Recognize V9 stores and CAS accesses as writes
[qemu-kvm/fedora.git] / hw / ne2000.c
blob99612e25899aa5c93c204aa7b1f00a9b0015ee5c
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pci.h"
26 #include "pc.h"
27 #include "net.h"
29 /* debug NE2000 card */
30 //#define DEBUG_NE2000
32 #define MAX_ETH_FRAME_SIZE 1514
34 #define E8390_CMD 0x00 /* The command register (for all pages) */
35 /* Page 0 register offsets. */
36 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
37 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
38 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
39 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
40 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
41 #define EN0_TSR 0x04 /* Transmit status reg RD */
42 #define EN0_TPSR 0x04 /* Transmit starting page WR */
43 #define EN0_NCR 0x05 /* Number of collision reg RD */
44 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
45 #define EN0_FIFO 0x06 /* FIFO RD */
46 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
47 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
48 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
49 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
50 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
51 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
52 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
53 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
54 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
55 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
56 #define EN0_RSR 0x0c /* rx status reg RD */
57 #define EN0_RXCR 0x0c /* RX configuration reg WR */
58 #define EN0_TXCR 0x0d /* TX configuration reg WR */
59 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
60 #define EN0_DCFG 0x0e /* Data configuration reg WR */
61 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
62 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
63 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
65 #define EN1_PHYS 0x11
66 #define EN1_CURPAG 0x17
67 #define EN1_MULT 0x18
69 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
70 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
72 #define EN3_CONFIG0 0x33
73 #define EN3_CONFIG1 0x34
74 #define EN3_CONFIG2 0x35
75 #define EN3_CONFIG3 0x36
77 /* Register accessed at EN_CMD, the 8390 base addr. */
78 #define E8390_STOP 0x01 /* Stop and reset the chip */
79 #define E8390_START 0x02 /* Start the chip, clear reset */
80 #define E8390_TRANS 0x04 /* Transmit a frame */
81 #define E8390_RREAD 0x08 /* Remote read */
82 #define E8390_RWRITE 0x10 /* Remote write */
83 #define E8390_NODMA 0x20 /* Remote DMA */
84 #define E8390_PAGE0 0x00 /* Select page chip registers */
85 #define E8390_PAGE1 0x40 /* using the two high-order bits */
86 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
88 /* Bits in EN0_ISR - Interrupt status register */
89 #define ENISR_RX 0x01 /* Receiver, no error */
90 #define ENISR_TX 0x02 /* Transmitter, no error */
91 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
92 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
93 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
94 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
95 #define ENISR_RDC 0x40 /* remote dma complete */
96 #define ENISR_RESET 0x80 /* Reset completed */
97 #define ENISR_ALL 0x3f /* Interrupts we will enable */
99 /* Bits in received packet status byte and EN0_RSR*/
100 #define ENRSR_RXOK 0x01 /* Received a good packet */
101 #define ENRSR_CRC 0x02 /* CRC error */
102 #define ENRSR_FAE 0x04 /* frame alignment error */
103 #define ENRSR_FO 0x08 /* FIFO overrun */
104 #define ENRSR_MPA 0x10 /* missed pkt */
105 #define ENRSR_PHY 0x20 /* physical/multicast address */
106 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
107 #define ENRSR_DEF 0x80 /* deferring */
109 /* Transmitted packet status, EN0_TSR. */
110 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
111 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
112 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
113 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
114 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
115 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
116 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
