Remove env->exit_request use from kvm code
[qemu-kvm/fedora.git] / vl.c
blobc08299ce36411adaccf6a5fd9a7c61e0bc2e5337
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
115 #ifdef CONFIG_SDL
116 #ifdef __APPLE__
117 #include <SDL/SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 qemu_main(argc, argv, NULL);
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-kvm.h"
162 #include "hw/device-assignment.h"
164 #include "disas.h"
166 #include "exec-all.h"
168 #include "qemu_socket.h"
170 #if defined(CONFIG_SLIRP)
171 #include "libslirp.h"
172 #endif
174 //#define DEBUG_UNUSED_IOPORT
175 //#define DEBUG_IOPORT
176 //#define DEBUG_NET
177 //#define DEBUG_SLIRP
180 #ifdef DEBUG_IOPORT
181 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
182 #else
183 # define LOG_IOPORT(...) do { } while (0)
184 #endif
186 #define DEFAULT_RAM_SIZE 128
188 /* Max number of USB devices that can be specified on the commandline. */
189 #define MAX_USB_CMDLINE 8
191 /* Max number of bluetooth switches on the commandline. */
192 #define MAX_BT_CMDLINE 10
194 /* XXX: use a two level table to limit memory usage */
195 #define MAX_IOPORTS 65536
197 static const char *data_dir;
198 const char *bios_name = NULL;
199 static void *ioport_opaque[MAX_IOPORTS];
200 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
201 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
202 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
203 to store the VM snapshots */
204 DriveInfo drives_table[MAX_DRIVES+1];
205 int nb_drives;
206 int extboot_drive = -1;
207 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
208 static DisplayState *display_state;
209 DisplayType display_type = DT_DEFAULT;
210 const char* keyboard_layout = NULL;
211 int64_t ticks_per_sec;
212 ram_addr_t ram_size;
213 int nb_nics;
214 NICInfo nd_table[MAX_NICS];
215 int vm_running;
216 static int autostart;
217 static int rtc_utc = 1;
218 static int rtc_date_offset = -1; /* -1 means no change */
219 int cirrus_vga_enabled = 1;
220 int std_vga_enabled = 0;
221 int vmsvga_enabled = 0;
222 int xenfb_enabled = 0;
223 #ifdef TARGET_SPARC
224 int graphic_width = 1024;
225 int graphic_height = 768;
226 int graphic_depth = 8;
227 #else
228 int graphic_width = 800;
229 int graphic_height = 600;
230 int graphic_depth = 15;
231 #endif
232 static int full_screen = 0;
233 #ifdef CONFIG_SDL
234 static int no_frame = 0;
235 #endif
236 int no_quit = 0;
237 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
238 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
239 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
240 #ifdef TARGET_I386
241 int win2k_install_hack = 0;
242 int rtc_td_hack = 0;
243 #endif
244 int usb_enabled = 0;
245 int singlestep = 0;
246 const char *assigned_devices[MAX_DEV_ASSIGN_CMDLINE];
247 int assigned_devices_index;
248 int smp_cpus = 1;
249 const char *vnc_display;
250 int acpi_enabled = 1;
251 int no_hpet = 0;
252 int fd_bootchk = 1;
253 int no_reboot = 0;
254 int no_shutdown = 0;
255 int cursor_hide = 1;
256 int graphic_rotate = 0;
257 #ifndef _WIN32
258 int daemonize = 0;
259 #endif
260 WatchdogTimerModel *watchdog = NULL;
261 int watchdog_action = WDT_RESET;
262 const char *option_rom[MAX_OPTION_ROMS];
263 int nb_option_roms;
264 int semihosting_enabled = 0;
265 int time_drift_fix = 0;
266 unsigned int kvm_shadow_memory = 0;
267 const char *mem_path = NULL;
268 #ifdef MAP_POPULATE
269 int mem_prealloc = 1; /* force preallocation of physical target memory */
270 #endif
271 #ifdef TARGET_ARM
272 int old_param = 0;
273 #endif
274 const char *qemu_name;
275 int alt_grab = 0;
276 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
277 unsigned int nb_prom_envs = 0;
278 const char *prom_envs[MAX_PROM_ENVS];
279 #endif
280 int nb_drives_opt;
281 const char *nvram = NULL;
282 struct drive_opt drives_opt[MAX_DRIVES];
284 int nb_numa_nodes;
285 uint64_t node_mem[MAX_NODES];
286 uint64_t node_cpumask[MAX_NODES];
288 static CPUState *cur_cpu;
289 static CPUState *next_cpu;
290 static int timer_alarm_pending = 1;
291 /* Conversion factor from emulated instructions to virtual clock ticks. */
292 static int icount_time_shift;
293 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
294 #define MAX_ICOUNT_SHIFT 10
295 /* Compensate for varying guest execution speed. */
296 static int64_t qemu_icount_bias;
297 static QEMUTimer *icount_rt_timer;
298 static QEMUTimer *icount_vm_timer;
299 static QEMUTimer *nographic_timer;
301 uint8_t qemu_uuid[16];
303 static int qemu_select(int max_fd, fd_set *rfds, fd_set *wfds, fd_set *xfds,
304 struct timeval *tv)
306 int ret;
308 /* KVM holds a mutex while QEMU code is running, we need hooks to
309 release the mutex whenever QEMU code sleeps. */
311 kvm_sleep_begin();
313 ret = select(max_fd, rfds, wfds, xfds, tv);
315 kvm_sleep_end();
317 return ret;
321 /***********************************************************/
322 /* x86 ISA bus support */
324 target_phys_addr_t isa_mem_base = 0;
325 PicState2 *isa_pic;
327 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
328 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
330 static uint32_t ioport_read(int index, uint32_t address)
332 static IOPortReadFunc *default_func[3] = {
333 default_ioport_readb,
334 default_ioport_readw,
335 default_ioport_readl
337 IOPortReadFunc *func = ioport_read_table[index][address];
338 if (!func)
339 func = default_func[index];
340 return func(ioport_opaque[address], address);
343 static void ioport_write(int index, uint32_t address, uint32_t data)
345 static IOPortWriteFunc *default_func[3] = {
346 default_ioport_writeb,
347 default_ioport_writew,
348 default_ioport_writel
350 IOPortWriteFunc *func = ioport_write_table[index][address];
351 if (!func)
352 func = default_func[index];
353 func(ioport_opaque[address], address, data);
356 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inb: port=0x%04x\n", address);
360 #endif
361 return 0xff;
364 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
368 #endif
371 /* default is to make two byte accesses */
372 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
374 uint32_t data;
375 data = ioport_read(0, address);
376 address = (address + 1) & (MAX_IOPORTS - 1);
377 data |= ioport_read(0, address) << 8;
378 return data;
381 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
383 ioport_write(0, address, data & 0xff);
384 address = (address + 1) & (MAX_IOPORTS - 1);
385 ioport_write(0, address, (data >> 8) & 0xff);
388 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
390 #ifdef DEBUG_UNUSED_IOPORT
391 fprintf(stderr, "unused inl: port=0x%04x\n", address);
392 #endif
393 return 0xffffffff;
396 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
398 #ifdef DEBUG_UNUSED_IOPORT
399 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
400 #endif
403 /* size is the word size in byte */
404 int register_ioport_read(int start, int length, int size,
405 IOPortReadFunc *func, void *opaque)
407 int i, bsize;
409 if (size == 1) {
410 bsize = 0;
411 } else if (size == 2) {
412 bsize = 1;
413 } else if (size == 4) {
414 bsize = 2;
415 } else {
416 hw_error("register_ioport_read: invalid size");
417 return -1;
419 for(i = start; i < start + length; i += size) {
420 ioport_read_table[bsize][i] = func;
421 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
422 hw_error("register_ioport_read: invalid opaque");
423 ioport_opaque[i] = opaque;
425 return 0;
428 /* size is the word size in byte */
429 int register_ioport_write(int start, int length, int size,
430 IOPortWriteFunc *func, void *opaque)
432 int i, bsize;
434 if (size == 1) {
435 bsize = 0;
436 } else if (size == 2) {
437 bsize = 1;
438 } else if (size == 4) {
439 bsize = 2;
440 } else {
441 hw_error("register_ioport_write: invalid size");
442 return -1;
444 for(i = start; i < start + length; i += size) {
445 ioport_write_table[bsize][i] = func;
446 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
447 hw_error("register_ioport_write: invalid opaque");
448 ioport_opaque[i] = opaque;
450 return 0;
453 void isa_unassign_ioport(int start, int length)
455 int i;
457 for(i = start; i < start + length; i++) {
458 ioport_read_table[0][i] = default_ioport_readb;
459 ioport_read_table[1][i] = default_ioport_readw;
460 ioport_read_table[2][i] = default_ioport_readl;
462 ioport_write_table[0][i] = default_ioport_writeb;
463 ioport_write_table[1][i] = default_ioport_writew;
464 ioport_write_table[2][i] = default_ioport_writel;
466 ioport_opaque[i] = NULL;
470 /***********************************************************/
472 void cpu_outb(CPUState *env, int addr, int val)
474 LOG_IOPORT("outb: %04x %02x\n", addr, val);
475 ioport_write(0, addr, val);
476 #ifdef CONFIG_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
482 void cpu_outw(CPUState *env, int addr, int val)
484 LOG_IOPORT("outw: %04x %04x\n", addr, val);
485 ioport_write(1, addr, val);
486 #ifdef CONFIG_KQEMU
487 if (env)
488 env->last_io_time = cpu_get_time_fast();
489 #endif
492 void cpu_outl(CPUState *env, int addr, int val)
494 LOG_IOPORT("outl: %04x %08x\n", addr, val);
495 ioport_write(2, addr, val);
496 #ifdef CONFIG_KQEMU
497 if (env)
498 env->last_io_time = cpu_get_time_fast();
499 #endif
502 int cpu_inb(CPUState *env, int addr)
504 int val;
505 val = ioport_read(0, addr);
506 LOG_IOPORT("inb : %04x %02x\n", addr, val);
507 #ifdef CONFIG_KQEMU
508 if (env)
509 env->last_io_time = cpu_get_time_fast();
510 #endif
511 return val;
514 int cpu_inw(CPUState *env, int addr)
516 int val;
517 val = ioport_read(1, addr);
518 LOG_IOPORT("inw : %04x %04x\n", addr, val);
519 #ifdef CONFIG_KQEMU
520 if (env)
521 env->last_io_time = cpu_get_time_fast();
522 #endif
523 return val;
526 int cpu_inl(CPUState *env, int addr)
528 int val;
529 val = ioport_read(2, addr);
530 LOG_IOPORT("inl : %04x %08x\n", addr, val);
531 #ifdef CONFIG_KQEMU
532 if (env)
533 env->last_io_time = cpu_get_time_fast();
534 #endif
535 return val;
538 /***********************************************************/
539 void hw_error(const char *fmt, ...)
541 va_list ap;
542 CPUState *env;
544 va_start(ap, fmt);
545 fprintf(stderr, "qemu: hardware error: ");
546 vfprintf(stderr, fmt, ap);
547 fprintf(stderr, "\n");
548 for(env = first_cpu; env != NULL; env = env->next_cpu) {
549 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
550 #ifdef TARGET_I386
551 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
552 #else
553 cpu_dump_state(env, stderr, fprintf, 0);
554 #endif
556 va_end(ap);
557 abort();
560 /***************/
561 /* ballooning */
563 static QEMUBalloonEvent *qemu_balloon_event;
564 void *qemu_balloon_event_opaque;
566 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
568 qemu_balloon_event = func;
569 qemu_balloon_event_opaque = opaque;
572 void qemu_balloon(ram_addr_t target)
574 if (qemu_balloon_event)
575 qemu_balloon_event(qemu_balloon_event_opaque, target);
578 ram_addr_t qemu_balloon_status(void)
580 if (qemu_balloon_event)
581 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
582 return 0;
585 /***********************************************************/
586 /* keyboard/mouse */
588 static QEMUPutKBDEvent *qemu_put_kbd_event;
589 static void *qemu_put_kbd_event_opaque;
590 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
591 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
593 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
595 qemu_put_kbd_event_opaque = opaque;
596 qemu_put_kbd_event = func;
599 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
600 void *opaque, int absolute,
601 const char *name)
603 QEMUPutMouseEntry *s, *cursor;
605 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
607 s->qemu_put_mouse_event = func;
608 s->qemu_put_mouse_event_opaque = opaque;
609 s->qemu_put_mouse_event_absolute = absolute;
610 s->qemu_put_mouse_event_name = qemu_strdup(name);
611 s->next = NULL;
613 if (!qemu_put_mouse_event_head) {
614 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
615 return s;
618 cursor = qemu_put_mouse_event_head;
619 while (cursor->next != NULL)
620 cursor = cursor->next;
622 cursor->next = s;
623 qemu_put_mouse_event_current = s;
625 return s;
628 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
630 QEMUPutMouseEntry *prev = NULL, *cursor;
632 if (!qemu_put_mouse_event_head || entry == NULL)
633 return;
635 cursor = qemu_put_mouse_event_head;
636 while (cursor != NULL && cursor != entry) {
637 prev = cursor;
638 cursor = cursor->next;
641 if (cursor == NULL) // does not exist or list empty
642 return;
643 else if (prev == NULL) { // entry is head
644 qemu_put_mouse_event_head = cursor->next;
645 if (qemu_put_mouse_event_current == entry)
646 qemu_put_mouse_event_current = cursor->next;
647 qemu_free(entry->qemu_put_mouse_event_name);
648 qemu_free(entry);
649 return;
652 prev->next = entry->next;
654 if (qemu_put_mouse_event_current == entry)
655 qemu_put_mouse_event_current = prev;
657 qemu_free(entry->qemu_put_mouse_event_name);
658 qemu_free(entry);
661 void kbd_put_keycode(int keycode)
663 if (qemu_put_kbd_event) {
664 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
668 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
670 QEMUPutMouseEvent *mouse_event;
671 void *mouse_event_opaque;
672 int width;
674 if (!qemu_put_mouse_event_current) {
675 return;
678 mouse_event =
679 qemu_put_mouse_event_current->qemu_put_mouse_event;
680 mouse_event_opaque =
681 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
683 if (mouse_event) {
684 if (graphic_rotate) {
685 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
686 width = 0x7fff;
687 else
688 width = graphic_width - 1;
689 mouse_event(mouse_event_opaque,
690 width - dy, dx, dz, buttons_state);
691 } else
692 mouse_event(mouse_event_opaque,
693 dx, dy, dz, buttons_state);
697 int kbd_mouse_is_absolute(void)
699 if (!qemu_put_mouse_event_current)
700 return 0;
702 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
705 void do_info_mice(Monitor *mon)
707 QEMUPutMouseEntry *cursor;
708 int index = 0;
710 if (!qemu_put_mouse_event_head) {
711 monitor_printf(mon, "No mouse devices connected\n");
712 return;
715 monitor_printf(mon, "Mouse devices available:\n");
716 cursor = qemu_put_mouse_event_head;
717 while (cursor != NULL) {
718 monitor_printf(mon, "%c Mouse #%d: %s\n",
719 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
720 index, cursor->qemu_put_mouse_event_name);
721 index++;
722 cursor = cursor->next;
726 void do_mouse_set(Monitor *mon, int index)
728 QEMUPutMouseEntry *cursor;
729 int i = 0;
731 if (!qemu_put_mouse_event_head) {
732 monitor_printf(mon, "No mouse devices connected\n");
733 return;
736 cursor = qemu_put_mouse_event_head;
737 while (cursor != NULL && index != i) {
738 i++;
739 cursor = cursor->next;
742 if (cursor != NULL)
743 qemu_put_mouse_event_current = cursor;
744 else
745 monitor_printf(mon, "Mouse at given index not found\n");
748 /* compute with 96 bit intermediate result: (a*b)/c */
749 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
751 union {
752 uint64_t ll;
753 struct {
754 #ifdef WORDS_BIGENDIAN
755 uint32_t high, low;
756 #else
757 uint32_t low, high;
758 #endif
759 } l;
760 } u, res;
761 uint64_t rl, rh;
763 u.ll = a;
764 rl = (uint64_t)u.l.low * (uint64_t)b;
765 rh = (uint64_t)u.l.high * (uint64_t)b;
766 rh += (rl >> 32);
767 res.l.high = rh / c;
768 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
769 return res.ll;
772 /***********************************************************/
773 /* real time host monotonic timer */
775 #define QEMU_TIMER_BASE 1000000000LL
777 #ifdef WIN32
779 static int64_t clock_freq;
781 static void init_get_clock(void)
783 LARGE_INTEGER freq;
784 int ret;
785 ret = QueryPerformanceFrequency(&freq);
786 if (ret == 0) {
787 fprintf(stderr, "Could not calibrate ticks\n");
788 exit(1);
790 clock_freq = freq.QuadPart;
793 static int64_t get_clock(void)
795 LARGE_INTEGER ti;
796 QueryPerformanceCounter(&ti);
797 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
800 #else
802 static int use_rt_clock;
804 static void init_get_clock(void)
806 use_rt_clock = 0;
807 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
808 || defined(__DragonFly__)
810 struct timespec ts;
811 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
812 use_rt_clock = 1;
815 #endif
818 static int64_t get_clock(void)
820 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
821 || defined(__DragonFly__)
822 if (use_rt_clock) {
823 struct timespec ts;
824 clock_gettime(CLOCK_MONOTONIC, &ts);
825 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
826 } else
827 #endif
829 /* XXX: using gettimeofday leads to problems if the date
830 changes, so it should be avoided. */
831 struct timeval tv;
832 gettimeofday(&tv, NULL);
833 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
836 #endif
838 /* Return the virtual CPU time, based on the instruction counter. */
839 static int64_t cpu_get_icount(void)
841 int64_t icount;
842 CPUState *env = cpu_single_env;;
843 icount = qemu_icount;
844 if (env) {
845 if (!can_do_io(env))
846 fprintf(stderr, "Bad clock read\n");
847 icount -= (env->icount_decr.u16.low + env->icount_extra);
849 return qemu_icount_bias + (icount << icount_time_shift);
852 /***********************************************************/
853 /* guest cycle counter */
855 static int64_t cpu_ticks_prev;
856 static int64_t cpu_ticks_offset;
857 static int64_t cpu_clock_offset;
858 static int cpu_ticks_enabled;
860 /* return the host CPU cycle counter and handle stop/restart */
861 int64_t cpu_get_ticks(void)
863 if (use_icount) {
864 return cpu_get_icount();
866 if (!cpu_ticks_enabled) {
867 return cpu_ticks_offset;
868 } else {
869 int64_t ticks;
870 ticks = cpu_get_real_ticks();
871 if (cpu_ticks_prev > ticks) {
872 /* Note: non increasing ticks may happen if the host uses
873 software suspend */
874 cpu_ticks_offset += cpu_ticks_prev - ticks;
876 cpu_ticks_prev = ticks;
877 return ticks + cpu_ticks_offset;
881 /* return the host CPU monotonic timer and handle stop/restart */
882 static int64_t cpu_get_clock(void)
884 int64_t ti;
885 if (!cpu_ticks_enabled) {
886 return cpu_clock_offset;
887 } else {
888 ti = get_clock();
889 return ti + cpu_clock_offset;
893 /* enable cpu_get_ticks() */
894 void cpu_enable_ticks(void)
896 if (!cpu_ticks_enabled) {
897 cpu_ticks_offset -= cpu_get_real_ticks();
898 cpu_clock_offset -= get_clock();
899 cpu_ticks_enabled = 1;
903 /* disable cpu_get_ticks() : the clock is stopped. You must not call
904 cpu_get_ticks() after that. */
905 void cpu_disable_ticks(void)
907 if (cpu_ticks_enabled) {
908 cpu_ticks_offset = cpu_get_ticks();
909 cpu_clock_offset = cpu_get_clock();
910 cpu_ticks_enabled = 0;
914 /***********************************************************/
915 /* timers */
917 #define QEMU_TIMER_REALTIME 0
918 #define QEMU_TIMER_VIRTUAL 1
920 struct QEMUClock {
921 int type;
922 /* XXX: add frequency */
925 struct QEMUTimer {
926 QEMUClock *clock;
927 int64_t expire_time;
928 QEMUTimerCB *cb;
929 void *opaque;
930 struct QEMUTimer *next;
933 struct qemu_alarm_timer {
934 char const *name;
935 unsigned int flags;
937 int (*start)(struct qemu_alarm_timer *t);
938 void (*stop)(struct qemu_alarm_timer *t);
939 void (*rearm)(struct qemu_alarm_timer *t);
940 void *priv;
943 #define ALARM_FLAG_DYNTICKS 0x1
944 #define ALARM_FLAG_EXPIRED 0x2
946 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
948 return t && (t->flags & ALARM_FLAG_DYNTICKS);
951 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
953 if (!alarm_has_dynticks(t))
954 return;
956 t->rearm(t);
959 /* TODO: MIN_TIMER_REARM_US should be optimized */
960 #define MIN_TIMER_REARM_US 250
962 static struct qemu_alarm_timer *alarm_timer;
964 #ifdef _WIN32
966 struct qemu_alarm_win32 {
967 MMRESULT timerId;
968 unsigned int period;
969 } alarm_win32_data = {0, -1};
971 static int win32_start_timer(struct qemu_alarm_timer *t);
972 static void win32_stop_timer(struct qemu_alarm_timer *t);
973 static void win32_rearm_timer(struct qemu_alarm_timer *t);
975 #else
977 static int unix_start_timer(struct qemu_alarm_timer *t);
978 static void unix_stop_timer(struct qemu_alarm_timer *t);
980 #ifdef __linux__
982 static int dynticks_start_timer(struct qemu_alarm_timer *t);
983 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
984 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
986 static int hpet_start_timer(struct qemu_alarm_timer *t);
987 static void hpet_stop_timer(struct qemu_alarm_timer *t);
989 static int rtc_start_timer(struct qemu_alarm_timer *t);
990 static void rtc_stop_timer(struct qemu_alarm_timer *t);
992 #endif /* __linux__ */
994 #endif /* _WIN32 */
996 /* Correlation between real and virtual time is always going to be
997 fairly approximate, so ignore small variation.
