Remove reserved registers from tcg_target_reg_alloc_order
[qemu-kvm/fedora.git] / hw / nand.c
blobe73a1b8a8099fead6286c88997255bd346d219c6
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * This code is licensed under the GNU GPL v2.
12 #ifndef NAND_IO
14 # include "hw.h"
15 # include "flash.h"
16 # include "block.h"
17 /* FIXME: Pass block device as an argument. */
18 # include "sysemu.h"
20 # define NAND_CMD_READ0 0x00
21 # define NAND_CMD_READ1 0x01
22 # define NAND_CMD_READ2 0x50
23 # define NAND_CMD_LPREAD2 0x30
24 # define NAND_CMD_NOSERIALREAD2 0x35
25 # define NAND_CMD_RANDOMREAD1 0x05
26 # define NAND_CMD_RANDOMREAD2 0xe0
27 # define NAND_CMD_READID 0x90
28 # define NAND_CMD_RESET 0xff
29 # define NAND_CMD_PAGEPROGRAM1 0x80
30 # define NAND_CMD_PAGEPROGRAM2 0x10
31 # define NAND_CMD_CACHEPROGRAM2 0x15
32 # define NAND_CMD_BLOCKERASE1 0x60
33 # define NAND_CMD_BLOCKERASE2 0xd0
34 # define NAND_CMD_READSTATUS 0x70
35 # define NAND_CMD_COPYBACKPRG1 0x85
37 # define NAND_IOSTATUS_ERROR (1 << 0)
38 # define NAND_IOSTATUS_PLANE0 (1 << 1)
39 # define NAND_IOSTATUS_PLANE1 (1 << 2)
40 # define NAND_IOSTATUS_PLANE2 (1 << 3)
41 # define NAND_IOSTATUS_PLANE3 (1 << 4)
42 # define NAND_IOSTATUS_BUSY (1 << 6)
43 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
45 # define MAX_PAGE 0x800
46 # define MAX_OOB 0x40
48 struct nand_flash_s {
49 uint8_t manf_id, chip_id;
50 int size, pages;
51 int page_shift, oob_shift, erase_shift, addr_shift;
52 uint8_t *storage;
53 BlockDriverState *bdrv;
54 int mem_oob;
56 int cle, ale, ce, wp, gnd;
58 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
59 uint8_t *ioaddr;
60 int iolen;
62 uint32_t cmd, addr;
63 int addrlen;
64 int status;
65 int offset;
67 void (*blk_write)(struct nand_flash_s *s);
68 void (*blk_erase)(struct nand_flash_s *s);
69 void (*blk_load)(struct nand_flash_s *s, uint32_t addr, int offset);
72 # define NAND_NO_AUTOINCR 0x00000001
73 # define NAND_BUSWIDTH_16 0x00000002
74 # define NAND_NO_PADDING 0x00000004
75 # define NAND_CACHEPRG 0x00000008
76 # define NAND_COPYBACK 0x00000010
77 # define NAND_IS_AND 0x00000020
78 # define NAND_4PAGE_ARRAY 0x00000040
79 # define NAND_NO_READRDY 0x00000100
80 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
82 # define NAND_IO
84 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
85 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
86 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
87 # define OOB_SHIFT (PAGE_SHIFT - 5)
88 # define OOB_SIZE (1 << OOB_SHIFT)
89 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
90 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
92 # define PAGE_SIZE 256
93 # define PAGE_SHIFT 8
94 # define PAGE_SECTORS 1
95 # define ADDR_SHIFT 8
96 # include "nand.c"
97 # define PAGE_SIZE 512
98 # define PAGE_SHIFT 9
99 # define PAGE_SECTORS 1
100 # define ADDR_SHIFT 8
101 # include "nand.c"
102 # define PAGE_SIZE 2048
103 # define PAGE_SHIFT 11
104 # define PAGE_SECTORS 4
105 # define ADDR_SHIFT 16
106 # include "nand.c"
108 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
109 static const struct nand_info_s {
110 int size;
111 int width;
112 int page_shift;
113 int erase_shift;
114 uint32_t options;
115 } nand_flash_ids[0x100] = {
116 [0 ... 0xff] = { 0 },
118 [0x6e] = { 1, 8, 8, 4, 0 },
119 [0x64] = { 2, 8, 8, 4, 0 },
120 [0x6b] = { 4, 8, 9, 4, 0 },
121 [0xe8] = { 1, 8, 8, 4, 0 },
122 [0xec] = { 1, 8, 8, 4, 0 },
123 [0xea] = { 2, 8, 8, 4, 0 },
124 [0xd5] = { 4, 8, 9, 4, 0 },
125 [0xe3] = { 4, 8, 9, 4, 0 },
126 [0xe5] = { 4, 8, 9, 4, 0 },
127 [0xd6] = { 8, 8, 9, 4, 0 },
129 [0x39] = { 8, 8, 9, 4, 0 },
130 [0xe6] = { 8, 8, 9, 4, 0 },
131 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
132 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
134 [0x33] = { 16, 8, 9, 5, 0 },
135 [0x73] = { 16, 8, 9, 5, 0 },
136 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
137 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
139 [0x35] = { 32, 8, 9, 5, 0 },
140 [0x75] = { 32, 8, 9, 5, 0 },
141 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
142 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
144 [0x36] = { 64, 8, 9, 5, 0 },
145 [0x76] = { 64, 8, 9, 5, 0 },
146 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
147 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
149 [0x78] = { 128, 8, 9, 5, 0 },
150 [0x39] = { 128, 8, 9, 5, 0 },
151 [0x79] = { 128, 8, 9, 5, 0 },
152 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
153 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
154 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
155 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
157 [0x71] = { 256, 8, 9, 5, 0 },