117 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
119 #define NE2000_PMEM_SIZE (32*1024)
120 #define NE2000_PMEM_START (16*1024)
121 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122 #define NE2000_MEM_SIZE NE2000_PMEM_END
124 typedef struct NE2000State {
125 uint8_t cmd;
126 uint32_t start;
127 uint32_t stop;
128 uint8_t boundary;
129 uint8_t tsr;
130 uint8_t tpsr;
131 uint16_t tcnt;
132 uint16_t rcnt;
133 uint32_t rsar;
134 uint8_t rsr;
135 uint8_t rxcr;
136 uint8_t isr;
137 uint8_t dcfg;
138 uint8_t imr;
139 uint8_t phys[6]; /* mac address */
140 uint8_t curpag;
141 uint8_t mult[8]; /* multicast mask array */
142 qemu_irq irq;
143 int isa_io_base;
144 PCIDevice *pci_dev;
145 VLANClientState *vc;
146 uint8_t macaddr[6];
147 uint8_t mem[NE2000_MEM_SIZE];
148 } NE2000State;
150 static void ne2000_reset(NE2000State *s)
152 int i;
154 s->isr = ENISR_RESET;
155 memcpy(s->mem, s->macaddr, 6);
156 s->mem[14] = 0x57;
157 s->mem[15] = 0x57;
159 /* duplicate prom data */
160 for(i = 15;i >= 0; i--) {
161 s->mem[2 * i] = s->mem[i];
162 s->mem[2 * i + 1] = s->mem[i];
166 static void ne2000_update_irq(NE2000State *s)
168 int isr;
169 isr = (s->isr & s->imr) & 0x7f;
170 #if defined(DEBUG_NE2000)
171 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
172 isr ? 1 : 0, s->isr, s->imr);
173 #endif
174 qemu_set_irq(s->irq, (isr != 0));
177 #define POLYNOMIAL 0x04c11db6
179 /* From FreeBSD */
180 /* XXX: optimize */
181 static int compute_mcast_idx(const uint8_t *ep)
183 uint32_t crc;
184 int carry, i, j;
185 uint8_t b;
187 crc = 0xffffffff;
188 for (i = 0; i < 6; i++) {
189 b = *ep++;
190 for (j = 0; j < 8; j++) {
191 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
192 crc <<= 1;
193 b >>= 1;
194 if (carry)
195 crc = ((crc ^ POLYNOMIAL) | carry);
198 return (crc >> 26);
201 static int ne2000_buffer_full(NE2000State *s)
203 int avail, index, boundary;
205 index = s->curpag << 8;
206 boundary = s->boundary << 8;
207 if (index < boundary)
208 avail = boundary - index;
209 else
210 avail = (s->stop - s->start) - (index - boundary);
211 if (avail < (MAX_ETH_FRAME_SIZE + 4))
212 return 1;
213 return 0;
216 static int ne2000_can_receive(void *opaque)
218 NE2000State *s = opaque;
220 if (s->cmd & E8390_STOP)
221 return 1;
222 return !ne2000_buffer_full(s);
225 #define MIN_BUF_SIZE 60
227 static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
229 NE2000State *s = opaque;
230 uint8_t *p;
231 unsigned int total_len, next, avail, len, index, mcast_idx;
232 uint8_t buf1[60];
233 static const uint8_t broadcast_macaddr[6] =
234 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
236 #if defined(DEBUG_NE2000)
237 printf("NE2000: received len=%d\n", size);
238 #endif
240 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
241 return;
243 /* XXX: check this */
244 if (s->rxcr & 0x10) {
245 /* promiscuous: receive all */
246 } else {
247 if (!memcmp(buf, broadcast_macaddr, 6)) {
248 /* broadcast address */
249 if (!(s->rxcr & 0x04))
250 return;
251 } else if (buf[0] & 0x01) {
252 /* multicast */
253 if (!(s->rxcr & 0x08))
254 return;
255 mcast_idx = compute_mcast_idx(buf);
256 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
257 return;
258 } else if (s->mem[0] == buf[0] &&
259 s->mem[2] == buf[1] &&
260 s->mem[4] == buf[2] &&
261 s->mem[6] == buf[3] &&
262 s->mem[8] == buf[4] &&
263 s->mem[10] == buf[5]) {
264 /* match */
265 } else {
266 return;
271 /* if too small buffer, then expand it */
272 if (size < MIN_BUF_SIZE) {
273 memcpy(buf1, buf, size);
274 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
275 buf = buf1;
276 size = MIN_BUF_SIZE;
279 index = s->curpag << 8;
280 /* 4 bytes for header */
281 total_len = size + 4;
282 /* address for next packet (4 bytes for CRC) */
283 next = index + ((total_len + 4 + 255) & ~0xff);
284 if (next >= s->stop)
285 next -= (s->stop - s->start);
286 /* prepare packet header */
287 p = s->mem + index;
288 s->rsr = ENRSR_RXOK; /* receive status */
289 /* XXX: check this */
290 if (buf[0] & 0x01)
291 s->rsr |= ENRSR_PHY;
292 p[0] = s->rsr;
293 p[1] = next >> 8;
294 p[2] = total_len;
295 p[3] = total_len >> 8;
296 index += 4;
298 /* write packet data */
299 while (size > 0) {
300 if (index <= s->stop)
301 avail = s->stop - index;