998 When the guest is idle real and virtual time will be aligned in
999 the IO wait loop. */
1000 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
1002 static void icount_adjust(void)
1004 int64_t cur_time;
1005 int64_t cur_icount;
1006 int64_t delta;
1007 static int64_t last_delta;
1008 /* If the VM is not running, then do nothing. */
1009 if (!vm_running)
1010 return;
1012 cur_time = cpu_get_clock();
1013 cur_icount = qemu_get_clock(vm_clock);
1014 delta = cur_icount - cur_time;
1015 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
1016 if (delta > 0
1017 && last_delta + ICOUNT_WOBBLE < delta * 2
1018 && icount_time_shift > 0) {
1019 /* The guest is getting too far ahead. Slow time down. */
1020 icount_time_shift--;
1022 if (delta < 0
1023 && last_delta - ICOUNT_WOBBLE > delta * 2
1024 && icount_time_shift < MAX_ICOUNT_SHIFT) {
1025 /* The guest is getting too far behind. Speed time up. */
1026 icount_time_shift++;
1028 last_delta = delta;
1029 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1032 static void icount_adjust_rt(void * opaque)
1034 qemu_mod_timer(icount_rt_timer,
1035 qemu_get_clock(rt_clock) + 1000);
1036 icount_adjust();
1039 static void icount_adjust_vm(void * opaque)
1041 qemu_mod_timer(icount_vm_timer,
1042 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1043 icount_adjust();
1046 static void init_icount_adjust(void)
1048 /* Have both realtime and virtual time triggers for speed adjustment.
1049 The realtime trigger catches emulated time passing too slowly,
1050 the virtual time trigger catches emulated time passing too fast.
1051 Realtime triggers occur even when idle, so use them less frequently
1052 than VM triggers. */
1053 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1054 qemu_mod_timer(icount_rt_timer,
1055 qemu_get_clock(rt_clock) + 1000);
1056 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1057 qemu_mod_timer(icount_vm_timer,
1058 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1061 static struct qemu_alarm_timer alarm_timers[] = {
1062 #ifndef _WIN32
1063 #ifdef __linux__
1064 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1065 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1066 /* HPET - if available - is preferred */
1067 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1068 /* ...otherwise try RTC */
1069 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1070 #endif
1071 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1072 #else
1073 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1074 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1075 {"win32", 0, win32_start_timer,
1076 win32_stop_timer, NULL, &alarm_win32_data},
1077 #endif
1078 {NULL, }
1081 static void show_available_alarms(void)
1083 int i;
1085 printf("Available alarm timers, in order of precedence:\n");
1086 for (i = 0; alarm_timers[i].name; i++)
1087 printf("%s\n", alarm_timers[i].name);
1090 static void configure_alarms(char const *opt)
1092 int i;
1093 int cur = 0;
1094 int count = ARRAY_SIZE(alarm_timers) - 1;
1095 char *arg;
1096 char *name;
1097 struct qemu_alarm_timer tmp;
1099 if (!strcmp(opt, "?")) {
1100 show_available_alarms();
1101 exit(0);
1104 arg = strdup(opt);
1106 /* Reorder the array */
1107 name = strtok(arg, ",");
1108 while (name) {
1109 for (i = 0; i < count && alarm_timers[i].name; i++) {
1110 if (!strcmp(alarm_timers[i].name, name))
1111 break;
1114 if (i == count) {
1115 fprintf(stderr, "Unknown clock %s\n", name);
1116 goto next;
1119 if (i < cur)
1120 /* Ignore */
1121 goto next;
1123 /* Swap */
1124 tmp = alarm_timers[i];
1125 alarm_timers[i] = alarm_timers[cur];
1126 alarm_timers[cur] = tmp;
1128 cur++;
1129 next:
1130 name = strtok(NULL, ",");
1133 free(arg);
1135 if (cur) {
1136 /* Disable remaining timers */
1137 for (i = cur; i < count; i++)
1138 alarm_timers[i].name = NULL;
1139 } else {
1140 show_available_alarms();
1141 exit(1);
1145 QEMUClock *rt_clock;
1146 QEMUClock *vm_clock;
1148 static QEMUTimer *active_timers[2];
1150 static QEMUClock *qemu_new_clock(int type)
1152 QEMUClock *clock;
1153 clock = qemu_mallocz(sizeof(QEMUClock));
1154 clock->type = type;
1155 return clock;
1158 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1160 QEMUTimer *ts;
1162 ts = qemu_mallocz(sizeof(QEMUTimer));
1163 ts->clock = clock;
1164 ts->cb = cb;
1165 ts->opaque = opaque;
1166 return ts;
1169 void qemu_free_timer(QEMUTimer *ts)
1171 qemu_free(ts);
1174 /* stop a timer, but do not dealloc it */
1175 void qemu_del_timer(QEMUTimer *ts)
1177 QEMUTimer **pt, *t;
1179 /* NOTE: this code must be signal safe because
1180 qemu_timer_expired() can be called from a signal. */
1181 pt = &active_timers[ts->clock->type];
1182 for(;;) {
1183 t = *pt;
1184 if (!t)
1185 break;
1186 if (t == ts) {
1187 *pt = t->next;
1188 break;
1190 pt = &t->next;
1194 /* modify the current timer so that it will be fired when current_time
1195 >= expire_time. The corresponding callback will be called. */
1196 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1198 QEMUTimer **pt, *t;
1200 qemu_del_timer(ts);
1202 /* add the timer in the sorted list */
1203 /* NOTE: this code must be signal safe because
1204 qemu_timer_expired() can be called from a signal. */
1205 pt = &active_timers[ts->clock->type];
1206 for(;;) {
1207 t = *pt;
1208 if (!t)
1209 break;
1210 if (t->expire_time > expire_time)
1211 break;
1212 pt = &t->next;
1214 ts->expire_time = expire_time;
1215 ts->next = *pt;
1216 *pt = ts;
1218 /* Rearm if necessary */
1219 if (pt == &active_timers[ts->clock->type]) {
1220 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1221 qemu_rearm_alarm_timer(alarm_timer);
1223 /* Interrupt execution to force deadline recalculation. */
1224 if (use_icount)
1225 qemu_notify_event();
1229 int qemu_timer_pending(QEMUTimer *ts)
1231 QEMUTimer *t;
1232 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1233 if (t == ts)
1234 return 1;
1236 return 0;
1239 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1241 if (!timer_head)
1242 return 0;
1243 return (timer_head->expire_time <= current_time);
1246 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1248 QEMUTimer *ts;
1250 for(;;) {
1251 ts = *ptimer_head;
1252 if (!ts || ts->expire_time > current_time)
1253 break;
1254 /* remove timer from the list before calling the callback */
1255 *ptimer_head = ts->next;
1256 ts->next = NULL;
1258 /* run the callback (the timer list can be modified) */
1259 ts->cb(ts->opaque);
1263 int64_t qemu_get_clock(QEMUClock *clock)
1265 switch(clock->type) {
1266 case QEMU_TIMER_REALTIME:
1267 return get_clock() / 1000000;
1268 default:
1269 case QEMU_TIMER_VIRTUAL:
1270 if (use_icount) {
1271 return cpu_get_icount();
1272 } else {
1273 return cpu_get_clock();
1278 static void init_timers(void)
1280 init_get_clock();
1281 ticks_per_sec = QEMU_TIMER_BASE;
1282 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1283 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1286 /* save a timer */
1287 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1289 uint64_t expire_time;
1291 if (qemu_timer_pending(ts)) {
1292 expire_time = ts->expire_time;
1293 } else {
1294 expire_time = -1;
1296 qemu_put_be64(f, expire_time);
1299 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1301 uint64_t expire_time;
1303 expire_time = qemu_get_be64(f);
1304 if (expire_time != -1) {
1305 qemu_mod_timer(ts, expire_time);
1306 } else {
1307 qemu_del_timer(ts);
1311 static void timer_save(QEMUFile *f, void *opaque)
1313 if (cpu_ticks_enabled) {
1314 hw_error("cannot save state if virtual timers are running");
1316 qemu_put_be64(f, cpu_ticks_offset);
1317 qemu_put_be64(f, ticks_per_sec);
1318 qemu_put_be64(f, cpu_clock_offset);
1321 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1323 if (version_id != 1 && version_id != 2)
1324 return -EINVAL;
1325 if (cpu_ticks_enabled) {
1326 return -EINVAL;
1328 cpu_ticks_offset=qemu_get_be64(f);
1329 ticks_per_sec=qemu_get_be64(f);
1330 if (version_id == 2) {
1331 cpu_clock_offset=qemu_get_be64(f);
1333 return 0;
1336 static void qemu_event_increment(void);
1338 #ifdef _WIN32
1339 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1340 DWORD_PTR dwUser, DWORD_PTR dw1,
1341 DWORD_PTR dw2)
1342 #else
1343 static void host_alarm_handler(int host_signum)
1344 #endif
1346 #if 0
1347 #define DISP_FREQ 1000
1349 static int64_t delta_min = INT64_MAX;
1350 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1351 static int count;
1352 ti = qemu_get_clock(vm_clock);
1353 if (last_clock != 0) {
1354 delta = ti - last_clock;
1355 if (delta < delta_min)
1356 delta_min = delta;
1357 if (delta > delta_max)
1358 delta_max = delta;
1359 delta_cum += delta;
1360 if (++count == DISP_FREQ) {
1361 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1362 muldiv64(delta_min, 1000000, ticks_per_sec),
1363 muldiv64(delta_max, 1000000, ticks_per_sec),
1364 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1365 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1366 count = 0;
1367 delta_min = INT64_MAX;
1368 delta_max = 0;
1369 delta_cum = 0;
1372 last_clock = ti;
1374 #endif
1375 if (alarm_has_dynticks(alarm_timer) ||
1376 (!use_icount &&
1377 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1378 qemu_get_clock(vm_clock))) ||
1379 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1380 qemu_get_clock(rt_clock))) {
1381 qemu_event_increment();
1382 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1384 #ifndef CONFIG_IOTHREAD
1385 if (next_cpu) {
1386 /* stop the currently executing cpu because a timer occured */
1387 cpu_exit(next_cpu);
1388 #ifdef CONFIG_KQEMU
1389 if (next_cpu->kqemu_enabled) {
1390 kqemu_cpu_interrupt(next_cpu);
1392 #endif
1394 #endif
1395 timer_alarm_pending = 1;
1396 qemu_notify_event();
1400 static int64_t qemu_next_deadline(void)
1402 int64_t delta;
1404 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1405 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1406 qemu_get_clock(vm_clock);
1407 } else {
1408 /* To avoid problems with overflow limit this to 2^32. */
1409 delta = INT32_MAX;
1412 if (delta < 0)
1413 delta = 0;
1415 return delta;
1418 #if defined(__linux__) || defined(_WIN32)
1419 static uint64_t qemu_next_deadline_dyntick(void)
1421 int64_t delta;
1422 int64_t rtdelta;
1424 if (use_icount)
1425 delta = INT32_MAX;
1426 else
1427 delta = (qemu_next_deadline() + 999) / 1000;
1429 if (active_timers[QEMU_TIMER_REALTIME]) {
1430 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1431 qemu_get_clock(rt_clock))*1000;
1432 if (rtdelta < delta)
1433 delta = rtdelta;
1436 if (delta < MIN_TIMER_REARM_US)
1437 delta = MIN_TIMER_REARM_US;
1439 return delta;
1441 #endif
1443 #ifndef _WIN32
1445 /* Sets a specific flag */
1446 static int fcntl_setfl(int fd, int flag)
1448 int flags;
1450 flags = fcntl(fd, F_GETFL);
1451 if (flags == -1)
1452 return -errno;
1454 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1455 return -errno;
1457 return 0;
1460 #if defined(__linux__)
1462 #define RTC_FREQ 1024
1464 static void enable_sigio_timer(int fd)
1466 struct sigaction act;
1468 /* timer signal */
1469 sigfillset(&act.sa_mask);
1470 act.sa_flags = 0;
1471 act.sa_handler = host_alarm_handler;
1473 sigaction(SIGIO, &act, NULL);
1474 fcntl_setfl(fd, O_ASYNC);
1475 fcntl(fd, F_SETOWN, getpid());
1478 static int hpet_start_timer(struct qemu_alarm_timer *t)
1480 struct hpet_info info;
1481 int r, fd;
1483 fd = open("/dev/hpet", O_RDONLY);
1484 if (fd < 0)
1485 return -1;
1487 /* Set frequency */
1488 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1489 if (r < 0) {
1490 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1491 "error, but for better emulation accuracy type:\n"
1492 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1493 goto fail;
1496 /* Check capabilities */
1497 r = ioctl(fd, HPET_INFO, &info);
1498 if (r < 0)
1499 goto fail;
1501 /* Enable periodic mode */
1502 r = ioctl(fd, HPET_EPI, 0);
1503 if (info.hi_flags && (r < 0))
1504 goto fail;
1506 /* Enable interrupt */
1507 r = ioctl(fd, HPET_IE_ON, 0);
1508 if (r < 0)
1509 goto fail;
1511 enable_sigio_timer(fd);
1512 t->priv = (void *)(long)fd;
1514 return 0;
1515 fail:
1516 close(fd);
1517 return -1;
1520 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1522 int fd = (long)t->priv;
1524 close(fd);
1527 static int rtc_start_timer(struct qemu_alarm_timer *t)
1529 int rtc_fd;
1530 unsigned long current_rtc_freq = 0;
1532 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1533 if (rtc_fd < 0)
1534 return -1;
1535 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1536 if (current_rtc_freq != RTC_FREQ &&
1537 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1538 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1539 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1540 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1541 goto fail;
1543 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1544 fail:
1545 close(rtc_fd);
1546 return -1;
1549 enable_sigio_timer(rtc_fd);
1551 t->priv = (void *)(long)rtc_fd;
1553 return 0;
1556 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1558 int rtc_fd = (long)t->priv;
1560 close(rtc_fd);
1563 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1565 struct sigevent ev;
1566 timer_t host_timer;
1567 struct sigaction act;
1569 sigfillset(&act.sa_mask);
1570 act.sa_flags = 0;
1571 act.sa_handler = host_alarm_handler;
1573 sigaction(SIGALRM, &act, NULL);
1576 * Initialize ev struct to 0 to avoid valgrind complaining
1577 * about uninitialized data in timer_create call
1579 memset(&ev, 0, sizeof(ev));
1580 ev.sigev_value.sival_int = 0;
1581 ev.sigev_notify = SIGEV_SIGNAL;
1582 ev.sigev_signo = SIGALRM;
1584 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1585 perror("timer_create");
1587 /* disable dynticks */
1588 fprintf(stderr, "Dynamic Ticks disabled\n");
1590 return -1;
1593 t->priv = (void *)(long)host_timer;
1595 return 0;
1598 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1600 timer_t host_timer = (timer_t)(long)t->priv;
1602 timer_delete(host_timer);
1605 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1607 timer_t host_timer = (timer_t)(long)t->priv;
1608 struct itimerspec timeout;
1609 int64_t nearest_delta_us = INT64_MAX;
1610 int64_t current_us;
1612 if (!active_timers[QEMU_TIMER_REALTIME] &&
1613 !active_timers[QEMU_TIMER_VIRTUAL])
1614 return;
1616 nearest_delta_us = qemu_next_deadline_dyntick();
1618 /* check whether a timer is already running */
1619 if (timer_gettime(host_timer, &timeout)) {
1620 perror("gettime");
1621 fprintf(stderr, "Internal timer error: aborting\n");
1622 exit(1);
1624 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1625 if (current_us && current_us <= nearest_delta_us)
1626 return;
1628 timeout.it_interval.tv_sec = 0;
1629 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1630 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1631 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1632 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1633 perror("settime");
1634 fprintf(stderr, "Internal timer error: aborting\n");
1635 exit(1);
1639 #endif /* defined(__linux__) */
1641 static int unix_start_timer(struct qemu_alarm_timer *t)
1643 struct sigaction act;
1644 struct itimerval itv;
1645 int err;
1647 /* timer signal */
1648 sigfillset(&act.sa_mask);
1649 act.sa_flags = 0;
1650 act.sa_handler = host_alarm_handler;
1652 sigaction(SIGALRM, &act, NULL);
1654 itv.it_interval.tv_sec = 0;
1655 /* for i386 kernel 2.6 to get 1 ms */
1656 itv.it_interval.tv_usec = 999;
1657 itv.it_value.tv_sec = 0;
1658 itv.it_value.tv_usec = 10 * 1000;
1660 err = setitimer(ITIMER_REAL, &itv, NULL);
1661 if (err)
1662 return -1;
1664 return 0;
1667 static void unix_stop_timer(struct qemu_alarm_timer *t)
1669 struct itimerval itv;
1671 memset(&itv, 0, sizeof(itv));
1672 setitimer(ITIMER_REAL, &itv, NULL);
1675 #endif /* !defined(_WIN32) */
1678 #ifdef _WIN32
1680 static int win32_start_timer(struct qemu_alarm_timer *t)
1682 TIMECAPS tc;
1683 struct qemu_alarm_win32 *data = t->priv;
1684 UINT flags;
1686 memset(&tc, 0, sizeof(tc));
1687 timeGetDevCaps(&tc, sizeof(tc));
1689 if (data->period < tc.wPeriodMin)
1690 data->period = tc.wPeriodMin;
1692 timeBeginPeriod(data->period);
1694 flags = TIME_CALLBACK_FUNCTION;
1695 if (alarm_has_dynticks(t))
1696 flags |= TIME_ONESHOT;
1697 else
1698 flags |= TIME_PERIODIC;
1700 data->timerId = timeSetEvent(1, // interval (ms)
1701 data->period, // resolution
1702 host_alarm_handler, // function
1703 (DWORD)t, // parameter
1704 flags);
1706 if (!data->timerId) {
1707 perror("Failed to initialize win32 alarm timer");
1708 timeEndPeriod(data->period);
1709 return -1;
1712 return 0;
1715 static void win32_stop_timer(struct qemu_alarm_timer *t)
1717 struct qemu_alarm_win32 *data = t->priv;
1719 timeKillEvent(data->timerId);
1720 timeEndPeriod(data->period);
1723 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1725 struct qemu_alarm_win32 *data = t->priv;
1726 uint64_t nearest_delta_us;
1728 if (!active_timers[QEMU_TIMER_REALTIME] &&
1729 !active_timers[QEMU_TIMER_VIRTUAL])
1730 return;
1732 nearest_delta_us = qemu_next_deadline_dyntick();
1733 nearest_delta_us /= 1000;
1735 timeKillEvent(data->timerId);
1737 data->timerId = timeSetEvent(1,
1738 data->period,
1739 host_alarm_handler,
1740 (DWORD)t,
1741 TIME_ONESHOT | TIME_PERIODIC);
1743 if (!data->timerId) {
1744 perror("Failed to re-arm win32 alarm timer");
1746 timeEndPeriod(data->period);
1747 exit(1);
1751 #endif /* _WIN32 */
1753 static int init_timer_alarm(void)
1755 struct qemu_alarm_timer *t = NULL;
1756 int i, err = -1;
1758 for (i = 0; alarm_timers[i].name; i++) {
1759 t = &alarm_timers[i];