160 * These are the new chips with large page size. The pagesize and the
161 * erasesize is determined from the extended id bytes
163 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
164 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
166 /* 512 Megabit */
167 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
168 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
169 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
170 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
172 /* 1 Gigabit */
173 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
174 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
175 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
176 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
178 /* 2 Gigabit */
179 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
180 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
181 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
182 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
184 /* 4 Gigabit */
185 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
186 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
187 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
188 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
190 /* 8 Gigabit */
191 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
192 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
193 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
194 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
196 /* 16 Gigabit */
197 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
198 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
199 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
200 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
203 static void nand_reset(struct nand_flash_s *s)
205 s->cmd = NAND_CMD_READ0;
206 s->addr = 0;
207 s->addrlen = 0;
208 s->iolen = 0;
209 s->offset = 0;
210 s->status &= NAND_IOSTATUS_UNPROTCT;
213 static void nand_command(struct nand_flash_s *s)
215 switch (s->cmd) {
216 case NAND_CMD_READ0:
217 s->iolen = 0;
218 break;
220 case NAND_CMD_READID:
221 s->io[0] = s->manf_id;
222 s->io[1] = s->chip_id;
223 s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
224 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
225 s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
226 else
227 s->io[3] = 0xc0; /* Multi-plane */
228 s->ioaddr = s->io;
229 s->iolen = 4;
230 break;
232 case NAND_CMD_RANDOMREAD2:
233 case NAND_CMD_NOSERIALREAD2:
234 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
235 break;
237 s->blk_load(s, s->addr, s->addr & ((1 << s->addr_shift) - 1));
238 break;
240 case NAND_CMD_RESET:
241 nand_reset(s);
242 break;
244 case NAND_CMD_PAGEPROGRAM1:
245 s->ioaddr = s->io;
246 s->iolen = 0;
247 break;
249 case NAND_CMD_PAGEPROGRAM2:
250 if (s->wp) {
251 s->blk_write(s);
253 break;
255 case NAND_CMD_BLOCKERASE1:
256 break;
258 case NAND_CMD_BLOCKERASE2:
259 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
260 s->addr <<= 16;
261 else
262 s->addr <<= 8;
264 if (s->wp) {
265 s->blk_erase(s);
267 break;
269 case NAND_CMD_READSTATUS:
270 s->io[0] = s->status;
271 s->ioaddr = s->io;
272 s->iolen = 1;
273 break;
275 default:
276 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
280 static void nand_save(QEMUFile *f, void *opaque)
282 struct nand_flash_s *s = (struct nand_flash_s *) opaque;
283 qemu_put_byte(f, s->cle);
284 qemu_put_byte(f, s->ale);
285 qemu_put_byte(f, s->ce);
286 qemu_put_byte(f, s->wp);
287 qemu_put_byte(f, s->gnd);
288 qemu_put_buffer(f, s->io, sizeof(s->io));
289 qemu_put_be32(f, s->ioaddr - s->io);
290 qemu_put_be32(f, s->iolen);
292 qemu_put_be32s(f, &s->cmd);
293 qemu_put_be32s(f, &s->addr);
294 qemu_put_be32(f, s->addrlen);
295 qemu_put_be32(f, s->status);
296 qemu_put_be32(f, s->offset);
297 /* XXX: do we want to save s->storage too? */
300 static int nand_load(QEMUFile *f, void *opaque, int version_id)
302 struct nand_flash_s *s = (struct nand_flash_s *) opaque;
303 s->cle = qemu_get_byte(f);
304 s->ale = qemu_get_byte(f);
305 s->ce = qemu_get_byte(f);
306 s->wp = qemu_get_byte(f);
307 s->gnd = qemu_get_byte(f);
308 qemu_get_buffer(f, s->io, sizeof(s->io));
309 s->ioaddr = s->io + qemu_get_be32(f);
310 s->iolen = qemu_get_be32(f);
311 if (s->ioaddr >= s->io + sizeof(s->io) || s->ioaddr < s->io)
312 return -EINVAL;
314 qemu_get_be32s(f, &s->cmd);
315 qemu_get_be32s(f, &s->addr);
316 s->addrlen = qemu_get_be32(f);
317 s->status = qemu_get_be32(f);
318 s->offset = qemu_get_be32(f);
319 return 0;
323 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
324 * outputs are R/B and eight I/O pins.
