4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
42 /* XXX: these constants may be independent of the host ones even for Unix */
55 typedef struct GDBRegisterState
{
61 struct GDBRegisterState
*next
;
71 typedef struct GDBState
{
72 CPUState
*env
; /* current CPU */
73 enum RSState state
; /* parsing state */
74 char line_buf
[MAX_PACKET_LENGTH
];
77 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
80 #ifdef CONFIG_USER_ONLY
88 /* By default use no IRQs and no timers while single stepping so as to
89 * make single stepping like an ICE HW step.
91 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
93 /* This is an ugly hack to cope with both new and old gdb.
94 If gdb sends qXfer:features:read then assume we're talking to a newish
95 gdb that understands target descriptions. */
96 static int gdb_has_xml
;
98 #ifdef CONFIG_USER_ONLY
99 /* XXX: This is not thread safe. Do we care? */
100 static int gdbserver_fd
= -1;
102 /* XXX: remove this hack. */
103 static GDBState gdbserver_state
;
105 static int get_char(GDBState
*s
)
111 ret
= recv(s
->fd
, &ch
, 1, 0);
113 if (errno
== ECONNRESET
)
115 if (errno
!= EINTR
&& errno
!= EAGAIN
)
117 } else if (ret
== 0) {
129 /* GDB stub state for use by semihosting syscalls. */
130 static GDBState
*gdb_syscall_state
;
131 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
139 /* If gdb is connected when the first semihosting syscall occurs then use
140 remote gdb syscalls. Otherwise use native file IO. */
141 int use_gdb_syscalls(void)
143 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
144 gdb_syscall_mode
= (gdb_syscall_state
? GDB_SYS_ENABLED
147 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
150 /* Resume execution. */
151 static inline void gdb_continue(GDBState
*s
)
153 #ifdef CONFIG_USER_ONLY
154 s
->running_state
= 1;
160 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
162 #ifdef CONFIG_USER_ONLY
166 ret
= send(s
->fd
, buf
, len
, 0);
168 if (errno
!= EINTR
&& errno
!= EAGAIN
)
176 qemu_chr_write(s
->chr
, buf
, len
);
180 static inline int fromhex(int v
)
182 if (v
>= '0' && v
<= '9')
184 else if (v
>= 'A' && v
<= 'F')
186 else if (v
>= 'a' && v
<= 'f')
192 static inline int tohex(int v
)
200 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
205 for(i
= 0; i
< len
; i
++) {
207 *q
++ = tohex(c
>> 4);
208 *q
++ = tohex(c
& 0xf);
213 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
217 for(i
= 0; i
< len
; i
++) {
218 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
223 /* return -1 if error, 0 if OK */
224 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
235 for(i
= 0; i
< len
; i
++) {
239 *(p
++) = tohex((csum
>> 4) & 0xf);
240 *(p
++) = tohex((csum
) & 0xf);
242 s
->last_packet_len
= p
- s
->last_packet
;
243 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
245 #ifdef CONFIG_USER_ONLY
258 /* return -1 if error, 0 if OK */
259 static int put_packet(GDBState
*s
, const char *buf
)
262 printf("reply='%s'\n", buf
);
265 return put_packet_binary(s
, buf
, strlen(buf
));
268 /* The GDB remote protocol transfers values in target byte order. This means
269 we can use the raw memory access routines to access the value buffer.