1761 err = t->start(t);
1762 if (!err)
1763 break;
1766 if (err) {
1767 err = -ENOENT;
1768 goto fail;
1771 alarm_timer = t;
1773 return 0;
1775 fail:
1776 return err;
1779 static void quit_timers(void)
1781 alarm_timer->stop(alarm_timer);
1782 alarm_timer = NULL;
1785 /***********************************************************/
1786 /* host time/date access */
1787 void qemu_get_timedate(struct tm *tm, int offset)
1789 time_t ti;
1790 struct tm *ret;
1792 time(&ti);
1793 ti += offset;
1794 if (rtc_date_offset == -1) {
1795 if (rtc_utc)
1796 ret = gmtime(&ti);
1797 else
1798 ret = localtime(&ti);
1799 } else {
1800 ti -= rtc_date_offset;
1801 ret = gmtime(&ti);
1804 memcpy(tm, ret, sizeof(struct tm));
1807 int qemu_timedate_diff(struct tm *tm)
1809 time_t seconds;
1811 if (rtc_date_offset == -1)
1812 if (rtc_utc)
1813 seconds = mktimegm(tm);
1814 else
1815 seconds = mktime(tm);
1816 else
1817 seconds = mktimegm(tm) + rtc_date_offset;
1819 return seconds - time(NULL);
1822 #ifdef _WIN32
1823 static void socket_cleanup(void)
1825 WSACleanup();
1828 static int socket_init(void)
1830 WSADATA Data;
1831 int ret, err;
1833 ret = WSAStartup(MAKEWORD(2,2), &Data);
1834 if (ret != 0) {
1835 err = WSAGetLastError();
1836 fprintf(stderr, "WSAStartup: %d\n", err);
1837 return -1;
1839 atexit(socket_cleanup);
1840 return 0;
1842 #endif
1844 int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1847 const char *p;
1848 char option[128];
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1862 if (*p != ',')
1863 break;
1864 p++;
1866 return 0;
1869 int check_params(char *buf, int buf_size,
1870 const char * const *params, const char *str)
1872 const char *p;
1873 int i;
1875 p = str;
1876 while (*p != '\0') {
1877 p = get_opt_name(buf, buf_size, p, '=');
1878 if (*p != '=') {
1879 return -1;
1881 p++;
1882 for (i = 0; params[i] != NULL; i++) {
1883 if (!strcmp(params[i], buf)) {
1884 break;
1887 if (params[i] == NULL) {
1888 return -1;
1890 p = get_opt_value(NULL, 0, p);
1891 if (*p != ',') {
1892 break;
1894 p++;
1896 return 0;
1899 /***********************************************************/
1900 /* Bluetooth support */
1901 static int nb_hcis;
1902 static int cur_hci;
1903 static struct HCIInfo *hci_table[MAX_NICS];
1905 static struct bt_vlan_s {
1906 struct bt_scatternet_s net;
1907 int id;
1908 struct bt_vlan_s *next;
1909 } *first_bt_vlan;
1911 /* find or alloc a new bluetooth "VLAN" */
1912 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1914 struct bt_vlan_s **pvlan, *vlan;
1915 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1916 if (vlan->id == id)
1917 return &vlan->net;
1919 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1920 vlan->id = id;
1921 pvlan = &first_bt_vlan;
1922 while (*pvlan != NULL)
1923 pvlan = &(*pvlan)->next;
1924 *pvlan = vlan;
1925 return &vlan->net;
1928 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1932 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1934 return -ENOTSUP;
1937 static struct HCIInfo null_hci = {
1938 .cmd_send = null_hci_send,
1939 .sco_send = null_hci_send,
1940 .acl_send = null_hci_send,
1941 .bdaddr_set = null_hci_addr_set,
1944 struct HCIInfo *qemu_next_hci(void)
1946 if (cur_hci == nb_hcis)
1947 return &null_hci;
1949 return hci_table[cur_hci++];
1952 static struct HCIInfo *hci_init(const char *str)
1954 char *endp;
1955 struct bt_scatternet_s *vlan = 0;
1957 if (!strcmp(str, "null"))
1958 /* null */
1959 return &null_hci;
1960 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1961 /* host[:hciN] */
1962 return bt_host_hci(str[4] ? str + 5 : "hci0");
1963 else if (!strncmp(str, "hci", 3)) {
1964 /* hci[,vlan=n] */
1965 if (str[3]) {
1966 if (!strncmp(str + 3, ",vlan=", 6)) {
1967 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1968 if (*endp)
1969 vlan = 0;
1971 } else
1972 vlan = qemu_find_bt_vlan(0);
1973 if (vlan)
1974 return bt_new_hci(vlan);
1977 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1979 return 0;
1982 static int bt_hci_parse(const char *str)
1984 struct HCIInfo *hci;
1985 bdaddr_t bdaddr;
1987 if (nb_hcis >= MAX_NICS) {
1988 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1989 return -1;
1992 hci = hci_init(str);
1993 if (!hci)
1994 return -1;
1996 bdaddr.b[0] = 0x52;
1997 bdaddr.b[1] = 0x54;
1998 bdaddr.b[2] = 0x00;
1999 bdaddr.b[3] = 0x12;
2000 bdaddr.b[4] = 0x34;
2001 bdaddr.b[5] = 0x56 + nb_hcis;
2002 hci->bdaddr_set(hci, bdaddr.b);
2004 hci_table[nb_hcis++] = hci;
2006 return 0;
2009 static void bt_vhci_add(int vlan_id)
2011 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2013 if (!vlan->slave)
2014 fprintf(stderr, "qemu: warning: adding a VHCI to "
2015 "an empty scatternet %i\n", vlan_id);
2017 bt_vhci_init(bt_new_hci(vlan));
2020 static struct bt_device_s *bt_device_add(const char *opt)
2022 struct bt_scatternet_s *vlan;
2023 int vlan_id = 0;
2024 char *endp = strstr(opt, ",vlan=");
2025 int len = (endp ? endp - opt : strlen(opt)) + 1;
2026 char devname[10];
2028 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2030 if (endp) {
2031 vlan_id = strtol(endp + 6, &endp, 0);
2032 if (*endp) {
2033 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2034 return 0;
2038 vlan = qemu_find_bt_vlan(vlan_id);
2040 if (!vlan->slave)
2041 fprintf(stderr, "qemu: warning: adding a slave device to "
2042 "an empty scatternet %i\n", vlan_id);
2044 if (!strcmp(devname, "keyboard"))
2045 return bt_keyboard_init(vlan);
2047 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2048 return 0;
2051 static int bt_parse(const char *opt)
2053 const char *endp, *p;
2054 int vlan;
2056 if (strstart(opt, "hci", &endp)) {
2057 if (!*endp || *endp == ',') {
2058 if (*endp)
2059 if (!strstart(endp, ",vlan=", 0))
2060 opt = endp + 1;
2062 return bt_hci_parse(opt);
2064 } else if (strstart(opt, "vhci", &endp)) {
2065 if (!*endp || *endp == ',') {
2066 if (*endp) {
2067 if (strstart(endp, ",vlan=", &p)) {
2068 vlan = strtol(p, (char **) &endp, 0);
2069 if (*endp) {
2070 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2071 return 1;
2073 } else {
2074 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2075 return 1;
2077 } else
2078 vlan = 0;
2080 bt_vhci_add(vlan);
2081 return 0;
2083 } else if (strstart(opt, "device:", &endp))
2084 return !bt_device_add(endp);
2086 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2087 return 1;
2090 /***********************************************************/
2091 /* QEMU Block devices */
2093 #define HD_ALIAS "index=%d,media=disk"
2094 #define CDROM_ALIAS "index=2,media=cdrom"
2095 #define FD_ALIAS "index=%d,if=floppy"
2096 #define PFLASH_ALIAS "if=pflash"
2097 #define MTD_ALIAS "if=mtd"
2098 #define SD_ALIAS "index=0,if=sd"
2100 static int drive_opt_get_free_idx(void)
2102 int index;
2104 for (index = 0; index < MAX_DRIVES; index++)
2105 if (!drives_opt[index].used) {
2106 drives_opt[index].used = 1;
2107 return index;
2110 return -1;
2113 static int drive_get_free_idx(void)
2115 int index;
2117 for (index = 0; index < MAX_DRIVES; index++)
2118 if (!drives_table[index].used) {
2119 drives_table[index].used = 1;
2120 return index;
2123 return -1;
2126 int drive_add(const char *file, const char *fmt, ...)
2128 va_list ap;
2129 int index = drive_opt_get_free_idx();
2131 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2132 fprintf(stderr, "qemu: too many drives\n");
2133 return -1;
2136 drives_opt[index].file = file;
2137 va_start(ap, fmt);
2138 vsnprintf(drives_opt[index].opt,
2139 sizeof(drives_opt[0].opt), fmt, ap);
2140 va_end(ap);
2142 nb_drives_opt++;
2143 return index;
2146 void drive_remove(int index)
2148 drives_opt[index].used = 0;
2149 nb_drives_opt--;
2152 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2154 int index;
2156 /* seek interface, bus and unit */
2158 for (index = 0; index < MAX_DRIVES; index++)
2159 if (drives_table[index].type == type &&
2160 drives_table[index].bus == bus &&
2161 drives_table[index].unit == unit &&
2162 drives_table[index].used)
2163 return index;
2165 return -1;
2168 int drive_get_max_bus(BlockInterfaceType type)
2170 int max_bus;
2171 int index;
2173 max_bus = -1;
2174 for (index = 0; index < nb_drives; index++) {
2175 if(drives_table[index].type == type &&
2176 drives_table[index].bus > max_bus)
2177 max_bus = drives_table[index].bus;
2179 return max_bus;
2182 const char *drive_get_serial(BlockDriverState *bdrv)
2184 int index;
2186 for (index = 0; index < nb_drives; index++)
2187 if (drives_table[index].bdrv == bdrv)
2188 return drives_table[index].serial;
2190 return "\0";
2193 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2195 int index;
2197 for (index = 0; index < nb_drives; index++)
2198 if (drives_table[index].bdrv == bdrv)
2199 return drives_table[index].onerror;
2201 return BLOCK_ERR_STOP_ENOSPC;
2204 static void bdrv_format_print(void *opaque, const char *name)
2206 fprintf(stderr, " %s", name);
2209 void drive_uninit(BlockDriverState *bdrv)
2211 int i;
2213 for (i = 0; i < MAX_DRIVES; i++)
2214 if (drives_table[i].bdrv == bdrv) {
2215 drives_table[i].bdrv = NULL;
2216 drives_table[i].used = 0;
2217 drive_remove(drives_table[i].drive_opt_idx);
2218 nb_drives--;
2219 break;
2223 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2225 char buf[128];
2226 char file[1024];
2227 char devname[128];
2228 char serial[21];
2229 const char *mediastr = "";
2230 BlockInterfaceType type;
2231 enum { MEDIA_DISK, MEDIA_CDROM } media;
2232 int bus_id, unit_id;
2233 int cyls, heads, secs, translation;
2234 BlockDriverState *bdrv;
2235 BlockDriver *drv = NULL;
2236 QEMUMachine *machine = opaque;
2237 int max_devs;
2238 int index;
2239 int cache;
2240 int bdrv_flags, onerror;
2241 int drives_table_idx;
2242 char *str = arg->opt;
2243 static const char * const params[] = { "bus", "unit", "if", "index",
2244 "cyls", "heads", "secs", "trans",
2245 "media", "snapshot", "file",
2246 "cache", "format", "serial", "werror",
2247 "boot", NULL };
2249 if (check_params(buf, sizeof(buf), params, str) < 0) {
2250 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2251 buf, str);
2252 return -1;
2255 file[0] = 0;
2256 cyls = heads = secs = 0;
2257 bus_id = 0;
2258 unit_id = -1;
2259 translation = BIOS_ATA_TRANSLATION_AUTO;
2260 index = -1;
2261 cache = 3;
2263 if (machine->use_scsi) {
2264 type = IF_SCSI;
2265 max_devs = MAX_SCSI_DEVS;
2266 pstrcpy(devname, sizeof(devname), "scsi");
2267 } else {
2268 type = IF_IDE;
2269 max_devs = MAX_IDE_DEVS;
2270 pstrcpy(devname, sizeof(devname), "ide");
2272 media = MEDIA_DISK;
2274 /* extract parameters */
2276 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2277 bus_id = strtol(buf, NULL, 0);
2278 if (bus_id < 0) {
2279 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2280 return -1;
2284 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2285 unit_id = strtol(buf, NULL, 0);
2286 if (unit_id < 0) {
2287 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2288 return -1;
2292 if (get_param_value(buf, sizeof(buf), "if", str)) {
2293 pstrcpy(devname, sizeof(devname), buf);
2294 if (!strcmp(buf, "ide")) {
2295 type = IF_IDE;
2296 max_devs = MAX_IDE_DEVS;
2297 } else if (!strcmp(buf, "scsi")) {
2298 type = IF_SCSI;
2299 max_devs = MAX_SCSI_DEVS;
2300 } else if (!strcmp(buf, "floppy")) {
2301 type = IF_FLOPPY;
2302 max_devs = 0;
2303 } else if (!strcmp(buf, "pflash")) {
2304 type = IF_PFLASH;
2305 max_devs = 0;
2306 } else if (!strcmp(buf, "mtd")) {
2307 type = IF_MTD;
2308 max_devs = 0;
2309 } else if (!strcmp(buf, "sd")) {
2310 type = IF_SD;
2311 max_devs = 0;
2312 } else if (!strcmp(buf, "virtio")) {
2313 type = IF_VIRTIO;
2314 max_devs = 0;
2315 } else if (!strcmp(buf, "xen")) {
2316 type = IF_XEN;
2317 max_devs = 0;
2318 } else {
2319 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2320 return -1;
2324 if (get_param_value(buf, sizeof(buf), "index", str)) {
2325 index = strtol(buf, NULL, 0);
2326 if (index < 0) {
2327 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2328 return -1;
2332 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2333 cyls = strtol(buf, NULL, 0);
2336 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2337 heads = strtol(buf, NULL, 0);
2340 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2341 secs = strtol(buf, NULL, 0);
2344 if (cyls || heads || secs) {
2345 if (cyls < 1 || cyls > 16383) {
2346 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2347 return -1;
2349 if (heads < 1 || heads > 16) {
2350 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2351 return -1;
2353 if (secs < 1 || secs > 63) {
2354 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2355 return -1;
2359 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2360 if (!cyls) {
2361 fprintf(stderr,
2362 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2363 str);
2364 return -1;
2366 if (!strcmp(buf, "none"))
2367 translation = BIOS_ATA_TRANSLATION_NONE;
2368 else if (!strcmp(buf, "lba"))
2369 translation = BIOS_ATA_TRANSLATION_LBA;
2370 else if (!strcmp(buf, "auto"))
2371 translation = BIOS_ATA_TRANSLATION_AUTO;
2372 else {
2373 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2374 return -1;
2378 if (get_param_value(buf, sizeof(buf), "media", str)) {
2379 if (!strcmp(buf, "disk")) {
2380 media = MEDIA_DISK;
2381 } else if (!strcmp(buf, "cdrom")) {
2382 if (cyls || secs || heads) {
2383 fprintf(stderr,
2384 "qemu: '%s' invalid physical CHS format\n", str);
2385 return -1;
2387 media = MEDIA_CDROM;
2388 } else {
2389 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2390 return -1;
2394 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2395 if (!strcmp(buf, "on"))
2396 snapshot = 1;
2397 else if (!strcmp(buf, "off"))
2398 snapshot = 0;
2399 else {
2400 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2401 return -1;
2405 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2406 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2407 cache = 0;
2408 else if (!strcmp(buf, "writethrough"))
2409 cache = 1;
2410 else if (!strcmp(buf, "writeback"))
2411 cache = 2;
2412 else {
2413 fprintf(stderr, "qemu: invalid cache option\n");
2414 return -1;
2418 if (get_param_value(buf, sizeof(buf), "format", str)) {
2419 if (strcmp(buf, "?") == 0) {
2420 fprintf(stderr, "qemu: Supported formats:");
2421 bdrv_iterate_format(bdrv_format_print, NULL);
2422 fprintf(stderr, "\n");
2423 return -1;
2425 drv = bdrv_find_format(buf);
2426 if (!drv) {
2427 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2428 return -1;
2432 if (get_param_value(buf, sizeof(buf), "boot", str)) {
2433 if (!strcmp(buf, "on")) {
2434 if (extboot_drive != -1) {
2435 fprintf(stderr, "qemu: two bootable drives specified\n");
2436 return -1;
2438 extboot_drive = nb_drives;
2439 } else if (strcmp(buf, "off")) {
2440 fprintf(stderr, "qemu: '%s' invalid boot option\n", str);
2441 return -1;
2445 if (arg->file == NULL)
2446 get_param_value(file, sizeof(file), "file", str);
2447 else
2448 pstrcpy(file, sizeof(file), arg->file);
2450 if (!get_param_value(serial, sizeof(serial), "serial", str))
2451 memset(serial, 0, sizeof(serial));
2453 onerror = BLOCK_ERR_STOP_ENOSPC;
2454 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2455 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2456 fprintf(stderr, "werror is no supported by this format\n");
2457 return -1;
2459 if (!strcmp(buf, "ignore"))
2460 onerror = BLOCK_ERR_IGNORE;
2461 else if (!strcmp(buf, "enospc"))
2462 onerror = BLOCK_ERR_STOP_ENOSPC;
2463 else if (!strcmp(buf, "stop"))
2464 onerror = BLOCK_ERR_STOP_ANY;
2465 else if (!strcmp(buf, "report"))
2466 onerror = BLOCK_ERR_REPORT;
2467 else {
2468 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2469 return -1;
2473 /* compute bus and unit according index */
2475 if (index != -1) {
2476 if (bus_id != 0 || unit_id != -1) {
2477 fprintf(stderr,
2478 "qemu: '%s' index cannot be used with bus and unit\n", str);
2479 return -1;
2481 if (max_devs == 0)
2483 unit_id = index;
2484 bus_id = 0;
2485 } else {
2486 unit_id = index % max_devs;
2487 bus_id = index / max_devs;
2491 /* if user doesn't specify a unit_id,
2492 * try to find the first free
2495 if (unit_id == -1) {
2496 unit_id = 0;
2497 while (drive_get_index(type, bus_id, unit_id) != -1) {
2498 unit_id++;
2499 if (max_devs && unit_id >= max_devs) {
2500 unit_id -= max_devs;
2501 bus_id++;
2506 /* check unit id */
2508 if (max_devs && unit_id >= max_devs) {
2509 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2510 str, unit_id, max_devs - 1);
2511 return -1;
2515 * ignore multiple definitions
2518 if (drive_get_index(type, bus_id, unit_id) != -1)
2519 return -2;
2521 /* init */
2523 if (type == IF_IDE || type == IF_SCSI)
2524 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2525 if (max_devs)
2526 snprintf(buf, sizeof(buf), "%s%i%s%i",
2527 devname, bus_id, mediastr, unit_id);
2528 else
2529 snprintf(buf, sizeof(buf), "%s%s%i",
2530 devname, mediastr, unit_id);
2531 bdrv = bdrv_new(buf);
2532 drives_table_idx = drive_get_free_idx();
2533 drives_table[drives_table_idx].bdrv = bdrv;
2534 drives_table[drives_table_idx].type = type;
2535 drives_table[drives_table_idx].bus = bus_id;
2536 drives_table[drives_table_idx].unit = unit_id;
2537 drives_table[drives_table_idx].onerror = onerror;
2538 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2539 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2540 nb_drives++;
2542 switch(type) {
2543 case IF_IDE:
2544 case IF_SCSI:
2545 case IF_XEN:
2546 switch(media) {
2547 case MEDIA_DISK:
2548 if (cyls != 0) {
2549 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2550 bdrv_set_translation_hint(bdrv, translation);
2552 break;
2553 case MEDIA_CDROM:
2554 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2555 break;
