Recognize V9 stores and CAS accesses as writes
[qemu-kvm/fedora.git] / hw / mips_malta.c
blobe7504c1bf58545a502a0b9ccaecc8be784f7b2e3
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "qemu-char.h"
36 #include "sysemu.h"
37 #include "audio/audio.h"
38 #include "boards.h"
39 #include "qemu-log.h"
41 //#define DEBUG_BOARD_INIT
43 #ifdef TARGET_WORDS_BIGENDIAN
44 #define BIOS_FILENAME "mips_bios.bin"
45 #else
46 #define BIOS_FILENAME "mipsel_bios.bin"
47 #endif
49 #ifdef TARGET_MIPS64
50 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
51 #else
52 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
53 #endif
55 #define ENVP_ADDR (int32_t)0x80002000
56 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
58 #define ENVP_NB_ENTRIES 16
59 #define ENVP_ENTRY_SIZE 256
61 #define MAX_IDE_BUS 2
63 typedef struct {
64 uint32_t leds;
65 uint32_t brk;
66 uint32_t gpout;
67 uint32_t i2cin;
68 uint32_t i2coe;
69 uint32_t i2cout;
70 uint32_t i2csel;
71 CharDriverState *display;
72 char display_text[9];
73 SerialState *uart;
74 } MaltaFPGAState;
76 static PITState *pit;
78 static struct _loaderparams {
79 int ram_size;
80 const char *kernel_filename;
81 const char *kernel_cmdline;
82 const char *initrd_filename;
83 } loaderparams;
85 /* Malta FPGA */
86 static void malta_fpga_update_display(void *opaque)
88 char leds_text[9];
89 int i;
90 MaltaFPGAState *s = opaque;
92 for (i = 7 ; i >= 0 ; i--) {
93 if (s->leds & (1 << i))
94 leds_text[i] = '#';
95 else
96 leds_text[i] = ' ';
98 leds_text[8] = '\0';
100 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
101 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
105 * EEPROM 24C01 / 24C02 emulation.
107 * Emulation for serial EEPROMs:
108 * 24C01 - 1024 bit (128 x 8)
109 * 24C02 - 2048 bit (256 x 8)
111 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
114 //~ #define DEBUG
116 #if defined(DEBUG)
117 # define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
118 #else
119 # define logout(fmt, args...) ((void)0)
120 #endif
122 struct _eeprom24c0x_t {
123 uint8_t tick;
124 uint8_t address;
125 uint8_t command;
126 uint8_t ack;
127 uint8_t scl;
128 uint8_t sda;
129 uint8_t data;
130 //~ uint16_t size;
131 uint8_t contents[256];
134 typedef struct _eeprom24c0x_t eeprom24c0x_t;
136 static eeprom24c0x_t eeprom = {
137 contents: {
138 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
139 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
140 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
141 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
142 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
143 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
146 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
153 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
157 static uint8_t eeprom24c0x_read(void)
159 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
160 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
161 return eeprom.sda;
164 static void eeprom24c0x_write(int scl, int sda)
166 if (eeprom.scl && scl && (eeprom.sda != sda)) {
167 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
168 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
169 if (!sda) {
170 eeprom.tick = 1;
171 eeprom.command = 0;
173 } else if (eeprom.tick == 0 && !eeprom.ack) {
174 /* Waiting for start. */
175 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
176 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
177 } else if (!eeprom.scl && scl) {
178 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