302 else
303 avail = 0;
304 len = size;
305 if (len > avail)
306 len = avail;
307 memcpy(s->mem + index, buf, len);
308 buf += len;
309 index += len;
310 if (index == s->stop)
311 index = s->start;
312 size -= len;
314 s->curpag = next >> 8;
316 /* now we can signal we have received something */
317 s->isr |= ENISR_RX;
318 ne2000_update_irq(s);
321 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
323 NE2000State *s = opaque;
324 int offset, page, index;
326 addr &= 0xf;
327 #ifdef DEBUG_NE2000
328 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
329 #endif
330 if (addr == E8390_CMD) {
331 /* control register */
332 s->cmd = val;
333 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
334 s->isr &= ~ENISR_RESET;
335 /* test specific case: zero length transfer */
336 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
337 s->rcnt == 0) {
338 s->isr |= ENISR_RDC;
339 ne2000_update_irq(s);
341 if (val & E8390_TRANS) {
342 index = (s->tpsr << 8);
343 /* XXX: next 2 lines are a hack to make netware 3.11 work */
344 if (index >= NE2000_PMEM_END)
345 index -= NE2000_PMEM_SIZE;
346 /* fail safe: check range on the transmitted length */
347 if (index + s->tcnt <= NE2000_PMEM_END) {
348 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
350 /* signal end of transfer */
351 s->tsr = ENTSR_PTX;
352 s->isr |= ENISR_TX;
353 s->cmd &= ~E8390_TRANS;
354 ne2000_update_irq(s);
357 } else {
358 page = s->cmd >> 6;
359 offset = addr | (page << 4);
360 switch(offset) {
361 case EN0_STARTPG:
362 s->start = val << 8;
363 break;
364 case EN0_STOPPG:
365 s->stop = val << 8;
366 break;
367 case EN0_BOUNDARY:
368 s->boundary = val;
369 break;
370 case EN0_IMR:
371 s->imr = val;
372 ne2000_update_irq(s);
373 break;
374 case EN0_TPSR:
375 s->tpsr = val;
376 break;
377 case EN0_TCNTLO:
378 s->tcnt = (s->tcnt & 0xff00) | val;
379 break;
380 case EN0_TCNTHI:
381 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
382 break;
383 case EN0_RSARLO:
384 s->rsar = (s->rsar & 0xff00) | val;
385 break;
386 case EN0_RSARHI:
387 s->rsar = (s->rsar & 0x00ff) | (val << 8);
388 break;
389 case EN0_RCNTLO:
390 s->rcnt = (s->rcnt & 0xff00) | val;
391 break;
392 case EN0_RCNTHI:
393 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
394 break;
395 case EN0_RXCR:
396 s->rxcr = val;
397 break;
398 case EN0_DCFG:
399 s->dcfg = val;
400 break;
401 case EN0_ISR:
402 s->isr &= ~(val & 0x7f);
403 ne2000_update_irq(s);
404 break;
405 case EN1_PHYS ... EN1_PHYS + 5:
406 s->phys[offset - EN1_PHYS] = val;
407 break;
408 case EN1_CURPAG:
409 s->curpag = val;
410 break;
411 case EN1_MULT ... EN1_MULT + 7:
412 s->mult[offset - EN1_MULT] = val;
413 break;
418 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
420 NE2000State *s = opaque;
421 int offset, page, ret;
423 addr &= 0xf;
424 if (addr == E8390_CMD) {
425 ret = s->cmd;
426 } else {
427 page = s->cmd >> 6;
428 offset = addr | (page << 4);
429 switch(offset) {
430 case EN0_TSR:
431 ret = s->tsr;
432 break;
433 case EN0_BOUNDARY:
434 ret = s->boundary;
435 break;
436 case EN0_ISR:
437 ret = s->isr;
438 break;
439 case EN0_RSARLO:
440 ret = s->rsar & 0x00ff;
441 break;
442 case EN0_RSARHI:
443 ret = s->rsar >> 8;
444 break;
445 case EN1_PHYS ... EN1_PHYS + 5:
446 ret = s->phys[offset - EN1_PHYS];
447 break;
448 case EN1_CURPAG:
449 ret = s->curpag;
450 break;
451 case EN1_MULT ... EN1_MULT + 7:
452 ret = s->mult[offset - EN1_MULT];
453 break;
454 case EN0_RSR:
455 ret = s->rsr;
456 break;
457 case EN2_STARTPG:
458 ret = s->start >> 8;
459 break;
460 case EN2_STOPPG:
461 ret = s->stop >> 8;
462 break;
463 case EN0_RTL8029ID0:
464 ret = 0x50;
465 break;
466 case EN0_RTL8029ID1:
467 ret = 0x43;
468 break;
469 case EN3_CONFIG0:
470 ret = 0; /* 10baseT media */
471 break;
472 case EN3_CONFIG2:
473 ret = 0x40; /* 10baseT active */
474 break;
475 case EN3_CONFIG3:
476 ret = 0x40; /* Full duplex */
477 break;
478 default:
479 ret = 0x00;
480 break;
483 #ifdef DEBUG_NE2000
484 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
485 #endif
486 return ret;
489 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
490 uint32_t val)
492 if (addr < 32 ||
493 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
494 s->mem[addr] = val;
498 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