2557 break;
2558 case IF_SD:
2559 /* FIXME: This isn't really a floppy, but it's a reasonable
2560 approximation. */
2561 case IF_FLOPPY:
2562 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2563 break;
2564 case IF_PFLASH:
2565 case IF_MTD:
2566 case IF_VIRTIO:
2567 break;
2568 case IF_COUNT:
2569 abort();
2571 if (!file[0])
2572 return -2;
2573 bdrv_flags = 0;
2574 if (snapshot) {
2575 bdrv_flags |= BDRV_O_SNAPSHOT;
2576 cache = 2; /* always use write-back with snapshot */
2578 if (cache == 0) /* no caching */
2579 bdrv_flags |= BDRV_O_NOCACHE;
2580 else if (cache == 2) /* write-back */
2581 bdrv_flags |= BDRV_O_CACHE_WB;
2582 else if (cache == 3) /* not specified */
2583 bdrv_flags |= BDRV_O_CACHE_DEF;
2584 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2585 fprintf(stderr, "qemu: could not open disk image %s\n",
2586 file);
2587 return -1;
2589 if (bdrv_key_required(bdrv))
2590 autostart = 0;
2591 return drives_table_idx;
2594 static void numa_add(const char *optarg)
2596 char option[128];
2597 char *endptr;
2598 unsigned long long value, endvalue;
2599 int nodenr;
2601 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2602 if (!strcmp(option, "node")) {
2603 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2604 nodenr = nb_numa_nodes;
2605 } else {
2606 nodenr = strtoull(option, NULL, 10);
2609 if (get_param_value(option, 128, "mem", optarg) == 0) {
2610 node_mem[nodenr] = 0;
2611 } else {
2612 value = strtoull(option, &endptr, 0);
2613 switch (*endptr) {
2614 case 0: case 'M': case 'm':
2615 value <<= 20;
2616 break;
2617 case 'G': case 'g':
2618 value <<= 30;
2619 break;
2621 node_mem[nodenr] = value;
2623 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2624 node_cpumask[nodenr] = 0;
2625 } else {
2626 value = strtoull(option, &endptr, 10);
2627 if (value >= 64) {
2628 value = 63;
2629 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2630 } else {
2631 if (*endptr == '-') {
2632 endvalue = strtoull(endptr+1, &endptr, 10);
2633 if (endvalue >= 63) {
2634 endvalue = 62;
2635 fprintf(stderr,
2636 "only 63 CPUs in NUMA mode supported.\n");
2638 value = (1 << (endvalue + 1)) - (1 << value);
2639 } else {
2640 value = 1 << value;
2643 node_cpumask[nodenr] = value;
2645 nb_numa_nodes++;
2647 return;
2650 /***********************************************************/
2651 /* USB devices */
2653 static USBPort *used_usb_ports;
2654 static USBPort *free_usb_ports;
2656 /* ??? Maybe change this to register a hub to keep track of the topology. */
2657 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2658 usb_attachfn attach)
2660 port->opaque = opaque;
2661 port->index = index;
2662 port->attach = attach;
2663 port->next = free_usb_ports;
2664 free_usb_ports = port;
2667 int usb_device_add_dev(USBDevice *dev)
2669 USBPort *port;
2671 /* Find a USB port to add the device to. */
2672 port = free_usb_ports;
2673 if (!port->next) {
2674 USBDevice *hub;
2676 /* Create a new hub and chain it on. */
2677 free_usb_ports = NULL;
2678 port->next = used_usb_ports;
2679 used_usb_ports = port;
2681 hub = usb_hub_init(VM_USB_HUB_SIZE);
2682 usb_attach(port, hub);
2683 port = free_usb_ports;
2686 free_usb_ports = port->next;
2687 port->next = used_usb_ports;
2688 used_usb_ports = port;
2689 usb_attach(port, dev);
2690 return 0;
2693 static void usb_msd_password_cb(void *opaque, int err)
2695 USBDevice *dev = opaque;
2697 if (!err)
2698 usb_device_add_dev(dev);
2699 else
2700 dev->handle_destroy(dev);
2703 static int usb_device_add(const char *devname, int is_hotplug)
2705 const char *p;
2706 USBDevice *dev;
2708 if (!free_usb_ports)
2709 return -1;
2711 if (strstart(devname, "host:", &p)) {
2712 dev = usb_host_device_open(p);
2713 } else if (!strcmp(devname, "mouse")) {
2714 dev = usb_mouse_init();
2715 } else if (!strcmp(devname, "tablet")) {
2716 dev = usb_tablet_init();
2717 } else if (!strcmp(devname, "keyboard")) {
2718 dev = usb_keyboard_init();
2719 } else if (strstart(devname, "disk:", &p)) {
2720 BlockDriverState *bs;
2722 dev = usb_msd_init(p);
2723 if (!dev)
2724 return -1;
2725 bs = usb_msd_get_bdrv(dev);
2726 if (bdrv_key_required(bs)) {
2727 autostart = 0;
2728 if (is_hotplug) {
2729 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2730 dev);
2731 return 0;
2734 } else if (!strcmp(devname, "wacom-tablet")) {
2735 dev = usb_wacom_init();
2736 } else if (strstart(devname, "serial:", &p)) {
2737 dev = usb_serial_init(p);
2738 #ifdef CONFIG_BRLAPI
2739 } else if (!strcmp(devname, "braille")) {
2740 dev = usb_baum_init();
2741 #endif
2742 } else if (strstart(devname, "net:", &p)) {
2743 int nic = nb_nics;
2745 if (net_client_init(NULL, "nic", p) < 0)
2746 return -1;
2747 nd_table[nic].model = "usb";
2748 dev = usb_net_init(&nd_table[nic]);
2749 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2750 dev = usb_bt_init(devname[2] ? hci_init(p) :
2751 bt_new_hci(qemu_find_bt_vlan(0)));
2752 } else {
2753 return -1;
2755 if (!dev)
2756 return -1;
2758 return usb_device_add_dev(dev);
2761 int usb_device_del_addr(int bus_num, int addr)
2763 USBPort *port;
2764 USBPort **lastp;
2765 USBDevice *dev;
2767 if (!used_usb_ports)
2768 return -1;
2770 if (bus_num != 0)
2771 return -1;
2773 lastp = &used_usb_ports;
2774 port = used_usb_ports;
2775 while (port && port->dev->addr != addr) {
2776 lastp = &port->next;
2777 port = port->next;
2780 if (!port)
2781 return -1;
2783 dev = port->dev;
2784 *lastp = port->next;
2785 usb_attach(port, NULL);
2786 dev->handle_destroy(dev);
2787 port->next = free_usb_ports;
2788 free_usb_ports = port;
2789 return 0;
2792 static int usb_device_del(const char *devname)
2794 int bus_num, addr;
2795 const char *p;
2797 if (strstart(devname, "host:", &p))
2798 return usb_host_device_close(p);
2800 if (!used_usb_ports)
2801 return -1;
2803 p = strchr(devname, '.');
2804 if (!p)
2805 return -1;
2806 bus_num = strtoul(devname, NULL, 0);
2807 addr = strtoul(p + 1, NULL, 0);
2809 return usb_device_del_addr(bus_num, addr);
2812 void do_usb_add(Monitor *mon, const char *devname)
2814 usb_device_add(devname, 1);
2817 void do_usb_del(Monitor *mon, const char *devname)
2819 usb_device_del(devname);
2822 void usb_info(Monitor *mon)
2824 USBDevice *dev;
2825 USBPort *port;
2826 const char *speed_str;
2828 if (!usb_enabled) {
2829 monitor_printf(mon, "USB support not enabled\n");
2830 return;
2833 for (port = used_usb_ports; port; port = port->next) {
2834 dev = port->dev;
2835 if (!dev)
2836 continue;
2837 switch(dev->speed) {
2838 case USB_SPEED_LOW:
2839 speed_str = "1.5";
2840 break;
2841 case USB_SPEED_FULL:
2842 speed_str = "12";
2843 break;
2844 case USB_SPEED_HIGH:
2845 speed_str = "480";
2846 break;
2847 default:
2848 speed_str = "?";
2849 break;
2851 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2852 0, dev->addr, speed_str, dev->devname);
2856 /***********************************************************/
2857 /* PCMCIA/Cardbus */
2859 static struct pcmcia_socket_entry_s {
2860 PCMCIASocket *socket;
2861 struct pcmcia_socket_entry_s *next;
2862 } *pcmcia_sockets = 0;
2864 void pcmcia_socket_register(PCMCIASocket *socket)
2866 struct pcmcia_socket_entry_s *entry;
2868 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2869 entry->socket = socket;
2870 entry->next = pcmcia_sockets;
2871 pcmcia_sockets = entry;
2874 void pcmcia_socket_unregister(PCMCIASocket *socket)
2876 struct pcmcia_socket_entry_s *entry, **ptr;
2878 ptr = &pcmcia_sockets;
2879 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2880 if (entry->socket == socket) {
2881 *ptr = entry->next;
2882 qemu_free(entry);
2886 void pcmcia_info(Monitor *mon)
2888 struct pcmcia_socket_entry_s *iter;
2890 if (!pcmcia_sockets)
2891 monitor_printf(mon, "No PCMCIA sockets\n");
2893 for (iter = pcmcia_sockets; iter; iter = iter->next)
2894 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2895 iter->socket->attached ? iter->socket->card_string :
2896 "Empty");
2899 /***********************************************************/
2900 /* register display */
2902 struct DisplayAllocator default_allocator = {
2903 defaultallocator_create_displaysurface,
2904 defaultallocator_resize_displaysurface,
2905 defaultallocator_free_displaysurface
2908 void register_displaystate(DisplayState *ds)
2910 DisplayState **s;
2911 s = &display_state;
2912 while (*s != NULL)
2913 s = &(*s)->next;
2914 ds->next = NULL;
2915 *s = ds;
2918 DisplayState *get_displaystate(void)
2920 return display_state;
2923 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2925 if(ds->allocator == &default_allocator) ds->allocator = da;
2926 return ds->allocator;
2929 /* dumb display */
2931 static void dumb_display_init(void)
2933 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2934 ds->allocator = &default_allocator;
2935 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2936 register_displaystate(ds);
2939 /***********************************************************/
2940 /* I/O handling */
2942 typedef struct IOHandlerRecord {
2943 int fd;
2944 IOCanRWHandler *fd_read_poll;
2945 IOHandler *fd_read;
2946 IOHandler *fd_write;
2947 int deleted;
2948 void *opaque;
2949 /* temporary data */
2950 struct pollfd *ufd;
2951 struct IOHandlerRecord *next;
2952 } IOHandlerRecord;
2954 static IOHandlerRecord *first_io_handler;
2956 /* XXX: fd_read_poll should be suppressed, but an API change is
2957 necessary in the character devices to suppress fd_can_read(). */
2958 int qemu_set_fd_handler2(int fd,
2959 IOCanRWHandler *fd_read_poll,
2960 IOHandler *fd_read,
2961 IOHandler *fd_write,
2962 void *opaque)
2964 IOHandlerRecord **pioh, *ioh;
2966 if (!fd_read && !fd_write) {
2967 pioh = &first_io_handler;
2968 for(;;) {
2969 ioh = *pioh;
2970 if (ioh == NULL)
2971 break;
2972 if (ioh->fd == fd) {
2973 ioh->deleted = 1;
2974 break;
2976 pioh = &ioh->next;
2978 } else {
2979 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2980 if (ioh->fd == fd)
2981 goto found;
2983 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2984 ioh->next = first_io_handler;
2985 first_io_handler = ioh;
2986 found:
2987 ioh->fd = fd;
2988 ioh->fd_read_poll = fd_read_poll;
2989 ioh->fd_read = fd_read;
2990 ioh->fd_write = fd_write;
2991 ioh->opaque = opaque;
2992 ioh->deleted = 0;
2994 qemu_notify_event();
2995 return 0;
2998 int qemu_set_fd_handler(int fd,
2999 IOHandler *fd_read,
3000 IOHandler *fd_write,
3001 void *opaque)
3003 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3006 #ifdef _WIN32
3007 /***********************************************************/
3008 /* Polling handling */
3010 typedef struct PollingEntry {
3011 PollingFunc *func;
3012 void *opaque;
3013 struct PollingEntry *next;
3014 } PollingEntry;
3016 static PollingEntry *first_polling_entry;
3018 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3020 PollingEntry **ppe, *pe;
3021 pe = qemu_mallocz(sizeof(PollingEntry));
3022 pe->func = func;
3023 pe->opaque = opaque;
3024 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3025 *ppe = pe;
3026 return 0;
3029 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3031 PollingEntry **ppe, *pe;
3032 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3033 pe = *ppe;
3034 if (pe->func == func && pe->opaque == opaque) {
3035 *ppe = pe->next;
3036 qemu_free(pe);
3037 break;
3042 /***********************************************************/
3043 /* Wait objects support */
3044 typedef struct WaitObjects {
3045 int num;
3046 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3047 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3048 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3049 } WaitObjects;
3051 static WaitObjects wait_objects = {0};
3053 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3055 WaitObjects *w = &wait_objects;
3057 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3058 return -1;
3059 w->events[w->num] = handle;
3060 w->func[w->num] = func;
3061 w->opaque[w->num] = opaque;
3062 w->num++;
3063 return 0;
3066 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3068 int i, found;
3069 WaitObjects *w = &wait_objects;
3071 found = 0;
3072 for (i = 0; i < w->num; i++) {
3073 if (w->events[i] == handle)
3074 found = 1;
3075 if (found) {
3076 w->events[i] = w->events[i + 1];
3077 w->func[i] = w->func[i + 1];
3078 w->opaque[i] = w->opaque[i + 1];
3081 if (found)
3082 w->num--;
3084 #endif
3086 /***********************************************************/
3087 /* ram save/restore */
3089 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3091 int v;
3093 v = qemu_get_byte(f);
3094 switch(v) {
3095 case 0:
3096 if (qemu_get_buffer(f, buf, len) != len)
3097 return -EIO;
3098 break;
3099 case 1:
3100 v = qemu_get_byte(f);
3101 memset(buf, v, len);
3102 break;
3103 default:
3104 return -EINVAL;
3107 if (qemu_file_has_error(f))
3108 return -EIO;
3110 return 0;
3113 static int ram_load_v1(QEMUFile *f, void *opaque)
3115 int ret;
3116 ram_addr_t i;
3118 if (qemu_get_be32(f) != last_ram_offset)
3119 return -EINVAL;
3120 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3121 if (kvm_enabled() && (i>=0xa0000) && (i<0xc0000)) /* do not access video-addresses */
3122 continue;
3123 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3124 if (ret)
3125 return ret;
3127 return 0;
3130 #define BDRV_HASH_BLOCK_SIZE 1024
3131 #define IOBUF_SIZE 4096
3132 #define RAM_CBLOCK_MAGIC 0xfabe
3134 typedef struct RamDecompressState {
3135 z_stream zstream;
3136 QEMUFile *f;
3137 uint8_t buf[IOBUF_SIZE];
3138 } RamDecompressState;
3140 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3142 int ret;
3143 memset(s, 0, sizeof(*s));
3144 s->f = f;
3145 ret = inflateInit(&s->zstream);
3146 if (ret != Z_OK)
3147 return -1;
3148 return 0;
3151 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3153 int ret, clen;
3155 s->zstream.avail_out = len;
3156 s->zstream.next_out = buf;
3157 while (s->zstream.avail_out > 0) {
3158 if (s->zstream.avail_in == 0) {
3159 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3160 return -1;
3161 clen = qemu_get_be16(s->f);
3162 if (clen > IOBUF_SIZE)
3163 return -1;
3164 qemu_get_buffer(s->f, s->buf, clen);
3165 s->zstream.avail_in = clen;
3166 s->zstream.next_in = s->buf;
3168 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3169 if (ret != Z_OK && ret != Z_STREAM_END) {
3170 return -1;
3173 return 0;
3176 static void ram_decompress_close(RamDecompressState *s)
3178 inflateEnd(&s->zstream);
3181 #define RAM_SAVE_FLAG_FULL 0x01
3182 #define RAM_SAVE_FLAG_COMPRESS 0x02
3183 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3184 #define RAM_SAVE_FLAG_PAGE 0x08
3185 #define RAM_SAVE_FLAG_EOS 0x10
3187 static int is_dup_page(uint8_t *page, uint8_t ch)
3189 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3190 uint32_t *array = (uint32_t *)page;
3191 int i;
3193 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3194 if (array[i] != val)
3195 return 0;
3198 return 1;
3201 static int ram_save_block(QEMUFile *f)
3203 static ram_addr_t current_addr = 0;
3204 ram_addr_t saved_addr = current_addr;
3205 ram_addr_t addr = 0;
3206 int found = 0;
3208 while (addr < last_ram_offset) {
3209 if (kvm_enabled() && current_addr == 0) {
3210 int r;
3211 r = kvm_update_dirty_pages_log();
3212 if (r) {
3213 fprintf(stderr, "%s: update dirty pages log failed %d\n", __FUNCTION__, r);
3214 qemu_file_set_error(f);
3215 return 0;
3218 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3219 uint8_t *p;
3221 cpu_physical_memory_reset_dirty(current_addr,
3222 current_addr + TARGET_PAGE_SIZE,
3223 MIGRATION_DIRTY_FLAG);
3225 p = qemu_get_ram_ptr(current_addr);
3227 if (is_dup_page(p, *p)) {
3228 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3229 qemu_put_byte(f, *p);
3230 } else {
3231 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3232 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3235 found = 1;
3236 break;
3238 addr += TARGET_PAGE_SIZE;
3239 current_addr = (saved_addr + addr) % last_ram_offset;
3242 return found;
3245 static ram_addr_t ram_save_threshold = 10;
3246 static uint64_t bytes_transferred = 0;
3248 static ram_addr_t ram_save_remaining(void)
3250 ram_addr_t addr;
3251 ram_addr_t count = 0;
3253 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3254 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3255 count++;
3258 return count;
3261 uint64_t ram_bytes_remaining(void)
3263 return ram_save_remaining() * TARGET_PAGE_SIZE;
3266 uint64_t ram_bytes_transferred(void)
3268 return bytes_transferred;
3271 uint64_t ram_bytes_total(void)
3273 return last_ram_offset;
3276 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3278 ram_addr_t addr;
3280 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3281 qemu_file_set_error(f);
3282 return 0;
3285 if (stage == 1) {
3286 /* Make sure all dirty bits are set */
3287 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3288 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3289 cpu_physical_memory_set_dirty(addr);
3292 /* Enable dirty memory tracking */
3293 cpu_physical_memory_set_dirty_tracking(1);
3295 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3298 while (!qemu_file_rate_limit(f)) {
3299 int ret;
3301 ret = ram_save_block(f);
3302 bytes_transferred += ret * TARGET_PAGE_SIZE;
3303 if (ret == 0) /* no more blocks */
3304 break;
3307 /* try transferring iterative blocks of memory */
3309 if (stage == 3) {
3311 /* flush all remaining blocks regardless of rate limiting */
3312 while (ram_save_block(f) != 0) {
3313 bytes_transferred += TARGET_PAGE_SIZE;
3315 cpu_physical_memory_set_dirty_tracking(0);
3318 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3320 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3323 static int ram_load_dead(QEMUFile *f, void *opaque)