179 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
180 if (eeprom.ack) {
181 logout("\ti2c ack bit = 0\n");
182 sda = 0;
183 eeprom.ack = 0;
184 } else if (eeprom.sda == sda) {
185 uint8_t bit = (sda != 0);
186 logout("\ti2c bit = %d\n", bit);
187 if (eeprom.tick < 9) {
188 eeprom.command <<= 1;
189 eeprom.command += bit;
190 eeprom.tick++;
191 if (eeprom.tick == 9) {
192 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
193 eeprom.ack = 1;
195 } else if (eeprom.tick < 17) {
196 if (eeprom.command & 1) {
197 sda = ((eeprom.data & 0x80) != 0);
199 eeprom.address <<= 1;
200 eeprom.address += bit;
201 eeprom.tick++;
202 eeprom.data <<= 1;
203 if (eeprom.tick == 17) {
204 eeprom.data = eeprom.contents[eeprom.address];
205 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
206 eeprom.ack = 1;
207 eeprom.tick = 0;
209 } else if (eeprom.tick >= 17) {
210 sda = 0;
212 } else {
213 logout("\tsda changed with raising scl\n");
215 } else {
216 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
218 eeprom.scl = scl;
219 eeprom.sda = sda;
222 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
224 MaltaFPGAState *s = opaque;
225 uint32_t val = 0;
226 uint32_t saddr;
228 saddr = (addr & 0xfffff);
230 switch (saddr) {
232 /* SWITCH Register */
233 case 0x00200:
234 val = 0x00000000; /* All switches closed */
235 break;
237 /* STATUS Register */
238 case 0x00208:
239 #ifdef TARGET_WORDS_BIGENDIAN
240 val = 0x00000012;
241 #else
242 val = 0x00000010;
243 #endif
244 break;
246 /* JMPRS Register */
247 case 0x00210:
248 val = 0x00;
249 break;
251 /* LEDBAR Register */
252 case 0x00408:
253 val = s->leds;
254 break;
256 /* BRKRES Register */
257 case 0x00508:
258 val = s->brk;
259 break;
261 /* UART Registers are handled directly by the serial device */
263 /* GPOUT Register */
264 case 0x00a00:
265 val = s->gpout;
266 break;
268 /* XXX: implement a real I2C controller */
270 /* GPINP Register */
271 case 0x00a08:
272 /* IN = OUT until a real I2C control is implemented */
273 if (s->i2csel)
274 val = s->i2cout;
275 else
276 val = 0x00;
277 break;
279 /* I2CINP Register */
280 case 0x00b00:
281 val = ((s->i2cin & ~1) | eeprom24c0x_read());
282 break;
284 /* I2COE Register */
285 case 0x00b08:
286 val = s->i2coe;
287 break;
289 /* I2COUT Register */
290 case 0x00b10:
291 val = s->i2cout;
292 break;
294 /* I2CSEL Register */
295 case 0x00b18:
296 val = s->i2csel;
297 break;
299 default:
300 #if 0
301 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
302 addr);
303 #endif
304 break;
306 return val;
309 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
310 uint32_t val)
312 MaltaFPGAState *s = opaque;
313 uint32_t saddr;
315 saddr = (addr & 0xfffff);
317 switch (saddr) {
319 /* SWITCH Register */
320 case 0x00200:
321 break;
323 /* JMPRS Register */
324 case 0x00210:
325 break;
327 /* LEDBAR Register */
328 /* XXX: implement a 8-LED array */
329 case 0x00408:
330 s->leds = val & 0xff;
331 break;
333 /* ASCIIWORD Register */
334 case 0x00410:
335 snprintf(s->display_text, 9, "%08X", val);
336 malta_fpga_update_display(s);
337 break;
339 /* ASCIIPOS0 to ASCIIPOS7 Registers */
340 case 0x00418:
341 case 0x00420:
342 case 0x00428:
343 case 0x00430:
344 case 0x00438:
345 case 0x00440:
346 case 0x00448:
347 case 0x00450:
348 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
349 malta_fpga_update_display(s);
350 break;
352 /* SOFTRES Register */
353 case 0x00500:
354 if (val == 0x42)
355 qemu_system_reset_request ();
356 break;
358 /* BRKRES Register */
359 case 0x00508:
360 s->brk = val & 0xff;
361 break;
363 /* UART Registers are handled directly by the serial device */
365 /* GPOUT Register */
366 case 0x00a00:
367 s->gpout = val & 0xff;
368 break;
370 /* I2COE Register */
371 case 0x00b08:
372 s->i2coe = val & 0x03;
373 break;
375 /* I2COUT Register */
376 case 0x00b10:
377 eeprom24c0x_write(val & 0x02, val & 0x01);
378 s->i2cout = val;
379 break;
381 /* I2CSEL Register */
382 case 0x00b18:
383 s->i2csel = val & 0x01;
384 break;
386 default:
387 #if 0
388 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
389 addr);
390 #endif
391 break;
395 static CPUReadMemoryFunc *malta_fpga_read[] = {
396 malta_fpga_readl,
397 malta_fpga_readl,
398 malta_fpga_readl
401 static CPUWriteMemoryFunc *malta_fpga_write[] = {
402 malta_fpga_writel,
403 malta_fpga_writel,
404 malta_fpga_writel
407 static void malta_fpga_reset(void *opaque)
409 MaltaFPGAState *s = opaque;
411 s->leds = 0x00;
412 s->brk = 0x0a;
413 s->gpout = 0x00;
414 s->i2cin = 0x3;
415 s->i2coe = 0x0;
416 s->i2cout = 0x3;
417 s->i2csel = 0x1;
419 s->display_text[8] = '\0';
420 snprintf(s->display_text, 9, " ");
423 static void malta_fpga_led_init(CharDriverState *chr)
425 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
427 qemu_chr_printf(chr, "+ +\r\n");
428 qemu_chr_printf(chr, "+--------+\r\n");
429 qemu_chr_printf(chr, "\n");
430 qemu_chr_printf(chr, "Malta ASCII\r\n");
431 qemu_chr_printf(chr, "+--------+\r\n");
432 qemu_chr_printf(chr, "+ +\r\n");
433 qemu_chr_printf(chr, "+--------+\r\n");
436 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
438 MaltaFPGAState *s;
439 int malta;
441 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
443 malta = cpu_register_io_memory(0, malta_fpga_read,
444 malta_fpga_write, s);
446 cpu_register_physical_memory(base, 0x900, malta);
447 /* 0xa00 is less than a page, so will still get the right offsets. */
448 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
450 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
452 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
454 malta_fpga_reset(s);
455 qemu_register_reset(malta_fpga_reset, s);
457 return s;
460 /* Audio support */
461 #ifdef HAS_AUDIO
462 static void audio_init (PCIBus *pci_bus)
464 struct soundhw *c;
465 int audio_enabled = 0;
467 for (c = soundhw; !audio_enabled && c->name; ++c) {
468 audio_enabled = c->enabled;
471 if (audio_enabled) {
472 AudioState *s;
474 s = AUD_init ();
475 if (s) {
476 for (c = soundhw; c->name; ++c) {
477 if (c->enabled)
478 c->init.init_pci (pci_bus, s);
483 #endif
485 /* Network support */
486 static void network_init (PCIBus *pci_bus)
488 int i;
490 for(i = 0; i < nb_nics; i++) {
491 NICInfo *nd = &nd_table[i];
492 int devfn = -1;
494 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
495 /* The malta board has a PCNet card using PCI SLOT 11 */
496 devfn = 88;
498 pci_nic_init(pci_bus, nd, devfn, "pcnet");
502 /* ROM and pseudo bootloader
504 The following code implements a very very simple bootloader. It first
505 loads the registers a0 to a3 to the values expected by the OS, and
506 then jump at the kernel address.
508 The bootloader should pass the locations of the kernel arguments and
509 environment variables tables. Those tables contain the 32-bit address
510 of NULL terminated strings. The environment variables table should be
511 terminated by a NULL address.
513 For a simpler implementation, the number of kernel arguments is fixed
514 to two (the name of the kernel and the command line), and the two
515 tables are actually the same one.