270 Conveniently, these also handle the case where the buffer is mis-aligned.
272 #define GET_REG8(val) do { \
273 stb_p(mem_buf, val); \
276 #define GET_REG16(val) do { \
277 stw_p(mem_buf, val); \
280 #define GET_REG32(val) do { \
281 stl_p(mem_buf, val); \
284 #define GET_REG64(val) do { \
285 stq_p(mem_buf, val); \
289 #if TARGET_LONG_BITS == 64
290 #define GET_REGL(val) GET_REG64(val)
291 #define ldtul_p(addr) ldq_p(addr)
293 #define GET_REGL(val) GET_REG32(val)
294 #define ldtul_p(addr) ldl_p(addr)
297 #if defined(TARGET_I386)
300 static const int gpr_map
[16] = {
301 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
302 8, 9, 10, 11, 12, 13, 14, 15
305 static const int gpr_map
[8] = {0, 1, 2, 3, 4, 5, 6, 7};
308 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
310 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
312 if (n
< CPU_NB_REGS
) {
313 GET_REGL(env
->regs
[gpr_map
[n
]]);
314 } else if (n
>= CPU_NB_REGS
+ 8 && n
< CPU_NB_REGS
+ 16) {
315 /* FIXME: byteswap float values. */
316 #ifdef USE_X86LDOUBLE
317 memcpy(mem_buf
, &env
->fpregs
[n
- (CPU_NB_REGS
+ 8)], 10);
319 memset(mem_buf
, 0, 10);
322 } else if (n
>= CPU_NB_REGS
+ 24) {
323 n
-= CPU_NB_REGS
+ 24;
324 if (n
< CPU_NB_REGS
) {
325 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
326 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
328 } else if (n
== CPU_NB_REGS
) {
329 GET_REG32(env
->mxcsr
);
334 case 0: GET_REGL(env
->eip
);
335 case 1: GET_REG32(env
->eflags
);
336 case 2: GET_REG32(env
->segs
[R_CS
].selector
);
337 case 3: GET_REG32(env
->segs
[R_SS
].selector
);
338 case 4: GET_REG32(env
->segs
[R_DS
].selector
);
339 case 5: GET_REG32(env
->segs
[R_ES
].selector
);
340 case 6: GET_REG32(env
->segs
[R_FS
].selector
);
341 case 7: GET_REG32(env
->segs
[R_GS
].selector
);
342 /* 8...15 x87 regs. */
343 case 16: GET_REG32(env
->fpuc
);
344 case 17: GET_REG32((env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11);
345 case 18: GET_REG32(0); /* ftag */
346 case 19: GET_REG32(0); /* fiseg */
347 case 20: GET_REG32(0); /* fioff */
348 case 21: GET_REG32(0); /* foseg */
349 case 22: GET_REG32(0); /* fooff */
350 case 23: GET_REG32(0); /* fop */
357 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int i
)
361 if (i
< CPU_NB_REGS
) {
362 env
->regs
[gpr_map
[i
]] = ldtul_p(mem_buf
);
363 return sizeof(target_ulong
);
364 } else if (i
>= CPU_NB_REGS
+ 8 && i
< CPU_NB_REGS
+ 16) {
365 i
-= CPU_NB_REGS
+ 8;
366 #ifdef USE_X86LDOUBLE
367 memcpy(&env
->fpregs
[i
], mem_buf
, 10);
370 } else if (i
>= CPU_NB_REGS
+ 24) {
371 i
-= CPU_NB_REGS
+ 24;
372 if (i
< CPU_NB_REGS
) {
373 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(mem_buf
);
374 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
376 } else if (i
== CPU_NB_REGS
) {
377 env
->mxcsr
= ldl_p(mem_buf
);
383 case 0: env
->eip
= ldtul_p(mem_buf
); return sizeof(target_ulong
);
384 case 1: env
->eflags
= ldl_p(mem_buf
); return 4;
385 #if defined(CONFIG_USER_ONLY)
386 #define LOAD_SEG(index, sreg)\
387 tmp = ldl_p(mem_buf);\
388 if (tmp != env->segs[sreg].selector)\
389 cpu_x86_load_seg(env, sreg, tmp);
391 /* FIXME: Honor segment registers. Needs to avoid raising an exception
392 when the selector is invalid. */
393 #define LOAD_SEG(index, sreg) do {} while(0)
395 case 2: LOAD_SEG(10, R_CS
); return 4;
396 case 3: LOAD_SEG(11, R_SS
); return 4;
397 case 4: LOAD_SEG(12, R_DS
); return 4;
398 case 5: LOAD_SEG(13, R_ES
); return 4;
399 case 6: LOAD_SEG(14, R_FS
); return 4;
400 case 7: LOAD_SEG(15, R_GS
); return 4;
401 /* 8...15 x87 regs. */
402 case 16: env
->fpuc
= ldl_p(mem_buf
); return 4;
404 tmp
= ldl_p(mem_buf
);
405 env
->fpstt
= (tmp
>> 11) & 7;
406 env
->fpus
= tmp
& ~0x3800;
408 case 18: /* ftag */ return 4;
409 case 19: /* fiseg */ return 4;
410 case 20: /* fioff */ return 4;
411 case 21: /* foseg */ return 4;
412 case 22: /* fooff */ return 4;
413 case 23: /* fop */ return 4;
417 /* Unrecognised register. */