3325 RamDecompressState s1, *s = &s1;
3326 uint8_t buf[10];
3327 ram_addr_t i;
3329 if (ram_decompress_open(s, f) < 0)
3330 return -EINVAL;
3331 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3332 if (kvm_enabled() && (i>=0xa0000) && (i<0xc0000)) /* do not access video-addresses */
3333 continue;
3334 if (ram_decompress_buf(s, buf, 1) < 0) {
3335 fprintf(stderr, "Error while reading ram block header\n");
3336 goto error;
3338 if (buf[0] == 0) {
3339 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3340 BDRV_HASH_BLOCK_SIZE) < 0) {
3341 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3342 goto error;
3344 } else {
3345 error:
3346 printf("Error block header\n");
3347 return -EINVAL;
3350 ram_decompress_close(s);
3352 return 0;
3355 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3357 ram_addr_t addr;
3358 int flags;
3360 if (version_id == 1)
3361 return ram_load_v1(f, opaque);
3363 if (version_id == 2) {
3364 if (qemu_get_be32(f) != last_ram_offset)
3365 return -EINVAL;
3366 return ram_load_dead(f, opaque);
3369 if (version_id != 3)
3370 return -EINVAL;
3372 do {
3373 addr = qemu_get_be64(f);
3375 flags = addr & ~TARGET_PAGE_MASK;
3376 addr &= TARGET_PAGE_MASK;
3378 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3379 if (addr != last_ram_offset)
3380 return -EINVAL;
3383 if (flags & RAM_SAVE_FLAG_FULL) {
3384 if (ram_load_dead(f, opaque) < 0)
3385 return -EINVAL;
3388 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3389 uint8_t ch = qemu_get_byte(f);
3390 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3391 } else if (flags & RAM_SAVE_FLAG_PAGE)
3392 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3393 } while (!(flags & RAM_SAVE_FLAG_EOS));
3395 return 0;
3398 void qemu_service_io(void)
3400 qemu_notify_event();
3403 /***********************************************************/
3404 /* bottom halves (can be seen as timers which expire ASAP) */
3406 struct QEMUBH {
3407 QEMUBHFunc *cb;
3408 void *opaque;
3409 int scheduled;
3410 int idle;
3411 int deleted;
3412 QEMUBH *next;
3415 static QEMUBH *first_bh = NULL;
3417 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3419 QEMUBH *bh;
3420 bh = qemu_mallocz(sizeof(QEMUBH));
3421 bh->cb = cb;
3422 bh->opaque = opaque;
3423 bh->next = first_bh;
3424 first_bh = bh;
3425 return bh;
3428 int qemu_bh_poll(void)
3430 QEMUBH *bh, **bhp;
3431 int ret;
3433 ret = 0;
3434 for (bh = first_bh; bh; bh = bh->next) {
3435 if (!bh->deleted && bh->scheduled) {
3436 bh->scheduled = 0;
3437 if (!bh->idle)
3438 ret = 1;
3439 bh->idle = 0;
3440 bh->cb(bh->opaque);
3444 /* remove deleted bhs */
3445 bhp = &first_bh;
3446 while (*bhp) {
3447 bh = *bhp;
3448 if (bh->deleted) {
3449 *bhp = bh->next;
3450 qemu_free(bh);
3451 } else
3452 bhp = &bh->next;
3455 return ret;
3458 void qemu_bh_schedule_idle(QEMUBH *bh)
3460 if (bh->scheduled)
3461 return;
3462 bh->scheduled = 1;
3463 bh->idle = 1;
3466 void qemu_bh_schedule(QEMUBH *bh)
3468 if (bh->scheduled)
3469 return;
3470 bh->scheduled = 1;
3471 bh->idle = 0;
3472 /* stop the currently executing CPU to execute the BH ASAP */
3473 qemu_notify_event();
3476 void qemu_bh_cancel(QEMUBH *bh)
3478 bh->scheduled = 0;
3481 void qemu_bh_delete(QEMUBH *bh)
3483 bh->scheduled = 0;
3484 bh->deleted = 1;
3487 static void qemu_bh_update_timeout(int *timeout)
3489 QEMUBH *bh;
3491 for (bh = first_bh; bh; bh = bh->next) {
3492 if (!bh->deleted && bh->scheduled) {
3493 if (bh->idle) {
3494 /* idle bottom halves will be polled at least
3495 * every 10ms */
3496 *timeout = MIN(10, *timeout);
3497 } else {
3498 /* non-idle bottom halves will be executed
3499 * immediately */
3500 *timeout = 0;
3501 break;
3507 /***********************************************************/
3508 /* machine registration */
3510 static QEMUMachine *first_machine = NULL;
3511 QEMUMachine *current_machine = NULL;
3513 int qemu_register_machine(QEMUMachine *m)
3515 QEMUMachine **pm;
3516 pm = &first_machine;
3517 while (*pm != NULL)
3518 pm = &(*pm)->next;
3519 m->next = NULL;
3520 *pm = m;
3521 return 0;
3524 static QEMUMachine *find_machine(const char *name)
3526 QEMUMachine *m;
3528 for(m = first_machine; m != NULL; m = m->next) {
3529 if (!strcmp(m->name, name))
3530 return m;
3532 return NULL;
3535 static QEMUMachine *find_default_machine(void)
3537 QEMUMachine *m;
3539 for(m = first_machine; m != NULL; m = m->next) {
3540 if (m->is_default) {
3541 return m;
3544 return NULL;
3547 /***********************************************************/
3548 /* main execution loop */
3550 static void gui_update(void *opaque)
3552 uint64_t interval = GUI_REFRESH_INTERVAL;
3553 DisplayState *ds = opaque;
3554 DisplayChangeListener *dcl = ds->listeners;
3556 dpy_refresh(ds);
3558 while (dcl != NULL) {
3559 if (dcl->gui_timer_interval &&
3560 dcl->gui_timer_interval < interval)
3561 interval = dcl->gui_timer_interval;
3562 dcl = dcl->next;
3564 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3567 static void nographic_update(void *opaque)
3569 uint64_t interval = GUI_REFRESH_INTERVAL;
3571 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3574 struct vm_change_state_entry {
3575 VMChangeStateHandler *cb;
3576 void *opaque;
3577 LIST_ENTRY (vm_change_state_entry) entries;
3580 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3582 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3583 void *opaque)
3585 VMChangeStateEntry *e;
3587 e = qemu_mallocz(sizeof (*e));
3589 e->cb = cb;
3590 e->opaque = opaque;
3591 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3592 return e;
3595 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3597 LIST_REMOVE (e, entries);
3598 qemu_free (e);
3601 static void vm_state_notify(int running, int reason)
3603 VMChangeStateEntry *e;
3605 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3606 e->cb(e->opaque, running, reason);
3610 static void resume_all_vcpus(void);
3611 static void pause_all_vcpus(void);
3613 void vm_start(void)
3615 if (!vm_running) {
3616 cpu_enable_ticks();
3617 vm_running = 1;
3618 vm_state_notify(1, 0);
3619 qemu_rearm_alarm_timer(alarm_timer);
3620 resume_all_vcpus();
3624 /* reset/shutdown handler */
3626 typedef struct QEMUResetEntry {
3627 QEMUResetHandler *func;
3628 void *opaque;
3629 int order;
3630 struct QEMUResetEntry *next;
3631 } QEMUResetEntry;
3633 static QEMUResetEntry *first_reset_entry;
3634 static int reset_requested;
3635 static int shutdown_requested;
3636 static int powerdown_requested;
3637 static int debug_requested;
3638 static int vmstop_requested;
3640 int qemu_no_shutdown(void)
3642 int r = no_shutdown;
3643 no_shutdown = 0;
3644 return r;
3647 int qemu_shutdown_requested(void)
3649 int r = shutdown_requested;
3650 shutdown_requested = 0;
3651 return r;
3654 int qemu_reset_requested(void)
3656 int r = reset_requested;
3657 reset_requested = 0;
3658 return r;
3661 int qemu_powerdown_requested(void)
3663 int r = powerdown_requested;
3664 powerdown_requested = 0;
3665 return r;
3668 static int qemu_debug_requested(void)
3670 int r = debug_requested;
3671 debug_requested = 0;
3672 return r;
3675 static int qemu_vmstop_requested(void)
3677 int r = vmstop_requested;
3678 vmstop_requested = 0;
3679 return r;
3682 static void do_vm_stop(int reason)
3684 if (vm_running) {
3685 cpu_disable_ticks();
3686 vm_running = 0;
3687 pause_all_vcpus();
3688 vm_state_notify(0, reason);
3692 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3694 QEMUResetEntry **pre, *re;
3696 pre = &first_reset_entry;
3697 while (*pre != NULL && (*pre)->order >= order) {
3698 pre = &(*pre)->next;
3700 re = qemu_mallocz(sizeof(QEMUResetEntry));
3701 re->func = func;
3702 re->opaque = opaque;
3703 re->order = order;
3704 re->next = NULL;
3705 *pre = re;
3708 void qemu_system_reset(void)
3710 QEMUResetEntry *re;
3712 /* reset all devices */
3713 for(re = first_reset_entry; re != NULL; re = re->next) {
3714 re->func(re->opaque);
3718 void qemu_system_reset_request(void)
3720 if (no_reboot) {
3721 shutdown_requested = 1;
3722 } else {
3723 reset_requested = 1;
3725 if (cpu_single_env) {
3726 qemu_kvm_cpu_stop(cpu_single_env);
3728 qemu_notify_event();
3731 void qemu_system_shutdown_request(void)
3733 shutdown_requested = 1;
3734 qemu_notify_event();
3737 void qemu_system_powerdown_request(void)
3739 powerdown_requested = 1;
3740 qemu_notify_event();
3743 #ifdef CONFIG_IOTHREAD
3744 static void qemu_system_vmstop_request(int reason)
3746 vmstop_requested = reason;
3747 qemu_notify_event();
3749 #endif
3751 #ifndef _WIN32
3752 static int io_thread_fd = -1;
3754 static void qemu_event_increment(void)
3756 static const char byte = 0;
3758 if (io_thread_fd == -1)
3759 return;
3761 write(io_thread_fd, &byte, sizeof(byte));
3764 static void qemu_event_read(void *opaque)
3766 int fd = (unsigned long)opaque;
3767 ssize_t len;
3769 /* Drain the notify pipe */
3770 do {
3771 char buffer[512];
3772 len = read(fd, buffer, sizeof(buffer));
3773 } while ((len == -1 && errno == EINTR) || len > 0);
3776 static int qemu_event_init(void)
3778 int err;
3779 int fds[2];
3781 err = pipe(fds);
3782 if (err == -1)
3783 return -errno;
3785 err = fcntl_setfl(fds[0], O_NONBLOCK);
3786 if (err < 0)
3787 goto fail;
3789 err = fcntl_setfl(fds[1], O_NONBLOCK);
3790 if (err < 0)
3791 goto fail;
3793 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3794 (void *)(unsigned long)fds[0]);
3796 io_thread_fd = fds[1];
3797 return 0;
3799 fail:
3800 close(fds[0]);
3801 close(fds[1]);
3802 return err;
3804 #else
3805 HANDLE qemu_event_handle;
3807 static void dummy_event_handler(void *opaque)
3811 static int qemu_event_init(void)
3813 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3814 if (!qemu_event_handle) {
3815 perror("Failed CreateEvent");
3816 return -1;
3818 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3819 return 0;
3822 static void qemu_event_increment(void)
3824 SetEvent(qemu_event_handle);
3826 #endif
3828 static int cpu_can_run(CPUState *env)
3830 if (env->stop)
3831 return 0;
3832 if (env->stopped)
3833 return 0;
3834 return 1;
3837 #ifndef CONFIG_IOTHREAD
3838 static int qemu_init_main_loop(void)
3840 return qemu_event_init();
3843 void qemu_init_vcpu(void *_env)
3845 CPUState *env = _env;
3847 if (kvm_enabled())
3848 kvm_init_vcpu(env);
3849 return;
3852 int qemu_cpu_self(void *env)
3854 return 1;
3857 static void resume_all_vcpus(void)
3861 static void pause_all_vcpus(void)
3865 void qemu_cpu_kick(void *env)
3867 return;
3870 void qemu_notify_event(void)
3872 CPUState *env = cpu_single_env;
3874 if (kvm_enabled()) {
3875 qemu_kvm_notify_work();
3876 return;
3878 if (env) {
3879 cpu_exit(env);
3880 #ifdef USE_KQEMU
3881 if (env->kqemu_enabled)
3882 kqemu_cpu_interrupt(env);
3883 #endif
3887 #define qemu_mutex_lock_iothread() do { } while (0)
3888 #define qemu_mutex_unlock_iothread() do { } while (0)
3890 void vm_stop(int reason)
3892 do_vm_stop(reason);
3895 #else /* CONFIG_IOTHREAD */
3897 #include "qemu-thread.h"
3899 QemuMutex qemu_global_mutex;
3900 static QemuMutex qemu_fair_mutex;
3902 static QemuThread io_thread;
3904 static QemuThread *tcg_cpu_thread;
3905 static QemuCond *tcg_halt_cond;
3907 static int qemu_system_ready;
3908 /* cpu creation */
3909 static QemuCond qemu_cpu_cond;
3910 /* system init */
3911 static QemuCond qemu_system_cond;
3912 static QemuCond qemu_pause_cond;
3914 static void block_io_signals(void);
3915 static void unblock_io_signals(void);
3916 static int tcg_has_work(void);
3918 static int qemu_init_main_loop(void)
3920 int ret;
3922 ret = qemu_event_init();
3923 if (ret)
3924 return ret;
3926 qemu_cond_init(&qemu_pause_cond);
3927 qemu_mutex_init(&qemu_fair_mutex);
3928 qemu_mutex_init(&qemu_global_mutex);
3929 qemu_mutex_lock(&qemu_global_mutex);
3931 unblock_io_signals();
3932 qemu_thread_self(&io_thread);
3934 return 0;
3937 static void qemu_wait_io_event(CPUState *env)
3939 while (!tcg_has_work())
3940 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3942 qemu_mutex_unlock(&qemu_global_mutex);
3945 * Users of qemu_global_mutex can be starved, having no chance
3946 * to acquire it since this path will get to it first.
3947 * So use another lock to provide fairness.
3949 qemu_mutex_lock(&qemu_fair_mutex);
3950 qemu_mutex_unlock(&qemu_fair_mutex);
3952 qemu_mutex_lock(&qemu_global_mutex);
3953 if (env->stop) {
3954 env->stop = 0;
3955 env->stopped = 1;
3956 qemu_cond_signal(&qemu_pause_cond);
3960 static int qemu_cpu_exec(CPUState *env);
3962 static void *kvm_cpu_thread_fn(void *arg)
3964 CPUState *env = arg;
3966 block_io_signals();
3967 qemu_thread_self(env->thread);
3969 /* signal CPU creation */
3970 qemu_mutex_lock(&qemu_global_mutex);
3971 env->created = 1;
3972 qemu_cond_signal(&qemu_cpu_cond);
3974 /* and wait for machine initialization */
3975 while (!qemu_system_ready)
3976 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3978 while (1) {
3979 if (cpu_can_run(env))
3980 qemu_cpu_exec(env);
3981 qemu_wait_io_event(env);
3984 return NULL;
3987 static void tcg_cpu_exec(void);
3989 static void *tcg_cpu_thread_fn(void *arg)
3991 CPUState *env = arg;
3993 block_io_signals();
3994 qemu_thread_self(env->thread);
3996 /* signal CPU creation */
3997 qemu_mutex_lock(&qemu_global_mutex);
3998 for (env = first_cpu; env != NULL; env = env->next_cpu)
3999 env->created = 1;
4000 qemu_cond_signal(&qemu_cpu_cond);
4002 /* and wait for machine initialization */
4003 while (!qemu_system_ready)
4004 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
4006 while (1) {
4007 tcg_cpu_exec();
4008 qemu_wait_io_event(cur_cpu);
4011 return NULL;
4014 void qemu_cpu_kick(void *_env)
4016 CPUState *env = _env;
4017 qemu_cond_broadcast(env->halt_cond);
4018 if (kvm_enabled())
4019 qemu_thread_signal(env->thread, SIGUSR1);
4022 int qemu_cpu_self(void *env)
4024 return (cpu_single_env != NULL);
4027 static void cpu_signal(int sig)
4029 if (cpu_single_env)
4030 cpu_exit(cpu_single_env);
4033 static void block_io_signals(void)
4035 sigset_t set;
4036 struct sigaction sigact;
4038 sigemptyset(&set);
4039 sigaddset(&set, SIGUSR2);
4040 sigaddset(&set, SIGIO);
4041 sigaddset(&set, SIGALRM);
4042 pthread_sigmask(SIG_BLOCK, &set, NULL);
4044 sigemptyset(&set);
4045 sigaddset(&set, SIGUSR1);
4046 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4048 memset(&sigact, 0, sizeof(sigact));
4049 sigact.sa_handler = cpu_signal;
4050 sigaction(SIGUSR1, &sigact, NULL);
4053 static void unblock_io_signals(void)
4055 sigset_t set;
4057 sigemptyset(&set);
4058 sigaddset(&set, SIGUSR2);
4059 sigaddset(&set, SIGIO);
4060 sigaddset(&set, SIGALRM);
4061 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4063 sigemptyset(&set);
4064 sigaddset(&set, SIGUSR1);
4065 pthread_sigmask(SIG_BLOCK, &set, NULL);
4068 static void qemu_signal_lock(unsigned int msecs)
4070 qemu_mutex_lock(&qemu_fair_mutex);
4072 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4073 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4074 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4075 break;
4077 qemu_mutex_unlock(&qemu_fair_mutex);
4080 static void qemu_mutex_lock_iothread(void)
4082 if (kvm_enabled()) {
4083 qemu_mutex_lock(&qemu_fair_mutex);
4084 qemu_mutex_lock(&qemu_global_mutex);
4085 qemu_mutex_unlock(&qemu_fair_mutex);
4086 } else
4087 qemu_signal_lock(100);
4090 static void qemu_mutex_unlock_iothread(void)
4092 qemu_mutex_unlock(&qemu_global_mutex);
4095 static int all_vcpus_paused(void)
4097 CPUState *penv = first_cpu;
4099 while (penv) {
4100 if (!penv->stopped)
4101 return 0;
4102 penv = (CPUState *)penv->next_cpu;
4105 return 1;
4108 static void pause_all_vcpus(void)
4110 CPUState *penv = first_cpu;
4112 while (penv) {
4113 penv->stop = 1;
4114 qemu_thread_signal(penv->thread, SIGUSR1);
4115 qemu_cpu_kick(penv);
4116 penv = (CPUState *)penv->next_cpu;
4119 while (!all_vcpus_paused()) {
4120 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4121 penv = first_cpu;
4122 while (penv) {
4123 qemu_thread_signal(penv->thread, SIGUSR1);
4124 penv = (CPUState *)penv->next_cpu;
4129 static void resume_all_vcpus(void)
4131 CPUState *penv = first_cpu;
4133 while (penv) {
4134 penv->stop = 0;
4135 penv->stopped = 0;
4136 qemu_thread_signal(penv->thread, SIGUSR1);
4137 qemu_cpu_kick(penv);
4138 penv = (CPUState *)penv->next_cpu;
4142 static void tcg_init_vcpu(void *_env)
4144 CPUState *env = _env;
4145 /* share a single thread for all cpus with TCG */
4146 if (!tcg_cpu_thread) {
4147 env->thread = qemu_mallocz(sizeof(QemuThread));
4148 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4149 qemu_cond_init(env->halt_cond);
4150 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4151 while (env->created == 0)
4152 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4153 tcg_cpu_thread = env->thread;
4154 tcg_halt_cond = env->halt_cond;
4155 } else {
4156 env->thread = tcg_cpu_thread;
4157 env->halt_cond = tcg_halt_cond;
4161 static void kvm_start_vcpu(CPUState *env)
4163 kvm_init_vcpu(env);
4164 env->thread = qemu_mallocz(sizeof(QemuThread));
4165 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4166 qemu_cond_init(env->halt_cond);
4167 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4168 while (env->created == 0)
4169 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4172 void qemu_init_vcpu(void *_env)
4174 CPUState *env = _env;
4176 if (kvm_enabled())
4177 kvm_start_vcpu(env);
4178 else
4179 tcg_init_vcpu(env);
4182 void qemu_notify_event(void)
4184 qemu_event_increment();
4187 void vm_stop(int reason)
4189 QemuThread me;
4190 qemu_thread_self(&me);
4192 if (!qemu_thread_equal(&me, &io_thread)) {
4193 qemu_system_vmstop_request(reason);
4195 * FIXME: should not return to device code in case
4196 * vm_stop() has been requested.