499 uint32_t val)
501 addr &= ~1; /* XXX: check exact behaviour if not even */
502 if (addr < 32 ||
503 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
504 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
508 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
509 uint32_t val)
511 addr &= ~1; /* XXX: check exact behaviour if not even */
512 if (addr < 32 ||
513 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
514 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
518 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
520 if (addr < 32 ||
521 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
522 return s->mem[addr];
523 } else {
524 return 0xff;
528 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
530 addr &= ~1; /* XXX: check exact behaviour if not even */
531 if (addr < 32 ||
532 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
533 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
534 } else {
535 return 0xffff;
539 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
541 addr &= ~1; /* XXX: check exact behaviour if not even */
542 if (addr < 32 ||
543 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
544 return le32_to_cpupu((uint32_t *)(s->mem + addr));
545 } else {
546 return 0xffffffff;
550 static inline void ne2000_dma_update(NE2000State *s, int len)
552 s->rsar += len;
553 /* wrap */
554 /* XXX: check what to do if rsar > stop */
555 if (s->rsar == s->stop)
556 s->rsar = s->start;
558 if (s->rcnt <= len) {
559 s->rcnt = 0;
560 /* signal end of transfer */
561 s->isr |= ENISR_RDC;
562 ne2000_update_irq(s);
563 } else {
564 s->rcnt -= len;
568 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
570 NE2000State *s = opaque;
572 #ifdef DEBUG_NE2000
573 printf("NE2000: asic write val=0x%04x\n", val);
574 #endif
575 if (s->rcnt == 0)
576 return;
577 if (s->dcfg & 0x01) {
578 /* 16 bit access */
579 ne2000_mem_writew(s, s->rsar, val);
580 ne2000_dma_update(s, 2);
581 } else {
582 /* 8 bit access */
583 ne2000_mem_writeb(s, s->rsar, val);
584 ne2000_dma_update(s, 1);
588 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
590 NE2000State *s = opaque;
591 int ret;
593 if (s->dcfg & 0x01) {
594 /* 16 bit access */
595 ret = ne2000_mem_readw(s, s->rsar);
596 ne2000_dma_update(s, 2);
597 } else {
598 /* 8 bit access */
599 ret = ne2000_mem_readb(s, s->rsar);
600 ne2000_dma_update(s, 1);
602 #ifdef DEBUG_NE2000
603 printf("NE2000: asic read val=0x%04x\n", ret);
604 #endif
605 return ret;
608 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
610 NE2000State *s = opaque;
612 #ifdef DEBUG_NE2000
613 printf("NE2000: asic writel val=0x%04x\n", val);
614 #endif
615 if (s->rcnt == 0)
616 return;
617 /* 32 bit access */
618 ne2000_mem_writel(s, s->rsar, val);
619 ne2000_dma_update(s, 4);
622 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
624 NE2000State *s = opaque;
625 int ret;
627 /* 32 bit access */
628 ret = ne2000_mem_readl(s, s->rsar);
629 ne2000_dma_update(s, 4);
630 #ifdef DEBUG_NE2000
631 printf("NE2000: asic readl val=0x%04x\n", ret);
632 #endif
633 return ret;
636 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
638 /* nothing to do (end of reset pulse) */
641 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
643 NE2000State *s = opaque;
644 ne2000_reset(s);
645 return 0;
648 static void ne2000_save(QEMUFile* f,void* opaque)
650 NE2000State* s=(NE2000State*)opaque;
651 uint32_t tmp;
653 if (s->pci_dev)
654 pci_device_save(s->pci_dev, f);
656 qemu_put_8s(f, &s->rxcr);
658 qemu_put_8s(f, &s->cmd);
659 qemu_put_be32s(f, &s->start);
660 qemu_put_be32s(f, &s->stop);
661 qemu_put_8s(f, &s->boundary);
662 qemu_put_8s(f, &s->tsr);
663 qemu_put_8s(f, &s->tpsr);
664 qemu_put_be16s(f, &s->tcnt);
665 qemu_put_be16s(f, &s->rcnt);
666 qemu_put_be32s(f, &s->rsar);
667 qemu_put_8s(f, &s->rsr);
668 qemu_put_8s(f, &s->isr);
669 qemu_put_8s(f, &s->dcfg);
670 qemu_put_8s(f, &s->imr);
671 qemu_put_buffer(f, s->phys, 6);
672 qemu_put_8s(f, &s->curpag);
673 qemu_put_buffer(f, s->mult, 8);
674 tmp = 0;
675 qemu_put_be32s(f, &tmp); /* ignored, was irq */
676 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
679 static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
681 NE2000State* s=(NE2000State*)opaque;
682 int ret;
683 uint32_t tmp;