421 #elif defined (TARGET_PPC)
423 #define NUM_CORE_REGS 71
425 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
429 GET_REGL(env
->gpr
[n
]);
432 stfq_p(mem_buf
, env
->fpr
[n
]);
436 case 64: GET_REGL(env
->nip
);
437 case 65: GET_REGL(env
->msr
);
442 for (i
= 0; i
< 8; i
++)
443 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
446 case 67: GET_REGL(env
->lr
);
447 case 68: GET_REGL(env
->ctr
);
448 case 69: GET_REGL(env
->xer
);
449 case 70: GET_REG32(0); /* fpscr */
455 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
459 env
->gpr
[n
] = ldtul_p(mem_buf
);
460 return sizeof(target_ulong
);
463 env
->fpr
[n
] = ldfq_p(mem_buf
);
468 env
->nip
= ldtul_p(mem_buf
);
469 return sizeof(target_ulong
);
471 ppc_store_msr(env
, ldtul_p(mem_buf
));
472 return sizeof(target_ulong
);
475 uint32_t cr
= ldl_p(mem_buf
);
477 for (i
= 0; i
< 8; i
++)
478 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
482 env
->lr
= ldtul_p(mem_buf
);
483 return sizeof(target_ulong
);
485 env
->ctr
= ldtul_p(mem_buf
);
486 return sizeof(target_ulong
);
488 env
->xer
= ldtul_p(mem_buf
);
489 return sizeof(target_ulong
);
498 #elif defined (TARGET_SPARC)
500 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
501 #define NUM_CORE_REGS 86
503 #define NUM_CORE_REGS 73
507 #define GET_REGA(val) GET_REG32(val)
509 #define GET_REGA(val) GET_REGL(val)
512 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
516 GET_REGA(env
->gregs
[n
]);
519 /* register window */
520 GET_REGA(env
->regwptr
[n
- 8]);
522 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
525 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
527 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
529 case 64: GET_REGA(env
->y
);
530 case 65: GET_REGA(GET_PSR(env
));
531 case 66: GET_REGA(env
->wim
);
532 case 67: GET_REGA(env
->tbr
);
533 case 68: GET_REGA(env
->pc
);
534 case 69: GET_REGA(env
->npc
);
535 case 70: GET_REGA(env
->fsr
);
536 case 71: GET_REGA(0); /* csr */
537 case 72: GET_REGA(0);
542 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
545 /* f32-f62 (double width, even numbers only) */
548 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
549 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
553 case 80: GET_REGL(env
->pc
);
554 case 81: GET_REGL(env
->npc
);
555 case 82: GET_REGL(((uint64_t)GET_CCR(env
) << 32) |
556 ((env
->asi
& 0xff) << 24) |
557 ((env
->pstate
& 0xfff) << 8) |
559 case 83: GET_REGL(env
->fsr
);
560 case 84: GET_REGL(env
->fprs
);
561 case 85: GET_REGL(env
->y
);
567 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
569 #if defined(TARGET_ABI32)
572 tmp
= ldl_p(mem_buf
);
576 tmp
= ldtul_p(mem_buf
);
583 /* register window */
584 env
->regwptr
[n
- 8] = tmp
;
586 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
589 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
591 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
593 case 64: env
->y
= tmp
; break;
594 case 65: PUT_PSR(env
, tmp
); break;
595 case 66: env
->wim
= tmp
; break;
596 case 67: env
->tbr
= tmp
; break;
597 case 68: env
->pc
= tmp
; break;
598 case 69: env
->npc
= tmp
; break;
599 case 70: env
->fsr
= tmp
; break;
607 env
->fpr
[n
] = ldfl_p(mem_buf
);
610 /* f32-f62 (double width, even numbers only) */
611 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
612 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
615 case 80: env
->pc
= tmp
; break;
616 case 81: env
->npc
= tmp
; break;
618 PUT_CCR(env
, tmp
>> 32);
619 env
->asi
= (tmp
>> 24) & 0xff;
620 env
->pstate
= (tmp
>> 8) & 0xfff;
621 PUT_CWP64(env
, tmp
& 0xff);
623 case 83: env
->fsr
= tmp
; break;
624 case 84: env
->fprs
= tmp
; break;
625 case 85: env
->y
= tmp
; break;
632 #elif defined (TARGET_ARM)
634 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
635 whatever the target description contains. Due to a historical mishap
636 the FPA registers appear in between core integer regs and the CPSR.