4198 if (cpu_single_env) {
4199 cpu_exit(cpu_single_env);
4200 cpu_single_env->stop = 1;
4202 return;
4204 do_vm_stop(reason);
4207 #endif
4210 #ifdef _WIN32
4211 static void host_main_loop_wait(int *timeout)
4213 int ret, ret2, i;
4214 PollingEntry *pe;
4217 /* XXX: need to suppress polling by better using win32 events */
4218 ret = 0;
4219 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4220 ret |= pe->func(pe->opaque);
4222 if (ret == 0) {
4223 int err;
4224 WaitObjects *w = &wait_objects;
4226 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4227 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4228 if (w->func[ret - WAIT_OBJECT_0])
4229 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4231 /* Check for additional signaled events */
4232 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4234 /* Check if event is signaled */
4235 ret2 = WaitForSingleObject(w->events[i], 0);
4236 if(ret2 == WAIT_OBJECT_0) {
4237 if (w->func[i])
4238 w->func[i](w->opaque[i]);
4239 } else if (ret2 == WAIT_TIMEOUT) {
4240 } else {
4241 err = GetLastError();
4242 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4245 } else if (ret == WAIT_TIMEOUT) {
4246 } else {
4247 err = GetLastError();
4248 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4252 *timeout = 0;
4254 #else
4255 static void host_main_loop_wait(int *timeout)
4258 #endif
4260 void main_loop_wait(int timeout)
4262 IOHandlerRecord *ioh;
4263 fd_set rfds, wfds, xfds;
4264 int ret, nfds;
4265 struct timeval tv;
4267 qemu_bh_update_timeout(&timeout);
4269 host_main_loop_wait(&timeout);
4271 /* poll any events */
4272 /* XXX: separate device handlers from system ones */
4273 nfds = -1;
4274 FD_ZERO(&rfds);
4275 FD_ZERO(&wfds);
4276 FD_ZERO(&xfds);
4277 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4278 if (ioh->deleted)
4279 continue;
4280 if (ioh->fd_read &&
4281 (!ioh->fd_read_poll ||
4282 ioh->fd_read_poll(ioh->opaque) != 0)) {
4283 FD_SET(ioh->fd, &rfds);
4284 if (ioh->fd > nfds)
4285 nfds = ioh->fd;
4287 if (ioh->fd_write) {
4288 FD_SET(ioh->fd, &wfds);
4289 if (ioh->fd > nfds)
4290 nfds = ioh->fd;
4294 tv.tv_sec = timeout / 1000;
4295 tv.tv_usec = (timeout % 1000) * 1000;
4297 #if defined(CONFIG_SLIRP)
4298 if (slirp_is_inited()) {
4299 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4301 #endif
4302 ret = qemu_select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4303 if (ret > 0) {
4304 IOHandlerRecord **pioh;
4306 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4307 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4308 ioh->fd_read(ioh->opaque);
4309 if (!(ioh->fd_read_poll && ioh->fd_read_poll(ioh->opaque)))
4310 FD_CLR(ioh->fd, &rfds);
4312 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4313 ioh->fd_write(ioh->opaque);
4317 /* remove deleted IO handlers */
4318 pioh = &first_io_handler;
4319 while (*pioh) {
4320 ioh = *pioh;
4321 if (ioh->deleted) {
4322 *pioh = ioh->next;
4323 qemu_free(ioh);
4324 } else
4325 pioh = &ioh->next;
4328 #if defined(CONFIG_SLIRP)
4329 if (slirp_is_inited()) {
4330 if (ret < 0) {
4331 FD_ZERO(&rfds);
4332 FD_ZERO(&wfds);
4333 FD_ZERO(&xfds);
4335 slirp_select_poll(&rfds, &wfds, &xfds);
4337 #endif
4339 /* rearm timer, if not periodic */
4340 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4341 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4342 qemu_rearm_alarm_timer(alarm_timer);
4345 /* vm time timers */
4346 if (vm_running) {
4347 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4348 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4349 qemu_get_clock(vm_clock));
4352 /* real time timers */
4353 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4354 qemu_get_clock(rt_clock));
4356 /* Check bottom-halves last in case any of the earlier events triggered
4357 them. */
4358 qemu_bh_poll();
4362 static int qemu_cpu_exec(CPUState *env)
4364 int ret;
4365 #ifdef CONFIG_PROFILER
4366 int64_t ti;
4367 #endif
4369 #ifdef CONFIG_PROFILER
4370 ti = profile_getclock();
4371 #endif
4372 if (use_icount) {
4373 int64_t count;
4374 int decr;
4375 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4376 env->icount_decr.u16.low = 0;
4377 env->icount_extra = 0;
4378 count = qemu_next_deadline();
4379 count = (count + (1 << icount_time_shift) - 1)
4380 >> icount_time_shift;
4381 qemu_icount += count;
4382 decr = (count > 0xffff) ? 0xffff : count;
4383 count -= decr;
4384 env->icount_decr.u16.low = decr;
4385 env->icount_extra = count;
4387 ret = cpu_exec(env);
4388 #ifdef CONFIG_PROFILER
4389 qemu_time += profile_getclock() - ti;
4390 #endif
4391 if (use_icount) {
4392 /* Fold pending instructions back into the
4393 instruction counter, and clear the interrupt flag. */
4394 qemu_icount -= (env->icount_decr.u16.low
4395 + env->icount_extra);
4396 env->icount_decr.u32 = 0;
4397 env->icount_extra = 0;
4399 return ret;
4402 static void tcg_cpu_exec(void)
4404 int ret = 0;
4406 if (next_cpu == NULL)
4407 next_cpu = first_cpu;
4408 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4409 CPUState *env = cur_cpu = next_cpu;
4411 if (!vm_running)
4412 break;
4413 if (timer_alarm_pending) {
4414 timer_alarm_pending = 0;
4415 break;
4417 if (cpu_can_run(env))
4418 ret = qemu_cpu_exec(env);
4419 if (ret == EXCP_DEBUG) {
4420 gdb_set_stop_cpu(env);
4421 debug_requested = 1;
4422 break;
4427 static int cpu_has_work(CPUState *env)
4429 if (env->stop)
4430 return 1;
4431 if (env->stopped)
4432 return 0;
4433 if (!env->halted)
4434 return 1;
4435 if (qemu_cpu_has_work(env))
4436 return 1;
4437 return 0;
4440 static int tcg_has_work(void)
4442 CPUState *env;
4444 for (env = first_cpu; env != NULL; env = env->next_cpu)
4445 if (cpu_has_work(env))
4446 return 1;
4447 return 0;
4450 static int qemu_calculate_timeout(void)
4452 #ifndef CONFIG_IOTHREAD
4453 int timeout;
4455 if (!vm_running)
4456 timeout = 5000;
4457 else if (tcg_has_work())
4458 timeout = 0;
4459 else if (!use_icount)
4460 timeout = 5000;
4461 else {
4462 /* XXX: use timeout computed from timers */
4463 int64_t add;
4464 int64_t delta;
4465 /* Advance virtual time to the next event. */
4466 if (use_icount == 1) {
4467 /* When not using an adaptive execution frequency
4468 we tend to get badly out of sync with real time,
4469 so just delay for a reasonable amount of time. */
4470 delta = 0;
4471 } else {
4472 delta = cpu_get_icount() - cpu_get_clock();
4474 if (delta > 0) {
4475 /* If virtual time is ahead of real time then just
4476 wait for IO. */
4477 timeout = (delta / 1000000) + 1;
4478 } else {
4479 /* Wait for either IO to occur or the next
4480 timer event. */
4481 add = qemu_next_deadline();
4482 /* We advance the timer before checking for IO.
4483 Limit the amount we advance so that early IO
4484 activity won't get the guest too far ahead. */
4485 if (add > 10000000)
4486 add = 10000000;
4487 delta += add;
4488 add = (add + (1 << icount_time_shift) - 1)
4489 >> icount_time_shift;
4490 qemu_icount += add;
4491 timeout = delta / 1000000;
4492 if (timeout < 0)
4493 timeout = 0;
4497 return timeout;
4498 #else /* CONFIG_IOTHREAD */
4499 return 1000;
4500 #endif
4503 static int vm_can_run(void)
4505 if (powerdown_requested)
4506 return 0;
4507 if (reset_requested)
4508 return 0;
4509 if (shutdown_requested)
4510 return 0;
4511 if (debug_requested)
4512 return 0;
4513 return 1;
4516 static void main_loop(void)
4518 int r;
4520 if (kvm_enabled()) {
4521 kvm_main_loop();
4522 cpu_disable_ticks();
4523 return;
4526 #ifdef CONFIG_IOTHREAD
4527 qemu_system_ready = 1;
4528 qemu_cond_broadcast(&qemu_system_cond);
4529 #endif
4531 for (;;) {
4532 do {
4533 #ifdef CONFIG_PROFILER
4534 int64_t ti;
4535 #endif
4536 #ifndef CONFIG_IOTHREAD
4537 tcg_cpu_exec();
4538 #endif
4539 #ifdef CONFIG_PROFILER
4540 ti = profile_getclock();
4541 #endif
4542 main_loop_wait(qemu_calculate_timeout());
4543 #ifdef CONFIG_PROFILER
4544 dev_time += profile_getclock() - ti;
4545 #endif
4546 } while (vm_can_run());
4548 if (qemu_debug_requested())
4549 vm_stop(EXCP_DEBUG);
4550 if (qemu_shutdown_requested()) {
4551 if (no_shutdown) {
4552 vm_stop(0);
4553 no_shutdown = 0;
4554 } else
4555 break;
4557 if (qemu_reset_requested()) {
4558 pause_all_vcpus();
4559 qemu_system_reset();
4560 resume_all_vcpus();
4562 if (qemu_powerdown_requested())
4563 qemu_system_powerdown();
4564 if ((r = qemu_vmstop_requested()))
4565 vm_stop(r);
4567 pause_all_vcpus();
4570 static void version(void)
4572 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4575 static void help(int exitcode)
4577 version();
4578 printf("usage: %s [options] [disk_image]\n"
4579 "\n"
4580 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4581 "\n"
4582 #define DEF(option, opt_arg, opt_enum, opt_help) \
4583 opt_help
4584 #define DEFHEADING(text) stringify(text) "\n"
4585 #include "qemu-options.h"
4586 #undef DEF
4587 #undef DEFHEADING
4588 #undef GEN_DOCS
4589 "\n"
4590 "During emulation, the following keys are useful:\n"
4591 "ctrl-alt-f toggle full screen\n"
4592 "ctrl-alt-n switch to virtual console 'n'\n"
4593 "ctrl-alt toggle mouse and keyboard grab\n"
4594 "\n"
4595 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4597 "qemu",
4598 DEFAULT_RAM_SIZE,
4599 #ifndef _WIN32
4600 DEFAULT_NETWORK_SCRIPT,
4601 DEFAULT_NETWORK_DOWN_SCRIPT,
4602 #endif
4603 DEFAULT_GDBSTUB_PORT,
4604 "/tmp/qemu.log");
4605 exit(exitcode);
4608 #define HAS_ARG 0x0001
4610 enum {
4611 #define DEF(option, opt_arg, opt_enum, opt_help) \
4612 opt_enum,
4613 #define DEFHEADING(text)
4614 #include "qemu-options.h"
4615 #undef DEF
4616 #undef DEFHEADING
4617 #undef GEN_DOCS
4620 typedef struct QEMUOption {
4621 const char *name;
4622 int flags;
4623 int index;
4624 } QEMUOption;
4626 static const QEMUOption qemu_options[] = {
4627 { "h", 0, QEMU_OPTION_h },
4628 #define DEF(option, opt_arg, opt_enum, opt_help) \
4629 { option, opt_arg, opt_enum },
4630 #define DEFHEADING(text)
4631 #include "qemu-options.h"
4632 #undef DEF
4633 #undef DEFHEADING
4634 #undef GEN_DOCS
4635 { NULL },
4638 #ifdef HAS_AUDIO
4639 struct soundhw soundhw[] = {
4640 #ifdef HAS_AUDIO_CHOICE
4641 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4643 "pcspk",
4644 "PC speaker",
4647 { .init_isa = pcspk_audio_init }
4649 #endif
4651 #ifdef CONFIG_SB16
4653 "sb16",
4654 "Creative Sound Blaster 16",
4657 { .init_isa = SB16_init }
4659 #endif
4661 #ifdef CONFIG_CS4231A
4663 "cs4231a",
4664 "CS4231A",
4667 { .init_isa = cs4231a_init }
4669 #endif
4671 #ifdef CONFIG_ADLIB
4673 "adlib",
4674 #ifdef HAS_YMF262
4675 "Yamaha YMF262 (OPL3)",
4676 #else
4677 "Yamaha YM3812 (OPL2)",
4678 #endif
4681 { .init_isa = Adlib_init }
4683 #endif
4685 #ifdef CONFIG_GUS
4687 "gus",
4688 "Gravis Ultrasound GF1",
4691 { .init_isa = GUS_init }
4693 #endif
4695 #ifdef CONFIG_AC97
4697 "ac97",
4698 "Intel 82801AA AC97 Audio",
4701 { .init_pci = ac97_init }
4703 #endif
4705 #ifdef CONFIG_ES1370
4707 "es1370",
4708 "ENSONIQ AudioPCI ES1370",
4711 { .init_pci = es1370_init }
4713 #endif
4715 #endif /* HAS_AUDIO_CHOICE */
4717 { NULL, NULL, 0, 0, { NULL } }
4720 static void select_soundhw (const char *optarg)
4722 struct soundhw *c;
4724 if (*optarg == '?') {
4725 show_valid_cards:
4727 printf ("Valid sound card names (comma separated):\n");
4728 for (c = soundhw; c->name; ++c) {
4729 printf ("%-11s %s\n", c->name, c->descr);
4731 printf ("\n-soundhw all will enable all of the above\n");
4732 exit (*optarg != '?');
4734 else {
4735 size_t l;
4736 const char *p;
4737 char *e;
4738 int bad_card = 0;
4740 if (!strcmp (optarg, "all")) {
4741 for (c = soundhw; c->name; ++c) {
4742 c->enabled = 1;
4744 return;
4747 p = optarg;
4748 while (*p) {
4749 e = strchr (p, ',');
4750 l = !e ? strlen (p) : (size_t) (e - p);
4752 for (c = soundhw; c->name; ++c) {
4753 if (!strncmp (c->name, p, l)) {
4754 c->enabled = 1;
4755 break;
4759 if (!c->name) {
4760 if (l > 80) {
4761 fprintf (stderr,
4762 "Unknown sound card name (too big to show)\n");
4764 else {
4765 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4766 (int) l, p);
4768 bad_card = 1;
4770 p += l + (e != NULL);
4773 if (bad_card)
4774 goto show_valid_cards;
4777 #endif
4779 static void select_vgahw (const char *p)
4781 const char *opts;
4783 cirrus_vga_enabled = 0;
4784 std_vga_enabled = 0;
4785 vmsvga_enabled = 0;
4786 xenfb_enabled = 0;
4787 if (strstart(p, "std", &opts)) {
4788 std_vga_enabled = 1;
4789 } else if (strstart(p, "cirrus", &opts)) {
4790 cirrus_vga_enabled = 1;
4791 } else if (strstart(p, "vmware", &opts)) {
4792 vmsvga_enabled = 1;
4793 } else if (strstart(p, "xenfb", &opts)) {
4794 xenfb_enabled = 1;
4795 } else if (!strstart(p, "none", &opts)) {
4796 invalid_vga:
4797 fprintf(stderr, "Unknown vga type: %s\n", p);
4798 exit(1);
4800 while (*opts) {
4801 const char *nextopt;
4803 if (strstart(opts, ",retrace=", &nextopt)) {
4804 opts = nextopt;
4805 if (strstart(opts, "dumb", &nextopt))
4806 vga_retrace_method = VGA_RETRACE_DUMB;
4807 else if (strstart(opts, "precise", &nextopt))
4808 vga_retrace_method = VGA_RETRACE_PRECISE;
4809 else goto invalid_vga;
4810 } else goto invalid_vga;
4811 opts = nextopt;
4815 #ifdef _WIN32
4816 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4818 exit(STATUS_CONTROL_C_EXIT);
4819 return TRUE;
4821 #endif
4823 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4825 int ret;
4827 if(strlen(str) != 36)
4828 return -1;
4830 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4831 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4832 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4834 if(ret != 16)
4835 return -1;
4837 #ifdef TARGET_I386
4838 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4839 #endif
4841 return 0;
4844 #define MAX_NET_CLIENTS 32
4846 #ifndef _WIN32
4848 static void termsig_handler(int signal)
4850 qemu_system_shutdown_request();
4853 static void sigchld_handler(int signal)
4855 waitpid(-1, NULL, WNOHANG);
4858 static void sighandler_setup(void)
4860 struct sigaction act;
4862 memset(&act, 0, sizeof(act));
4863 act.sa_handler = termsig_handler;
4864 sigaction(SIGINT, &act, NULL);
4865 sigaction(SIGHUP, &act, NULL);
4866 sigaction(SIGTERM, &act, NULL);
4868 act.sa_handler = sigchld_handler;
4869 act.sa_flags = SA_NOCLDSTOP;
4870 sigaction(SIGCHLD, &act, NULL);
4873 #endif
4875 #ifdef _WIN32
4876 /* Look for support files in the same directory as the executable. */
4877 static char *find_datadir(const char *argv0)
4879 char *p;
4880 char buf[MAX_PATH];
4881 DWORD len;
4883 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4884 if (len == 0) {
4885 return NULL;
4888 buf[len] = 0;
4889 p = buf + len - 1;
4890 while (p != buf && *p != '\\')
4891 p--;
4892 *p = 0;
4893 if (access(buf, R_OK) == 0) {
4894 return qemu_strdup(buf);
4896 return NULL;
4898 #else /* !_WIN32 */
4900 /* Find a likely location for support files using the location of the binary.
