env, 0);
950 if (err)
951 return err;
953 return 0;
956 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
957 target_ulong len, int type)
959 struct kvm_sw_breakpoint *bp;
960 CPUState *env;
961 int err;
963 if (type == GDB_BREAKPOINT_SW) {
964 bp = kvm_find_sw_breakpoint(current_env, addr);
965 if (!bp)
966 return -ENOENT;
968 if (bp->use_count > 1) {
969 bp->use_count--;
970 return 0;
973 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
974 if (err)
975 return err;
977 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
978 qemu_free(bp);
979 } else {
980 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
981 if (err)
982 return err;
985 for (env = first_cpu; env != NULL; env = env->next_cpu) {
986 err = kvm_update_guest_debug(env, 0);
987 if (err)
988 return err;
990 return 0;
993 void kvm_remove_all_breakpoints(CPUState *current_env)
995 struct kvm_sw_breakpoint *bp, *next;
996 KVMState *s = current_env->kvm_state;
997 CPUState *env;
999 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1000 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1001 /* Try harder to find a CPU that currently sees the breakpoint. */
1002 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1003 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1004 break;
1008 kvm_arch_remove_all_hw_breakpoints();
1010 for (env = first_cpu; env != NULL; env = env->next_cpu)
1011 kvm_update_guest_debug(env, 0);
1014 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1016 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1018 return -EINVAL;
1021 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1022 target_ulong len, int type)
1024 return -EINVAL;
1027 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1028 target_ulong len, int type)
1030 return -EINVAL;
1033 void kvm_remove_all_breakpoints(CPUState *current_env)
1036 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1038 #include "qemu-kvm.c"