326 * CE, WP and R/B are active low.
328 void nand_setpins(struct nand_flash_s *s,
329 int cle, int ale, int ce, int wp, int gnd)
331 s->cle = cle;
332 s->ale = ale;
333 s->ce = ce;
334 s->wp = wp;
335 s->gnd = gnd;
336 if (wp)
337 s->status |= NAND_IOSTATUS_UNPROTCT;
338 else
339 s->status &= ~NAND_IOSTATUS_UNPROTCT;
342 void nand_getpins(struct nand_flash_s *s, int *rb)
344 *rb = 1;
347 void nand_setio(struct nand_flash_s *s, uint8_t value)
349 if (!s->ce && s->cle) {
350 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
351 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
352 return;
353 if (value == NAND_CMD_RANDOMREAD1) {
354 s->addr &= ~((1 << s->addr_shift) - 1);
355 s->addrlen = 0;
356 return;
359 if (value == NAND_CMD_READ0)
360 s->offset = 0;
361 else if (value == NAND_CMD_READ1) {
362 s->offset = 0x100;
363 value = NAND_CMD_READ0;
365 else if (value == NAND_CMD_READ2) {
366 s->offset = 1 << s->page_shift;
367 value = NAND_CMD_READ0;
370 s->cmd = value;
372 if (s->cmd == NAND_CMD_READSTATUS ||
373 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
374 s->cmd == NAND_CMD_BLOCKERASE1 ||
375 s->cmd == NAND_CMD_BLOCKERASE2 ||
376 s->cmd == NAND_CMD_NOSERIALREAD2 ||
377 s->cmd == NAND_CMD_RANDOMREAD2 ||
378 s->cmd == NAND_CMD_RESET)
379 nand_command(s);
381 if (s->cmd != NAND_CMD_RANDOMREAD2) {
382 s->addrlen = 0;
383 s->addr = 0;
387 if (s->ale) {
388 s->addr |= value << (s->addrlen * 8);
389 s->addrlen ++;
391 if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
392 nand_command(s);
394 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
395 s->addrlen == 3 && (
396 s->cmd == NAND_CMD_READ0 ||
397 s->cmd == NAND_CMD_PAGEPROGRAM1))
398 nand_command(s);
399 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
400 s->addrlen == 4 && (
401 s->cmd == NAND_CMD_READ0 ||
402 s->cmd == NAND_CMD_PAGEPROGRAM1))
403 nand_command(s);
406 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
407 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
408 s->io[s->iolen ++] = value;
409 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
410 if ((s->addr & ((1 << s->addr_shift) - 1)) <
411 (1 << s->page_shift) + (1 << s->oob_shift)) {
412 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
413 s->addr ++;
418 uint8_t nand_getio(struct nand_flash_s *s)
420 int offset;
422 /* Allow sequential reading */
423 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
424 offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
425 s->offset = 0;
427 s->blk_load(s, s->addr, offset);
428 if (s->gnd)
429 s->iolen = (1 << s->page_shift) - offset;
430 else
431 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
434 if (s->ce || s->iolen <= 0)
435 return 0;
437 s->iolen --;
438 return *(s->ioaddr ++);
441 struct nand_flash_s *nand_init(int manf_id, int chip_id)
443 int pagesize;
444 struct nand_flash_s *s;
445 int index;
447 if (nand_flash_ids[chip_id].size == 0) {
448 cpu_abort(cpu_single_env, "%s: Unsupported NAND chip ID.\n",
449 __FUNCTION__);
452 s = (struct nand_flash_s *) qemu_mallocz(sizeof(struct nand_flash_s));
453 index = drive_get_index(IF_MTD, 0, 0);
454 if (index != -1)
455 s->bdrv = drives_table[index].bdrv;
456 s->manf_id = manf_id;
457 s->chip_id = chip_id;
458 s->size = nand_flash_ids[s->chip_id].size << 20;
459 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
460 s->page_shift = 11;
461 s->erase_shift = 6;
462 } else {
463 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
464 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
467 switch (1 << s->page_shift) {
468 case 256:
469 nand_init_256(s);
470 break;
471 case 512:
472 nand_init_512(s);
473 break;
474 case 2048:
475 nand_init_2048(s);
476 break;
477 default:
478 cpu_abort(cpu_single_env, "%s: Unsupported NAND block size.\n",
479 __FUNCTION__);
482 pagesize = 1 << s->oob_shift;
483 s->mem_oob = 1;
484 if (s->bdrv && bdrv_getlength(s->bdrv) >=
485 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
486 pagesize = 0;
487 s->mem_oob = 0;
490 if (!s->bdrv)
491 pagesize += 1 << s->page_shift;
492 if (pagesize)
493 s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
494 0xff, s->pages * pagesize);
495 /* Give s->ioaddr a sane value in case we save state before it
496 is used. */
497 s->ioaddr = s->io;
499 register_savevm("nand", -1, 0, nand_save, nand_load, s);
501 return s;
504 void nand_done(struct nand_flash_s *s)
506 if (s->bdrv) {
507 bdrv_close(s->bdrv);
508 bdrv_delete(s->bdrv);
511 if (!s->bdrv || s->mem_oob)
512 free(s->storage);
514 free(s);
517 #else