4901 For installed binaries this will be "$bindir/../share/qemu". When
4902 running from the build tree this will be "$bindir/../pc-bios". */
4903 #define SHARE_SUFFIX "/share/qemu"
4904 #define BUILD_SUFFIX "/pc-bios"
4905 static char *find_datadir(const char *argv0)
4907 char *dir;
4908 char *p = NULL;
4909 char *res;
4910 #ifdef PATH_MAX
4911 char buf[PATH_MAX];
4912 #endif
4913 size_t max_len;
4915 #if defined(__linux__)
4917 int len;
4918 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4919 if (len > 0) {
4920 buf[len] = 0;
4921 p = buf;
4924 #elif defined(__FreeBSD__)
4926 int len;
4927 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4928 if (len > 0) {
4929 buf[len] = 0;
4930 p = buf;
4933 #endif
4934 /* If we don't have any way of figuring out the actual executable
4935 location then try argv[0]. */
4936 if (!p) {
4937 #ifdef PATH_MAX
4938 p = buf;
4939 #endif
4940 p = realpath(argv0, p);
4941 if (!p) {
4942 return NULL;
4945 dir = dirname(p);
4946 dir = dirname(dir);
4948 max_len = strlen(dir) +
4949 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4950 res = qemu_mallocz(max_len);
4951 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4952 if (access(res, R_OK)) {
4953 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4954 if (access(res, R_OK)) {
4955 qemu_free(res);
4956 res = NULL;
4959 #ifndef PATH_MAX
4960 free(p);
4961 #endif
4962 return res;
4964 #undef SHARE_SUFFIX
4965 #undef BUILD_SUFFIX
4966 #endif
4968 char *qemu_find_file(int type, const char *name)
4970 int len;
4971 const char *subdir;
4972 char *buf;
4974 /* If name contains path separators then try it as a straight path. */
4975 if ((strchr(name, '/') || strchr(name, '\\'))
4976 && access(name, R_OK) == 0) {
4977 return strdup(name);
4979 switch (type) {
4980 case QEMU_FILE_TYPE_BIOS:
4981 subdir = "";
4982 break;
4983 case QEMU_FILE_TYPE_KEYMAP:
4984 subdir = "keymaps/";
4985 break;
4986 default:
4987 abort();
4989 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4990 buf = qemu_mallocz(len);
4991 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4992 if (access(buf, R_OK)) {
4993 qemu_free(buf);
4994 return NULL;
4996 return buf;
4999 int main(int argc, char **argv, char **envp)
5001 const char *gdbstub_dev = NULL;
5002 uint32_t boot_devices_bitmap = 0;
5003 int i;
5004 int snapshot, linux_boot, net_boot;
5005 const char *initrd_filename;
5006 const char *kernel_filename, *kernel_cmdline;
5007 const char *boot_devices = "";
5008 DisplayState *ds;
5009 DisplayChangeListener *dcl;
5010 int cyls, heads, secs, translation;
5011 const char *net_clients[MAX_NET_CLIENTS];
5012 int nb_net_clients;
5013 const char *bt_opts[MAX_BT_CMDLINE];
5014 int nb_bt_opts;
5015 int hda_index;
5016 int optind;
5017 const char *r, *optarg;
5018 CharDriverState *monitor_hd = NULL;
5019 const char *monitor_device;
5020 const char *serial_devices[MAX_SERIAL_PORTS];
5021 int serial_device_index;
5022 const char *parallel_devices[MAX_PARALLEL_PORTS];
5023 int parallel_device_index;
5024 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
5025 int virtio_console_index;
5026 const char *loadvm = NULL;
5027 QEMUMachine *machine;
5028 const char *cpu_model;
5029 const char *usb_devices[MAX_USB_CMDLINE];
5030 int usb_devices_index;
5031 #ifndef _WIN32
5032 int fds[2];
5033 #endif
5034 int tb_size;
5035 const char *pid_file = NULL;
5036 const char *incoming = NULL;
5037 #ifndef _WIN32
5038 int fd = 0;
5039 struct passwd *pwd = NULL;
5040 const char *chroot_dir = NULL;
5041 const char *run_as = NULL;
5042 #endif
5043 CPUState *env;
5044 int show_vnc_port = 0;
5046 qemu_cache_utils_init(envp);
5048 LIST_INIT (&vm_change_state_head);
5049 #ifndef _WIN32
5051 struct sigaction act;
5052 sigfillset(&act.sa_mask);
5053 act.sa_flags = 0;
5054 act.sa_handler = SIG_IGN;
5055 sigaction(SIGPIPE, &act, NULL);
5057 #else
5058 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
5059 /* Note: cpu_interrupt() is currently not SMP safe, so we force
5060 QEMU to run on a single CPU */
5062 HANDLE h;
5063 DWORD mask, smask;
5064 int i;
5065 h = GetCurrentProcess();
5066 if (GetProcessAffinityMask(h, &mask, &smask)) {
5067 for(i = 0; i < 32; i++) {
5068 if (mask & (1 << i))
5069 break;
5071 if (i != 32) {
5072 mask = 1 << i;
5073 SetProcessAffinityMask(h, mask);
5077 #endif
5079 module_call_init(MODULE_INIT_MACHINE);
5080 machine = find_default_machine();
5081 cpu_model = NULL;
5082 initrd_filename = NULL;
5083 ram_size = 0;
5084 snapshot = 0;
5085 kernel_filename = NULL;
5086 kernel_cmdline = "";
5087 cyls = heads = secs = 0;
5088 translation = BIOS_ATA_TRANSLATION_AUTO;
5089 monitor_device = "vc:80Cx24C";
5091 serial_devices[0] = "vc:80Cx24C";
5092 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5093 serial_devices[i] = NULL;
5094 serial_device_index = 0;
5096 parallel_devices[0] = "vc:80Cx24C";
5097 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5098 parallel_devices[i] = NULL;
5099 parallel_device_index = 0;
5101 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5102 virtio_consoles[i] = NULL;
5103 virtio_console_index = 0;
5105 for (i = 0; i < MAX_NODES; i++) {
5106 node_mem[i] = 0;
5107 node_cpumask[i] = 0;
5110 usb_devices_index = 0;
5111 assigned_devices_index = 0;
5113 nb_net_clients = 0;
5114 nb_bt_opts = 0;
5115 nb_drives = 0;
5116 nb_drives_opt = 0;
5117 nb_numa_nodes = 0;
5118 hda_index = -1;
5120 nb_nics = 0;
5122 tb_size = 0;
5123 autostart= 1;
5125 register_watchdogs();
5127 optind = 1;
5128 for(;;) {
5129 if (optind >= argc)
5130 break;
5131 r = argv[optind];
5132 if (r[0] != '-') {
5133 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5134 } else {
5135 const QEMUOption *popt;
5137 optind++;
5138 /* Treat --foo the same as -foo. */
5139 if (r[1] == '-')
5140 r++;
5141 popt = qemu_options;
5142 for(;;) {
5143 if (!popt->name) {
5144 fprintf(stderr, "%s: invalid option -- '%s'\n",
5145 argv[0], r);
5146 exit(1);
5148 if (!strcmp(popt->name, r + 1))
5149 break;
5150 popt++;
5152 if (popt->flags & HAS_ARG) {
5153 if (optind >= argc) {
5154 fprintf(stderr, "%s: option '%s' requires an argument\n",
5155 argv[0], r);
5156 exit(1);
5158 optarg = argv[optind++];
5159 } else {
5160 optarg = NULL;
5163 switch(popt->index) {
5164 case QEMU_OPTION_M:
5165 machine = find_machine(optarg);
5166 if (!machine) {
5167 QEMUMachine *m;
5168 printf("Supported machines are:\n");
5169 for(m = first_machine; m != NULL; m = m->next) {
5170 printf("%-10s %s%s\n",
5171 m->name, m->desc,
5172 m->is_default ? " (default)" : "");
5174 exit(*optarg != '?');
5176 break;
5177 case QEMU_OPTION_cpu:
5178 /* hw initialization will check this */
5179 if (*optarg == '?') {
5180 /* XXX: implement xxx_cpu_list for targets that still miss it */
5181 #if defined(cpu_list)
5182 cpu_list(stdout, &fprintf);
5183 #endif
5184 exit(0);
5185 } else {
5186 cpu_model = optarg;
5188 break;
5189 case QEMU_OPTION_initrd:
5190 initrd_filename = optarg;
5191 break;
5192 case QEMU_OPTION_hda:
5193 if (cyls == 0)
5194 hda_index = drive_add(optarg, HD_ALIAS, 0);
5195 else
5196 hda_index = drive_add(optarg, HD_ALIAS
5197 ",cyls=%d,heads=%d,secs=%d%s",
5198 0, cyls, heads, secs,
5199 translation == BIOS_ATA_TRANSLATION_LBA ?
5200 ",trans=lba" :
5201 translation == BIOS_ATA_TRANSLATION_NONE ?
5202 ",trans=none" : "");
5203 break;
5204 case QEMU_OPTION_hdb:
5205 case QEMU_OPTION_hdc:
5206 case QEMU_OPTION_hdd:
5207 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5208 break;
5209 case QEMU_OPTION_drive:
5210 drive_add(NULL, "%s", optarg);
5211 break;
5212 case QEMU_OPTION_mtdblock:
5213 drive_add(optarg, MTD_ALIAS);
5214 break;
5215 case QEMU_OPTION_sd:
5216 drive_add(optarg, SD_ALIAS);
5217 break;
5218 case QEMU_OPTION_pflash:
5219 drive_add(optarg, PFLASH_ALIAS);
5220 break;
5221 case QEMU_OPTION_snapshot:
5222 snapshot = 1;
5223 break;
5224 case QEMU_OPTION_hdachs:
5226 const char *p;
5227 p = optarg;
5228 cyls = strtol(p, (char **)&p, 0);
5229 if (cyls < 1 || cyls > 16383)
5230 goto chs_fail;
5231 if (*p != ',')
5232 goto chs_fail;
5233 p++;
5234 heads = strtol(p, (char **)&p, 0);
5235 if (heads < 1 || heads > 16)
5236 goto chs_fail;
5237 if (*p != ',')
5238 goto chs_fail;
5239 p++;
5240 secs = strtol(p, (char **)&p, 0);
5241 if (secs < 1 || secs > 63)
5242 goto chs_fail;
5243 if (*p == ',') {
5244 p++;
5245 if (!strcmp(p, "none"))
5246 translation = BIOS_ATA_TRANSLATION_NONE;
5247 else if (!strcmp(p, "lba"))
5248 translation = BIOS_ATA_TRANSLATION_LBA;
5249 else if (!strcmp(p, "auto"))
5250 translation = BIOS_ATA_TRANSLATION_AUTO;
5251 else
5252 goto chs_fail;
5253 } else if (*p != '\0') {
5254 chs_fail:
5255 fprintf(stderr, "qemu: invalid physical CHS format\n");
5256 exit(1);
5258 if (hda_index != -1)
5259 snprintf(drives_opt[hda_index].opt,
5260 sizeof(drives_opt[hda_index].opt),
5261 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5262 0, cyls, heads, secs,
5263 translation == BIOS_ATA_TRANSLATION_LBA ?
5264 ",trans=lba" :
5265 translation == BIOS_ATA_TRANSLATION_NONE ?
5266 ",trans=none" : "");
5268 break;
5269 case QEMU_OPTION_numa:
5270 if (nb_numa_nodes >= MAX_NODES) {
5271 fprintf(stderr, "qemu: too many NUMA nodes\n");
5272 exit(1);
5274 numa_add(optarg);
5275 break;
5276 case QEMU_OPTION_nographic:
5277 display_type = DT_NOGRAPHIC;
5278 break;
5279 #ifdef CONFIG_CURSES
5280 case QEMU_OPTION_curses:
5281 display_type = DT_CURSES;
5282 break;
5283 #endif
5284 case QEMU_OPTION_portrait:
5285 graphic_rotate = 1;
5286 break;
5287 case QEMU_OPTION_kernel:
5288 kernel_filename = optarg;
5289 break;
5290 case QEMU_OPTION_append:
5291 kernel_cmdline = optarg;
5292 break;
5293 case QEMU_OPTION_cdrom:
5294 drive_add(optarg, CDROM_ALIAS);
5295 break;
5296 case QEMU_OPTION_boot:
5297 boot_devices = optarg;
5298 /* We just do some generic consistency checks */
5300 /* Could easily be extended to 64 devices if needed */
5301 const char *p;
5303 boot_devices_bitmap = 0;
5304 for (p = boot_devices; *p != '\0'; p++) {
5305 /* Allowed boot devices are:
5306 * a b : floppy disk drives
5307 * c ... f : IDE disk drives
5308 * g ... m : machine implementation dependant drives
5309 * n ... p : network devices
5310 * It's up to each machine implementation to check
5311 * if the given boot devices match the actual hardware
5312 * implementation and firmware features.
5314 if (*p < 'a' || *p > 'q') {
5315 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5316 exit(1);
5318 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5319 fprintf(stderr,
5320 "Boot device '%c' was given twice\n",*p);
5321 exit(1);
5323 boot_devices_bitmap |= 1 << (*p - 'a');
5326 break;
5327 case QEMU_OPTION_fda:
5328 case QEMU_OPTION_fdb:
5329 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5330 break;
5331 #ifdef TARGET_I386
5332 case QEMU_OPTION_no_fd_bootchk:
5333 fd_bootchk = 0;
5334 break;
5335 #endif
5336 case QEMU_OPTION_net:
5337 if (nb_net_clients >= MAX_NET_CLIENTS) {
5338 fprintf(stderr, "qemu: too many network clients\n");
5339 exit(1);
5341 net_clients[nb_net_clients] = optarg;
5342 nb_net_clients++;
5343 break;
5344 #ifdef CONFIG_SLIRP
5345 case QEMU_OPTION_tftp:
5346 tftp_prefix = optarg;
5347 break;
5348 case QEMU_OPTION_bootp:
5349 bootp_filename = optarg;
5350 break;
5351 #ifndef _WIN32
5352 case QEMU_OPTION_smb:
5353 net_slirp_smb(optarg);
5354 break;
5355 #endif
5356 case QEMU_OPTION_redir:
5357 net_slirp_redir(NULL, optarg, NULL);
5358 break;
5359 #endif
5360 case QEMU_OPTION_bt:
5361 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5362 fprintf(stderr, "qemu: too many bluetooth options\n");
5363 exit(1);
5365 bt_opts[nb_bt_opts++] = optarg;
5366 break;
5367 #ifdef HAS_AUDIO
5368 case QEMU_OPTION_audio_help:
5369 AUD_help ();
5370 exit (0);
5371 break;
5372 case QEMU_OPTION_soundhw:
5373 select_soundhw (optarg);
5374 break;
5375 #endif
5376 case QEMU_OPTION_h:
5377 help(0);
5378 break;
5379 case QEMU_OPTION_version:
5380 version();
5381 exit(0);
5382 break;
5383 case QEMU_OPTION_m: {
5384 uint64_t value;
5385 char *ptr;
5387 value = strtoul(optarg, &ptr, 10);
5388 switch (*ptr) {
5389 case 0: case 'M': case 'm':
5390 value <<= 20;
5391 break;
5392 case 'G': case 'g':
5393 value <<= 30;
5394 break;
5395 default:
5396 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5397 exit(1);
5400 /* On 32-bit hosts, QEMU is limited by virtual address space */
5401 if (value > (2047 << 20)
5402 #ifndef CONFIG_KQEMU
5403 && HOST_LONG_BITS == 32
5404 #endif
5406 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5407 exit(1);
5409 if (value != (uint64_t)(ram_addr_t)value) {
5410 fprintf(stderr, "qemu: ram size too large\n");
5411 exit(1);
5413 ram_size = value;
5414 break;
5416 case QEMU_OPTION_d:
5418 int mask;
5419 const CPULogItem *item;
5421 mask = cpu_str_to_log_mask(optarg);
5422 if (!mask) {
5423 printf("Log items (comma separated):\n");
5424 for(item = cpu_log_items; item->mask != 0; item++) {
5425 printf("%-10s %s\n", item->name, item->help);
5427 exit(1);
5429 cpu_set_log(mask);
5431 break;
5432 case QEMU_OPTION_s:
5433 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5434 break;
5435 case QEMU_OPTION_gdb:
5436 gdbstub_dev = optarg;
5437 break;
5438 case QEMU_OPTION_L:
5439 data_dir = optarg;
5440 break;
5441 case QEMU_OPTION_bios:
5442 bios_name = optarg;
5443 break;
5444 case QEMU_OPTION_singlestep:
5445 singlestep = 1;
5446 break;
5447 case QEMU_OPTION_S:
5448 autostart = 0;
5449 break;
5450 #ifndef _WIN32
5451 case QEMU_OPTION_k:
5452 keyboard_layout = optarg;
5453 break;
5454 #endif
5455 case QEMU_OPTION_localtime:
5456 rtc_utc = 0;
5457 break;
5458 case QEMU_OPTION_vga:
5459 select_vgahw (optarg);
5460 break;
5461 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5462 case QEMU_OPTION_g:
5464 const char *p;
5465 int w, h, depth;
5466 p = optarg;
5467 w = strtol(p, (char **)&p, 10);
5468 if (w <= 0) {
5469 graphic_error:
5470 fprintf(stderr, "qemu: invalid resolution or depth\n");
5471 exit(1);
5473 if (*p != 'x')
5474 goto graphic_error;
5475 p++;
5476 h = strtol(p, (char **)&p, 10);
5477 if (h <= 0)
5478 goto graphic_error;
5479 if (*p == 'x') {
5480 p++;
5481 depth = strtol(p, (char **)&p, 10);
5482 if (depth != 8 && depth != 15 && depth != 16 &&
5483 depth != 24 && depth != 32)
5484 goto graphic_error;
5485 } else if (*p == '\0') {
5486 depth = graphic_depth;
5487 } else {
5488 goto graphic_error;
5491 graphic_width = w;
5492 graphic_height = h;
5493 graphic_depth = depth;
5495 break;
5496 #endif
5497 case QEMU_OPTION_echr:
5499 char *r;
5500 term_escape_char = strtol(optarg, &r, 0);
5501 if (r == optarg)
5502 printf("Bad argument to echr\n");
5503 break;
5505 case QEMU_OPTION_monitor:
5506 monitor_device = optarg;
5507 break;
5508 case QEMU_OPTION_serial:
5509 if (serial_device_index >= MAX_SERIAL_PORTS) {
5510 fprintf(stderr, "qemu: too many serial ports\n");
5511 exit(1);
5513 serial_devices[serial_device_index] = optarg;
5514 serial_device_index++;
5515 break;
5516 case QEMU_OPTION_watchdog:
5517 i = select_watchdog(optarg);
5518 if (i > 0)
5519 exit (i == 1 ? 1 : 0);
5520 break;
5521 case QEMU_OPTION_watchdog_action:
5522 if (select_watchdog_action(optarg) == -1) {
5523 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5524 exit(1);
5526 break;
5527 case QEMU_OPTION_virtiocon:
5528 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5529 fprintf(stderr, "qemu: too many virtio consoles\n");
5530 exit(1);
5532 virtio_consoles[virtio_console_index] = optarg;
5533 virtio_console_index++;
5534 break;
5535 case QEMU_OPTION_parallel:
5536 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5537 fprintf(stderr, "qemu: too many parallel ports\n");
5538 exit(1);
5540 parallel_devices[parallel_device_index] = optarg;
5541 parallel_device_index++;
5542 break;
5543 case QEMU_OPTION_loadvm:
5544 loadvm = optarg;
5545 break;
5546 case QEMU_OPTION_full_screen:
5547 full_screen = 1;
5548 break;
5549 #ifdef CONFIG_SDL
5550 case QEMU_OPTION_no_frame:
5551 no_frame = 1;
5552 break;
5553 case QEMU_OPTION_alt_grab:
5554 alt_grab = 1;
5555 break;
5556 case QEMU_OPTION_no_quit:
5557 no_quit = 1;
5558 break;
5559 case QEMU_OPTION_sdl:
5560 display_type = DT_SDL;
5561 break;
5562 #endif
5563 case QEMU_OPTION_pidfile:
5564 pid_file = optarg;
5565 break;
5566 #ifdef TARGET_I386
5567 case QEMU_OPTION_win2k_hack:
5568 win2k_install_hack = 1;
5569 break;
5570 case QEMU_OPTION_rtc_td_hack:
5571 rtc_td_hack = 1;
5572 break;
5573 case QEMU_OPTION_acpitable:
5574 if(acpi_table_add(optarg) < 0) {
5575 fprintf(stderr, "Wrong acpi table provided\n");
5576 exit(1);
5578 break;
5579 case QEMU_OPTION_smbios:
5580 if(smbios_entry_add(optarg) < 0) {
5581 fprintf(stderr, "Wrong smbios provided\n");
5582 exit(1);
5584 break;
5585 #endif
5586 #ifdef CONFIG_KQEMU
5587 case QEMU_OPTION_no_kqemu:
5588 kqemu_allowed = 0;
5589 break;
5590 case QEMU_OPTION_kernel_kqemu:
5591 kqemu_allowed = 2;
5592 break;
5593 #endif
5594 #ifdef CONFIG_KVM
5595 case QEMU_OPTION_enable_kvm:
5596 kvm_allowed = 1;
5597 #ifdef CONFIG_KQEMU
5598 kqemu_allowed = 0;
5599 #endif
5600 break;
5601 #endif
5602 #ifdef USE_KVM
5603 case QEMU_OPTION_no_kvm:
5604 kvm_allowed = 0;
5605 break;
5606 case QEMU_OPTION_no_kvm_irqchip: {
5607 kvm_irqchip = 0;
5608 kvm_pit = 0;
5609 break;
5611 case QEMU_OPTION_no_kvm_pit: {
5612 kvm_pit = 0;
5613 break;
5615 case QEMU_OPTION_no_kvm_pit_reinjection: {
5616 kvm_pit_reinject = 0;
5617 break;
5619 case QEMU_OPTION_enable_nesting: {
5620 kvm_nested = 1;
5621 break;
5623 #if defined(TARGET_I386) || defined(TARGET_X86_64) || defined(TARGET_IA64) || defined(__linux__)
5624 case QEMU_OPTION_pcidevice:
5625 if (assigned_devices_index >= MAX_DEV_ASSIGN_CMDLINE) {
5626 fprintf(stderr, "Too many assigned devices\n");
5627 exit(1);
5629 assigned_devices[assigned_devices_index] = optarg;
5630 assigned_devices_index++;
5631 break;
5632 #endif
5633 #endif
5634 case QEMU_OPTION_usb:
5635 usb_enabled = 1;
5636 break;
5637 case QEMU_OPTION_usbdevice:
5638 usb_enabled = 1;
5639 if (usb_devices_index >= MAX_USB_CMDLINE) {
5640 fprintf(stderr, "Too many USB devices\n");
5641 exit(1);
5643 usb_devices[usb_devices_index] = optarg;
5644 usb_devices_index++;
5645 break;
5646 case QEMU_OPTION_smp:
5647 smp_cpus = atoi(optarg);
5648 if (smp_cpus < 1) {
5649 fprintf(stderr, "Invalid number of CPUs\n");
5650 exit(1);
5652 break;
5653 case QEMU_OPTION_vnc:
5654 display_type = DT_VNC;
5655 vnc_display = optarg;
5656 break;
5657 #ifdef TARGET_I386
5658 case QEMU_OPTION_no_acpi:
5659 acpi_enabled = 0;
5660 break;
5661 case QEMU_OPTION_no_hpet:
5662 no_hpet = 1;
5663 break;
5664 #endif
5665 case QEMU_OPTION_no_reboot:
5666 no_reboot = 1;
5667 break;
5668 case QEMU_OPTION_no_shutdown:
5669 no_shutdown = 1;
5670 break;
5671 case QEMU_OPTION_show_cursor:
5672 cursor_hide = 0;
5673 break;
5674 case QEMU_OPTION_uuid:
5675 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5676 fprintf(stderr, "Fail to parse UUID string."