517 The registers a0 to a3 should contain the following values:
518 a0 - number of kernel arguments
519 a1 - 32-bit address of the kernel arguments table
520 a2 - 32-bit address of the environment variables table
521 a3 - RAM size in bytes
524 static void write_bootloader (CPUState *env, uint8_t *base,
525 int64_t kernel_entry)
527 uint32_t *p;
529 /* Small bootloader */
530 p = (uint32_t *)base;
531 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
532 stl_raw(p++, 0x00000000); /* nop */
534 /* YAMON service vector */
535 stl_raw(base + 0x500, 0xbfc00580); /* start: */
536 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
537 stl_raw(base + 0x520, 0xbfc00580); /* start: */
538 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
539 stl_raw(base + 0x534, 0xbfc00808); /* print: */
540 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
541 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
542 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
543 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
544 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
545 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
546 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
547 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
550 /* Second part of the bootloader */
551 p = (uint32_t *) (base + 0x580);
552 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
553 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
554 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
555 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
556 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
557 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
558 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
559 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
560 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
562 /* Load BAR registers as done by YAMON */
563 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
565 #ifdef TARGET_WORDS_BIGENDIAN
566 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
567 #else
568 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
569 #endif
570 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
572 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
574 #ifdef TARGET_WORDS_BIGENDIAN
575 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
576 #else
577 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
578 #endif
579 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
580 #ifdef TARGET_WORDS_BIGENDIAN
581 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
582 #else
583 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
584 #endif
585 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
587 #ifdef TARGET_WORDS_BIGENDIAN
588 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
589 #else
590 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
591 #endif
592 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
593 #ifdef TARGET_WORDS_BIGENDIAN
594 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
595 #else
596 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
597 #endif
598 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
600 #ifdef TARGET_WORDS_BIGENDIAN
601 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
602 #else
603 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
604 #endif
605 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
606 #ifdef TARGET_WORDS_BIGENDIAN
607 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
608 #else
609 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
610 #endif
611 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
613 /* Jump to kernel code */
614 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
615 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
616 stl_raw(p++, 0x03e00008); /* jr ra */
617 stl_raw(p++, 0x00000000); /* nop */
619 /* YAMON subroutines */
620 p = (uint32_t *) (base + 0x800);
621 stl_raw(p++, 0x03e00008); /* jr ra */
622 stl_raw(p++, 0x24020000); /* li v0,0 */
623 /* 808 YAMON print */
624 stl_raw(p++, 0x03e06821); /* move t5,ra */
625 stl_raw(p++, 0x00805821); /* move t3,a0 */
626 stl_raw(p++, 0x00a05021); /* move t2,a1 */
627 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
628 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
629 stl_raw(p++, 0x10800005); /* beqz a0,834 */
630 stl_raw(p++, 0x00000000); /* nop */
631 stl_raw(p++, 0x0ff0021c); /* jal 870 */
632 stl_raw(p++, 0x00000000); /* nop */
633 stl_raw(p++, 0x08000205); /* j 814 */
634 stl_raw(p++, 0x00000000); /* nop */
635 stl_raw(p++, 0x01a00008); /* jr t5 */
636 stl_raw(p++, 0x01602021); /* move a0,t3 */
637 /* 0x83c YAMON print_count */
638 stl_raw(p++, 0x03e06821); /* move t5,ra */
639 stl_raw(p++, 0x00805821); /* move t3,a0 */
640 stl_raw(p++, 0x00a05021); /* move t2,a1 */
641 stl_raw(p++, 0x00c06021); /* move t4,a2 */
642 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
643 stl_raw(p++, 0x0ff0021c); /* jal 870 */
644 stl_raw(p++, 0x00000000); /* nop */
645 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
646 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
647 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
648 stl_raw(p++, 0x00000000); /* nop */
649 stl_raw(p++, 0x01a00008); /* jr t5 */
650 stl_raw(p++, 0x01602021); /* move a0,t3 */
651 /* 0x870 */
652 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
653 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
654 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
655 stl_raw(p++, 0x00000000); /* nop */
656 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
657 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
658 stl_raw(p++, 0x00000000); /* nop */
659 stl_raw(p++, 0x03e00008); /* jr ra */
660 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
664 static void prom_set(int index, const char *string, ...)