519 /* Program a single page */
520 static void glue(nand_blk_write_, PAGE_SIZE)(struct nand_flash_s *s)
522 uint32_t off, page, sector, soff;
523 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
524 if (PAGE(s->addr) >= s->pages)
525 return;
527 if (!s->bdrv) {
528 memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
529 s->offset, s->io, s->iolen);
530 } else if (s->mem_oob) {
531 sector = SECTOR(s->addr);
532 off = (s->addr & PAGE_MASK) + s->offset;
533 soff = SECTOR_OFFSET(s->addr);
534 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
535 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
536 return;
539 memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
540 if (off + s->iolen > PAGE_SIZE) {
541 page = PAGE(s->addr);
542 memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
543 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
546 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
547 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
548 } else {
549 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
550 sector = off >> 9;
551 soff = off & 0x1ff;
552 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
553 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
554 return;
557 memcpy(iobuf + soff, s->io, s->iolen);
559 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
560 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
562 s->offset = 0;
565 /* Erase a single block */
566 static void glue(nand_blk_erase_, PAGE_SIZE)(struct nand_flash_s *s)
568 uint32_t i, page, addr;
569 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
570 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
572 if (PAGE(addr) >= s->pages)
573 return;
575 if (!s->bdrv) {
576 memset(s->storage + PAGE_START(addr),
577 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
578 } else if (s->mem_oob) {
579 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
580 0xff, OOB_SIZE << s->erase_shift);
581 i = SECTOR(addr);
582 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
583 for (; i < page; i ++)
584 if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
585 printf("%s: write error in sector %i\n", __FUNCTION__, i);
586 } else {
587 addr = PAGE_START(addr);
588 page = addr >> 9;
589 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
590 printf("%s: read error in sector %i\n", __FUNCTION__, page);
591 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
592 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
593 printf("%s: write error in sector %i\n", __FUNCTION__, page);
595 memset(iobuf, 0xff, 0x200);
596 i = (addr & ~0x1ff) + 0x200;
597 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
598 i < addr; i += 0x200)
599 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
600 printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
602 page = i >> 9;
603 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
604 printf("%s: read error in sector %i\n", __FUNCTION__, page);
605 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
606 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
607 printf("%s: write error in sector %i\n", __FUNCTION__, page);
611 static void glue(nand_blk_load_, PAGE_SIZE)(struct nand_flash_s *s,
612 uint32_t addr, int offset)
614 if (PAGE(addr) >= s->pages)
615 return;
617 if (s->bdrv) {
618 if (s->mem_oob) {
619 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
620 printf("%s: read error in sector %i\n",
621 __FUNCTION__, SECTOR(addr));
622 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
623 s->storage + (PAGE(s->addr) << OOB_SHIFT),
624 OOB_SIZE);
625 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
626 } else {
627 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
628 s->io, (PAGE_SECTORS + 2)) == -1)
629 printf("%s: read error in sector %i\n",
630 __FUNCTION__, PAGE_START(addr) >> 9);
631 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
633 } else {
634 memcpy(s->io, s->storage + PAGE_START(s->addr) +
635 offset, PAGE_SIZE + OOB_SIZE - offset);
636 s->ioaddr = s->io;
639 s->addr &= PAGE_SIZE - 1;
640 s->addr += PAGE_SIZE;
643 static void glue(nand_init_, PAGE_SIZE)(struct nand_flash_s *s)
645 s->oob_shift = PAGE_SHIFT - 5;
646 s->pages = s->size >> PAGE_SHIFT;
647 s->addr_shift = ADDR_SHIFT;
649 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
650 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
651 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
654 # undef PAGE_SIZE
655 # undef PAGE_SHIFT
656 # undef PAGE_SECTORS
657 # undef ADDR_SHIFT
658 #endif /* NAND_IO */