5677 " Wrong format.\n");
5678 exit(1);
5680 break;
5681 #ifndef _WIN32
5682 case QEMU_OPTION_daemonize:
5683 daemonize = 1;
5684 break;
5685 #endif
5686 case QEMU_OPTION_option_rom:
5687 if (nb_option_roms >= MAX_OPTION_ROMS) {
5688 fprintf(stderr, "Too many option ROMs\n");
5689 exit(1);
5691 option_rom[nb_option_roms] = optarg;
5692 nb_option_roms++;
5693 break;
5694 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5695 case QEMU_OPTION_semihosting:
5696 semihosting_enabled = 1;
5697 break;
5698 #endif
5699 case QEMU_OPTION_tdf:
5700 time_drift_fix = 1;
5701 break;
5702 case QEMU_OPTION_kvm_shadow_memory:
5703 kvm_shadow_memory = (int64_t)atoi(optarg) * 1024 * 1024 / 4096;
5704 break;
5705 case QEMU_OPTION_mempath:
5706 mem_path = optarg;
5707 break;
5708 #ifdef MAP_POPULATE
5709 case QEMU_OPTION_mem_prealloc:
5710 mem_prealloc = !mem_prealloc;
5711 break;
5712 #endif
5713 case QEMU_OPTION_name:
5714 qemu_name = optarg;
5715 break;
5716 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5717 case QEMU_OPTION_prom_env:
5718 if (nb_prom_envs >= MAX_PROM_ENVS) {
5719 fprintf(stderr, "Too many prom variables\n");
5720 exit(1);
5722 prom_envs[nb_prom_envs] = optarg;
5723 nb_prom_envs++;
5724 break;
5725 #endif
5726 #ifdef TARGET_ARM
5727 case QEMU_OPTION_old_param:
5728 old_param = 1;
5729 break;
5730 #endif
5731 case QEMU_OPTION_clock:
5732 configure_alarms(optarg);
5733 break;
5734 case QEMU_OPTION_startdate:
5736 struct tm tm;
5737 time_t rtc_start_date;
5738 if (!strcmp(optarg, "now")) {
5739 rtc_date_offset = -1;
5740 } else {
5741 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5742 &tm.tm_year,
5743 &tm.tm_mon,
5744 &tm.tm_mday,
5745 &tm.tm_hour,
5746 &tm.tm_min,
5747 &tm.tm_sec) == 6) {
5748 /* OK */
5749 } else if (sscanf(optarg, "%d-%d-%d",
5750 &tm.tm_year,
5751 &tm.tm_mon,
5752 &tm.tm_mday) == 3) {
5753 tm.tm_hour = 0;
5754 tm.tm_min = 0;
5755 tm.tm_sec = 0;
5756 } else {
5757 goto date_fail;
5759 tm.tm_year -= 1900;
5760 tm.tm_mon--;
5761 rtc_start_date = mktimegm(&tm);
5762 if (rtc_start_date == -1) {
5763 date_fail:
5764 fprintf(stderr, "Invalid date format. Valid format are:\n"
5765 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5766 exit(1);
5768 rtc_date_offset = time(NULL) - rtc_start_date;
5771 break;
5772 case QEMU_OPTION_tb_size:
5773 tb_size = strtol(optarg, NULL, 0);
5774 if (tb_size < 0)
5775 tb_size = 0;
5776 break;
5777 case QEMU_OPTION_icount:
5778 use_icount = 1;
5779 if (strcmp(optarg, "auto") == 0) {
5780 icount_time_shift = -1;
5781 } else {
5782 icount_time_shift = strtol(optarg, NULL, 0);
5784 break;
5785 case QEMU_OPTION_incoming:
5786 incoming = optarg;
5787 break;
5788 #ifndef _WIN32
5789 case QEMU_OPTION_chroot:
5790 chroot_dir = optarg;
5791 break;
5792 case QEMU_OPTION_runas:
5793 run_as = optarg;
5794 break;
5795 case QEMU_OPTION_nvram:
5796 nvram = optarg;
5797 break;
5798 #endif
5799 #ifdef CONFIG_XEN
5800 case QEMU_OPTION_xen_domid:
5801 xen_domid = atoi(optarg);
5802 break;
5803 case QEMU_OPTION_xen_create:
5804 xen_mode = XEN_CREATE;
5805 break;
5806 case QEMU_OPTION_xen_attach:
5807 xen_mode = XEN_ATTACH;
5808 break;
5809 #endif
5814 /* If no data_dir is specified then try to find it relative to the
5815 executable path. */
5816 if (!data_dir) {
5817 data_dir = find_datadir(argv[0]);
5819 /* If all else fails use the install patch specified when building. */
5820 if (!data_dir) {
5821 data_dir = CONFIG_QEMU_SHAREDIR;
5824 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5825 if (kvm_allowed && kqemu_allowed) {
5826 fprintf(stderr,
5827 "You can not enable both KVM and kqemu at the same time\n");
5828 exit(1);
5830 #endif
5832 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5833 if (smp_cpus > machine->max_cpus) {
5834 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5835 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5836 machine->max_cpus);
5837 exit(1);
5840 if (display_type == DT_NOGRAPHIC) {
5841 if (serial_device_index == 0)
5842 serial_devices[0] = "stdio";
5843 if (parallel_device_index == 0)
5844 parallel_devices[0] = "null";
5845 if (strncmp(monitor_device, "vc", 2) == 0)
5846 monitor_device = "stdio";
5849 #ifndef _WIN32
5850 if (daemonize) {
5851 pid_t pid;
5853 if (pipe(fds) == -1)
5854 exit(1);
5856 pid = fork();
5857 if (pid > 0) {
5858 uint8_t status;
5859 ssize_t len;
5861 close(fds[1]);
5863 again:
5864 len = read(fds[0], &status, 1);
5865 if (len == -1 && (errno == EINTR))
5866 goto again;
5868 if (len != 1)
5869 exit(1);
5870 else if (status == 1) {
5871 fprintf(stderr, "Could not acquire pidfile\n");
5872 exit(1);
5873 } else
5874 exit(0);
5875 } else if (pid < 0)
5876 exit(1);
5878 setsid();
5880 pid = fork();
5881 if (pid > 0)
5882 exit(0);
5883 else if (pid < 0)
5884 exit(1);
5886 umask(027);
5888 signal(SIGTSTP, SIG_IGN);
5889 signal(SIGTTOU, SIG_IGN);
5890 signal(SIGTTIN, SIG_IGN);
5893 #ifdef USE_KVM
5894 if (kvm_enabled()) {
5895 if (kvm_qemu_init() < 0) {
5896 fprintf(stderr, "Could not initialize KVM, will disable KVM support\n");
5897 #ifdef NO_CPU_EMULATION
5898 fprintf(stderr, "Compiled with --disable-cpu-emulation, exiting.\n");
5899 exit(1);
5900 #endif
5901 kvm_allowed = 0;
5904 #endif
5906 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5907 if (daemonize) {
5908 uint8_t status = 1;
5909 write(fds[1], &status, 1);
5910 } else
5911 fprintf(stderr, "Could not acquire pid file\n");
5912 exit(1);
5914 #endif
5916 #ifdef CONFIG_KQEMU
5917 if (smp_cpus > 1)
5918 kqemu_allowed = 0;
5919 #endif
5920 if (qemu_init_main_loop()) {
5921 fprintf(stderr, "qemu_init_main_loop failed\n");
5922 exit(1);
5924 linux_boot = (kernel_filename != NULL);
5925 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5927 if (!linux_boot && *kernel_cmdline != '\0') {
5928 fprintf(stderr, "-append only allowed with -kernel option\n");
5929 exit(1);
5932 if (!linux_boot && initrd_filename != NULL) {
5933 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5934 exit(1);
5937 /* boot to floppy or the default cd if no hard disk defined yet */
5938 if (!boot_devices[0]) {
5939 boot_devices = "cad";
5941 setvbuf(stdout, NULL, _IOLBF, 0);
5943 init_timers();
5944 if (init_timer_alarm() < 0) {
5945 fprintf(stderr, "could not initialize alarm timer\n");
5946 exit(1);
5948 if (use_icount && icount_time_shift < 0) {
5949 use_icount = 2;
5950 /* 125MIPS seems a reasonable initial guess at the guest speed.
5951 It will be corrected fairly quickly anyway. */
5952 icount_time_shift = 3;
5953 init_icount_adjust();
5956 #ifdef _WIN32
5957 socket_init();
5958 #endif
5960 /* init network clients */
5961 if (nb_net_clients == 0) {
5962 /* if no clients, we use a default config */
5963 net_clients[nb_net_clients++] = "nic";
5964 #ifdef CONFIG_SLIRP
5965 net_clients[nb_net_clients++] = "user";
5966 #endif
5969 for(i = 0;i < nb_net_clients; i++) {
5970 if (net_client_parse(net_clients[i]) < 0)
5971 exit(1);
5973 net_client_check();
5975 #ifdef TARGET_I386
5976 /* XXX: this should be moved in the PC machine instantiation code */
5977 if (net_boot != 0) {
5978 int netroms = 0;
5979 for (i = 0; i < nb_nics && i < 4; i++) {
5980 const char *model = nd_table[i].model;
5981 char buf[1024];
5982 char *filename;
5983 if (net_boot & (1 << i)) {
5984 if (model == NULL)
5985 model = "rtl8139";
5986 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5987 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5988 if (filename && get_image_size(filename) > 0) {
5989 if (nb_option_roms >= MAX_OPTION_ROMS) {
5990 fprintf(stderr, "Too many option ROMs\n");
5991 exit(1);
5993 option_rom[nb_option_roms] = qemu_strdup(buf);
5994 nb_option_roms++;
5995 netroms++;
5997 if (filename) {
5998 qemu_free(filename);
6002 if (netroms == 0) {
6003 fprintf(stderr, "No valid PXE rom found for network device\n");
6004 exit(1);
6007 #endif
6009 /* init the bluetooth world */
6010 for (i = 0; i < nb_bt_opts; i++)
6011 if (bt_parse(bt_opts[i]))
6012 exit(1);
6014 /* init the memory */
6015 if (ram_size == 0)
6016 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6018 if (kvm_enabled()) {
6019 if (kvm_qemu_create_context() < 0) {
6020 fprintf(stderr, "Could not create KVM context\n");
6021 exit(1);
6025 #ifdef CONFIG_KQEMU
6026 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
6027 guest ram allocation. It needs to go away. */
6028 if (kqemu_allowed) {
6029 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
6030 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
6031 if (!kqemu_phys_ram_base) {
6032 fprintf(stderr, "Could not allocate physical memory\n");
6033 exit(1);
6036 #endif
6038 /* init the dynamic translator */
6039 cpu_exec_init_all(tb_size * 1024 * 1024);
6041 bdrv_init();
6043 /* we always create the cdrom drive, even if no disk is there */
6045 if (nb_drives_opt < MAX_DRIVES)
6046 drive_add(NULL, CDROM_ALIAS);
6048 /* we always create at least one floppy */
6050 if (nb_drives_opt < MAX_DRIVES)
6051 drive_add(NULL, FD_ALIAS, 0);
6053 /* we always create one sd slot, even if no card is in it */
6055 if (nb_drives_opt < MAX_DRIVES)
6056 drive_add(NULL, SD_ALIAS);
6058 /* open the virtual block devices
6059 * note that migration with device
6060 * hot add/remove is broken.
6062 for(i = 0; i < nb_drives_opt; i++)
6063 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
6064 exit(1);
6066 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
6067 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
6069 #ifndef _WIN32
6070 /* must be after terminal init, SDL library changes signal handlers */
6071 sighandler_setup();
6072 #endif
6074 /* Maintain compatibility with multiple stdio monitors */
6075 if (!strcmp(monitor_device,"stdio")) {
6076 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
6077 const char *devname = serial_devices[i];
6078 if (devname && !strcmp(devname,"mon:stdio")) {
6079 monitor_device = NULL;
6080 break;
6081 } else if (devname && !strcmp(devname,"stdio")) {
6082 monitor_device = NULL;
6083 serial_devices[i] = "mon:stdio";
6084 break;
6089 if (nb_numa_nodes > 0) {
6090 int i;
6092 if (nb_numa_nodes > smp_cpus) {
6093 nb_numa_nodes = smp_cpus;
6096 /* If no memory size if given for any node, assume the default case
6097 * and distribute the available memory equally across all nodes
6099 for (i = 0; i < nb_numa_nodes; i++) {
6100 if (node_mem[i] != 0)
6101 break;
6103 if (i == nb_numa_nodes) {
6104 uint64_t usedmem = 0;
6106 /* On Linux, the each node's border has to be 8MB aligned,
6107 * the final node gets the rest.
6109 for (i = 0; i < nb_numa_nodes - 1; i++) {
6110 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
6111 usedmem += node_mem[i];
6113 node_mem[i] = ram_size - usedmem;
6116 for (i = 0; i < nb_numa_nodes; i++) {
6117 if (node_cpumask[i] != 0)
6118 break;
6120 /* assigning the VCPUs round-robin is easier to implement, guest OSes
6121 * must cope with this anyway, because there are BIOSes out there in
6122 * real machines which also use this scheme.
6124 if (i == nb_numa_nodes) {
6125 for (i = 0; i < smp_cpus; i++) {
6126 node_cpumask[i % nb_numa_nodes] |= 1 << i;
6131 #ifdef KVM_UPSTREAM
6132 if (kvm_enabled()) {
6133 int ret;
6135 ret = kvm_init(smp_cpus);
6136 if (ret < 0) {
6137 fprintf(stderr, "failed to initialize KVM\n");
6138 exit(1);
6141 #endif
6143 if (monitor_device) {
6144 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
6145 if (!monitor_hd) {
6146 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6147 exit(1);
6151 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6152 const char *devname = serial_devices[i];
6153 if (devname && strcmp(devname, "none")) {
6154 char label[32];
6155 snprintf(label, sizeof(label), "serial%d", i);
6156 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6157 if (!serial_hds[i]) {
6158 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6159 devname);
6160 exit(1);
6165 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6166 const char *devname = parallel_devices[i];
6167 if (devname && strcmp(devname, "none")) {
6168 char label[32];
6169 snprintf(label, sizeof(label), "parallel%d", i);
6170 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6171 if (!parallel_hds[i]) {
6172 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6173 devname);
6174 exit(1);
6179 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6180 const char *devname = virtio_consoles[i];
6181 if (devname && strcmp(devname, "none")) {
6182 char label[32];
6183 snprintf(label, sizeof(label), "virtcon%d", i);
6184 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6185 if (!virtcon_hds[i]) {
6186 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6187 devname);
6188 exit(1);
6193 module_call_init(MODULE_INIT_DEVICE);
6195 if (kvm_enabled())
6196 kvm_init_ap();
6198 machine->init(ram_size, boot_devices,
6199 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6202 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6203 for (i = 0; i < nb_numa_nodes; i++) {
6204 if (node_cpumask[i] & (1 << env->cpu_index)) {
6205 env->numa_node = i;
6210 current_machine = machine;
6212 /* Set KVM's vcpu state to qemu's initial CPUState. */
6213 if (kvm_enabled()) {
6214 int ret;
6216 ret = kvm_sync_vcpus();
6217 if (ret < 0) {
6218 fprintf(stderr, "failed to initialize vcpus\n");
6219 exit(1);
6223 /* init USB devices */
6224 if (usb_enabled) {
6225 for(i = 0; i < usb_devices_index; i++) {
6226 if (usb_device_add(usb_devices[i], 0) < 0) {
6227 fprintf(stderr, "Warning: could not add USB device %s\n",
6228 usb_devices[i]);
6233 if (!display_state)
6234 dumb_display_init();
6235 /* just use the first displaystate for the moment */
6236 ds = display_state;
6238 if (display_type == DT_DEFAULT) {
6239 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6240 display_type = DT_SDL;
6241 #else
6242 display_type = DT_VNC;
6243 vnc_display = "localhost:0,to=99";
6244 show_vnc_port = 1;
6245 #endif
6249 switch (display_type) {
6250 case DT_NOGRAPHIC:
6251 break;
6252 #if defined(CONFIG_CURSES)
6253 case DT_CURSES:
6254 curses_display_init(ds, full_screen);
6255 break;
6256 #endif
6257 #if defined(CONFIG_SDL)
6258 case DT_SDL:
6259 sdl_display_init(ds, full_screen, no_frame);
6260 break;
6261 #elif defined(CONFIG_COCOA)
6262 case DT_SDL:
6263 cocoa_display_init(ds, full_screen);
6264 break;
6265 #endif
6266 case DT_VNC:
6267 vnc_display_init(ds);
6268 if (vnc_display_open(ds, vnc_display) < 0)
6269 exit(1);
6271 if (show_vnc_port) {
6272 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6274 break;
6275 default:
6276 break;
6278 dpy_resize(ds);
6280 dcl = ds->listeners;
6281 while (dcl != NULL) {
6282 if (dcl->dpy_refresh != NULL) {
6283 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6284 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6286 dcl = dcl->next;
6289 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6290 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6291 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6294 text_consoles_set_display(display_state);
6295 qemu_chr_initial_reset();
6297 if (monitor_device && monitor_hd)
6298 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6300 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6301 const char *devname = serial_devices[i];
6302 if (devname && strcmp(devname, "none")) {
6303 char label[32];
6304 snprintf(label, sizeof(label), "serial%d", i);
6305 if (strstart(devname, "vc", 0))
6306 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6310 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6311 const char *devname = parallel_devices[i];
6312 if (devname && strcmp(devname, "none")) {
6313 char label[32];
6314 snprintf(label, sizeof(label), "parallel%d", i);
6315 if (strstart(devname, "vc", 0))
6316 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6320 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6321 const char *devname = virtio_consoles[i];
6322 if (virtcon_hds[i] && devname) {
6323 char label[32];
6324 snprintf(label, sizeof(label), "virtcon%d", i);
6325 if (strstart(devname, "vc", 0))
6326 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6330 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6331 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6332 gdbstub_dev);
6333 exit(1);
6336 if (loadvm)
6337 do_loadvm(cur_mon, loadvm);
6339 if (incoming) {
6340 autostart = 0; /* fixme how to deal with -daemonize */
6341 qemu_start_incoming_migration(incoming);
6344 if (autostart)
6345 vm_start();
6347 #ifndef _WIN32
6348 if (daemonize) {
6349 uint8_t status = 0;
6350 ssize_t len;
6352 again1:
6353 len = write(fds[1], &status, 1);
6354 if (len == -1 && (errno == EINTR))
6355 goto again1;
6357 if (len != 1)
6358 exit(1);
6360 chdir("/");
6361 TFR(fd = open("/dev/null", O_RDWR));
6362 if (fd == -1)
6363 exit(1);
6366 if (run_as) {
6367 pwd = getpwnam(run_as);
6368 if (!pwd) {
6369 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6370 exit(1);
6374 if (chroot_dir) {
6375 if (chroot(chroot_dir) < 0) {
6376 fprintf(stderr, "chroot failed\n");
6377 exit(1);
6379 chdir("/");
6382 if (run_as) {
6383 if (setgid(pwd->pw_gid) < 0) {
6384 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6385 exit(1);
6387 if (setuid(pwd->pw_uid) < 0) {
6388 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6389 exit(1);
6391 if (setuid(0) != -1) {
6392 fprintf(stderr, "Dropping privileges failed\n");
6393 exit(1);
6397 if (daemonize) {
6398 dup2(fd, 0);
6399 dup2(fd, 1);
6400 dup2(fd, 2);
6402 close(fd);
6404 #endif
6406 main_loop();
6407 quit_timers();
6408 net_cleanup();
6410 return 0;