666 char buf[ENVP_ENTRY_SIZE];
667 target_phys_addr_t p;
668 va_list ap;
669 int32_t table_addr;
671 if (index >= ENVP_NB_ENTRIES)
672 return;
674 p = ENVP_ADDR + VIRT_TO_PHYS_ADDEND + index * 4;
676 if (string == NULL) {
677 stl_phys(p, 0);
678 return;
681 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES
682 + index * ENVP_ENTRY_SIZE;
683 stl_phys(p, table_addr);
685 va_start(ap, string);
686 vsnprintf(buf, ENVP_ENTRY_SIZE, string, ap);
687 va_end(ap);
688 pstrcpy_targphys(table_addr + VIRT_TO_PHYS_ADDEND, ENVP_ENTRY_SIZE, buf);
691 /* Kernel */
692 static int64_t load_kernel (CPUState *env)
694 int64_t kernel_entry, kernel_low, kernel_high;
695 int index = 0;
696 long initrd_size;
697 ram_addr_t initrd_offset;
699 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
700 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
701 (uint64_t *)&kernel_high) < 0) {
702 fprintf(stderr, "qemu: could not load kernel '%s'\n",
703 loaderparams.kernel_filename);
704 exit(1);
707 /* load initrd */
708 initrd_size = 0;
709 initrd_offset = 0;
710 if (loaderparams.initrd_filename) {
711 initrd_size = get_image_size (loaderparams.initrd_filename);
712 if (initrd_size > 0) {
713 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
714 if (initrd_offset + initrd_size > ram_size) {
715 fprintf(stderr,
716 "qemu: memory too small for initial ram disk '%s'\n",
717 loaderparams.initrd_filename);
718 exit(1);
720 initrd_size = load_image_targphys(loaderparams.initrd_filename,
721 initrd_offset,
722 ram_size - initrd_offset);
724 if (initrd_size == (target_ulong) -1) {
725 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
726 loaderparams.initrd_filename);
727 exit(1);
731 /* Store command line. */
732 prom_set(index++, loaderparams.kernel_filename);
733 if (initrd_size > 0)
734 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
735 PHYS_TO_VIRT(initrd_offset), initrd_size,
736 loaderparams.kernel_cmdline);
737 else
738 prom_set(index++, loaderparams.kernel_cmdline);
740 /* Setup minimum environment variables */
741 prom_set(index++, "memsize");
742 prom_set(index++, "%i", loaderparams.ram_size);
743 prom_set(index++, "modetty0");
744 prom_set(index++, "38400n8r");
745 prom_set(index++, NULL);
747 return kernel_entry;
750 static void main_cpu_reset(void *opaque)
752 CPUState *env = opaque;
753 cpu_reset(env);
755 /* The bootload does not need to be rewritten as it is located in a
756 read only location. The kernel location and the arguments table
757 location does not change. */
758 if (loaderparams.kernel_filename) {
759 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
760 load_kernel (env);
764 static
765 void mips_malta_init (ram_addr_t ram_size, int vga_ram_size,
766 const char *boot_device,
767 const char *kernel_filename, const char *kernel_cmdline,
768 const char *initrd_filename, const char *cpu_model)
770 char buf[1024];
771 ram_addr_t ram_offset;
772 ram_addr_t bios_offset;
773 target_long bios_size;
774 int64_t kernel_entry;
775 PCIBus *pci_bus;
776 CPUState *env;
777 RTCState *rtc_state;
778 fdctrl_t *floppy_controller;
779 MaltaFPGAState *malta_fpga;
780 qemu_irq *i8259;
781 int piix4_devfn;
782 uint8_t *eeprom_buf;
783 i2c_bus *smbus;
784 int i;
785 int index;
786 BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
787 BlockDriverState *fd[MAX_FD];
788 int fl_idx = 0;
789 int fl_sectors = 0;
791 /* init CPUs */
792 if (cpu_model == NULL) {
793 #ifdef TARGET_MIPS64
794 cpu_model = "20Kc";
795 #else
796 cpu_model = "24Kf";
797 #endif
799 env = cpu_init(cpu_model);
800 if (!env) {
801 fprintf(stderr, "Unable to find CPU definition\n");
802 exit(1);
804 qemu_register_reset(main_cpu_reset, env);
806 /* allocate RAM */
807 if (ram_size > (256 << 20)) {
808 fprintf(stderr,
809 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
810 ((unsigned int)ram_size / (1 << 20)));
811 exit(1);
813 ram_offset = qemu_ram_alloc(ram_size);
814 bios_offset = qemu_ram_alloc(BIOS_SIZE);
817 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
819 /* Map the bios at two physical locations, as on the real board. */
820 cpu_register_physical_memory(0x1e000000LL,
821 BIOS_SIZE, bios_offset | IO_MEM_ROM);
822 cpu_register_physical_memory(0x1fc00000LL,