685 if (version_id > 3)
686 return -EINVAL;
688 if (s->pci_dev && version_id >= 3) {
689 ret = pci_device_load(s->pci_dev, f);
690 if (ret < 0)
691 return ret;
694 if (version_id >= 2) {
695 qemu_get_8s(f, &s->rxcr);
696 } else {
697 s->rxcr = 0x0c;
700 qemu_get_8s(f, &s->cmd);
701 qemu_get_be32s(f, &s->start);
702 qemu_get_be32s(f, &s->stop);
703 qemu_get_8s(f, &s->boundary);
704 qemu_get_8s(f, &s->tsr);
705 qemu_get_8s(f, &s->tpsr);
706 qemu_get_be16s(f, &s->tcnt);
707 qemu_get_be16s(f, &s->rcnt);
708 qemu_get_be32s(f, &s->rsar);
709 qemu_get_8s(f, &s->rsr);
710 qemu_get_8s(f, &s->isr);
711 qemu_get_8s(f, &s->dcfg);
712 qemu_get_8s(f, &s->imr);
713 qemu_get_buffer(f, s->phys, 6);
714 qemu_get_8s(f, &s->curpag);
715 qemu_get_buffer(f, s->mult, 8);
716 qemu_get_be32s(f, &tmp); /* ignored */
717 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
719 return 0;
722 static void isa_ne2000_cleanup(VLANClientState *vc)
724 NE2000State *s = vc->opaque;
726 unregister_savevm("ne2000", s);
728 isa_unassign_ioport(s->isa_io_base, 16);
729 isa_unassign_ioport(s->isa_io_base + 0x10, 2);
730 isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
732 qemu_free(s);
735 void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
737 NE2000State *s;
739 qemu_check_nic_model(nd, "ne2k_isa");
741 s = qemu_mallocz(sizeof(NE2000State));
743 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
744 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
746 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
747 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
748 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
749 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
751 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
752 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
753 s->isa_io_base = base;
754 s->irq = irq;
755 memcpy(s->macaddr, nd->macaddr, 6);
757 ne2000_reset(s);
759 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
760 ne2000_receive, ne2000_can_receive,
761 isa_ne2000_cleanup, s);
763 qemu_format_nic_info_str(s->vc, s->macaddr);
765 register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
768 /***********************************************************/
769 /* PCI NE2000 definitions */
771 typedef struct PCINE2000State {
772 PCIDevice dev;
773 NE2000State ne2000;
774 } PCINE2000State;
776 static void ne2000_map(PCIDevice *pci_dev, int region_num,
777 uint32_t addr, uint32_t size, int type)
779 PCINE2000State *d = (PCINE2000State *)pci_dev;
780 NE2000State *s = &d->ne2000;
782 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
783 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
785 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
786 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
787 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
788 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
789 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
790 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
792 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
793 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
796 static void ne2000_cleanup(VLANClientState *vc)
798 NE2000State *s = vc->opaque;
800 unregister_savevm("ne2000", s);
803 PCIDevice *pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
805 PCINE2000State *d;
806 NE2000State *s;
807 uint8_t *pci_conf;
809 d = (PCINE2000State *)pci_register_device(bus,
810 "NE2000", sizeof(PCINE2000State),
811 devfn,
812 NULL, NULL);
813 pci_conf = d->dev.config;
814 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
815 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
816 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
817 pci_conf[0x0e] = 0x00; // header_type
818 pci_conf[0x3d] = 1; // interrupt pin 0
820 pci_register_io_region(&d->dev, 0, 0x100,
821 PCI_ADDRESS_SPACE_IO, ne2000_map);
822 s = &d->ne2000;
823 s->irq = d->dev.irq[0];
824 s->pci_dev = (PCIDevice *)d;
825 memcpy(s->macaddr, nd->macaddr, 6);
826 ne2000_reset(s);
827 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
828 ne2000_receive, ne2000_can_receive,
829 ne2000_cleanup, s);
831 qemu_format_nic_info_str(s->vc, s->macaddr);
833 register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
835 return (PCIDevice *)d;