823 BIOS_SIZE, bios_offset | IO_MEM_ROM);
825 /* FPGA */
826 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
828 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
829 if (kernel_filename) {
830 /* Write a small bootloader to the flash location. */
831 loaderparams.ram_size = ram_size;
832 loaderparams.kernel_filename = kernel_filename;
833 loaderparams.kernel_cmdline = kernel_cmdline;
834 loaderparams.initrd_filename = initrd_filename;
835 kernel_entry = load_kernel(env);
836 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
837 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
838 } else {
839 index = drive_get_index(IF_PFLASH, 0, fl_idx);
840 if (index != -1) {
841 /* Load firmware from flash. */
842 bios_size = 0x400000;
843 fl_sectors = bios_size >> 16;
844 #ifdef DEBUG_BOARD_INIT
845 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
846 "offset %08lx addr %08llx '%s' %x\n",
847 fl_idx, bios_size, bios_offset, 0x1e000000LL,
848 bdrv_get_device_name(drives_table[index].bdrv), fl_sectors);
849 #endif
850 pflash_cfi01_register(0x1e000000LL, bios_offset,
851 drives_table[index].bdrv, 65536, fl_sectors,
852 4, 0x0000, 0x0000, 0x0000, 0x0000);
853 fl_idx++;
854 } else {
855 /* Load a BIOS image. */
856 if (bios_name == NULL)
857 bios_name = BIOS_FILENAME;
858 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
859 bios_size = load_image_targphys(buf, 0x1fc00000LL, BIOS_SIZE);
860 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
861 fprintf(stderr,
862 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
863 buf);
864 exit(1);
867 /* In little endian mode the 32bit words in the bios are swapped,
868 a neat trick which allows bi-endian firmware. */
869 #ifndef TARGET_WORDS_BIGENDIAN
871 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
872 uint32_t *end = addr + bios_size;
873 while (addr < end) {
874 bswap32s(addr);
877 #endif
880 /* Board ID = 0x420 (Malta Board with CoreLV)
881 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
882 map to the board ID. */
883 stl_phys(0x1fc00010LL, 0x00000420);
885 /* Init internal devices */
886 cpu_mips_irq_init_cpu(env);
887 cpu_mips_clock_init(env);
889 /* Interrupt controller */
890 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
891 i8259 = i8259_init(env->irq[2]);
893 /* Northbridge */
894 pci_bus = pci_gt64120_init(i8259);
896 /* Southbridge */
898 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
899 fprintf(stderr, "qemu: too many IDE bus\n");
900 exit(1);
903 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
904 index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
905 if (index != -1)
906 hd[i] = drives_table[index].bdrv;
907 else
908 hd[i] = NULL;
911 piix4_devfn = piix4_init(pci_bus, 80);
912 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
913 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
914 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
915 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
916 for (i = 0; i < 8; i++) {
917 /* TODO: Populate SPD eeprom data. */
918 smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
920 pit = pit_init(0x40, i8259[0]);
921 DMA_init(0);
923 /* Super I/O */
924 i8042_init(i8259[1], i8259[12], 0x60);
925 rtc_state = rtc_init(0x70, i8259[8], 2000);
926 serial_init(0x3f8, i8259[4], 115200, serial_hds[0]);
927 serial_init(0x2f8, i8259[3], 115200, serial_hds[1]);
928 if (parallel_hds[0])
929 parallel_init(0x378, i8259[7], parallel_hds[0]);
930 for(i = 0; i < MAX_FD; i++) {
931 index = drive_get_index(IF_FLOPPY, 0, i);
932 if (index != -1)
933 fd[i] = drives_table[index].bdrv;
934 else
935 fd[i] = NULL;
937 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
939 /* Sound card */
940 #ifdef HAS_AUDIO
941 audio_init(pci_bus);
942 #endif
944 /* Network card */
945 network_init(pci_bus);
947 /* Optional PCI video card */
948 if (cirrus_vga_enabled) {
949 pci_cirrus_vga_init(pci_bus, vga_ram_size);
950 } else if (vmsvga_enabled) {
951 pci_vmsvga_init(pci_bus, vga_ram_size);
952 } else if (std_vga_enabled) {
953 pci_vga_init(pci_bus, vga_ram_size, 0, 0);
957 QEMUMachine mips_malta_machine = {
958 .name = "malta",
959 .desc = "MIPS Malta Core LV",
960 .init = mips_malta_init,