637 We hack round this by giving the FPA regs zero size when talking to a
639 #define NUM_CORE_REGS 26
640 #define GDB_CORE_XML "arm-core.xml"
642 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
645 /* Core integer register. */
646 GET_REG32(env
->regs
[n
]);
652 memset(mem_buf
, 0, 12);
657 /* FPA status register. */
663 GET_REG32(cpsr_read(env
));
665 /* Unknown register. */
669 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
673 tmp
= ldl_p(mem_buf
);
675 /* Mask out low bit of PC to workaround gdb bugs. This will probably
676 cause problems if we ever implement the Jazelle DBX extensions. */
681 /* Core integer register. */
685 if (n
< 24) { /* 16-23 */
686 /* FPA registers (ignored). */
693 /* FPA status register (ignored). */
699 cpsr_write (env
, tmp
, 0xffffffff);
702 /* Unknown register. */
706 #elif defined (TARGET_M68K)
708 #define NUM_CORE_REGS 18
710 #define GDB_CORE_XML "cf-core.xml"
712 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
716 GET_REG32(env
->dregs
[n
]);
719 GET_REG32(env
->aregs
[n
- 8]);
722 case 16: GET_REG32(env
->sr
);
723 case 17: GET_REG32(env
->pc
);
726 /* FP registers not included here because they vary between
727 ColdFire and m68k. Use XML bits for these. */
731 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
735 tmp
= ldl_p(mem_buf
);
742 env
->aregs
[n
- 8] = tmp
;
745 case 16: env
->sr
= tmp
; break;
746 case 17: env
->pc
= tmp
; break;
752 #elif defined (TARGET_MIPS)
754 #define NUM_CORE_REGS 73
756 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
759 GET_REGL(env
->active_tc
.gpr
[n
]);
761 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
762 if (n
>= 38 && n
< 70) {
763 if (env
->CP0_Status
& (1 << CP0St_FR
))
764 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
766 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
769 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
770 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
774 case 32: GET_REGL((int32_t)env
->CP0_Status
);
775 case 33: GET_REGL(env
->active_tc
.LO
[0]);
776 case 34: GET_REGL(env
->active_tc
.HI
[0]);
777 case 35: GET_REGL(env
->CP0_BadVAddr
);
778 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
779 case 37: GET_REGL(env
->active_tc
.PC
);
780 case 72: GET_REGL(0); /* fp */
781 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
783 if (n
>= 73 && n
<= 88) {
784 /* 16 embedded regs. */
791 /* convert MIPS rounding mode in FCR31 to IEEE library */
792 static unsigned int ieee_rm
[] =
794 float_round_nearest_even
,
799 #define RESTORE_ROUNDING_MODE \
800 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
802 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
806 tmp
= ldtul_p(mem_buf
);
809 env
->active_tc
.gpr
[n
] = tmp
;
810 return sizeof(target_ulong
);
812 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
813 && n
>= 38 && n
< 73) {
815 if (env
->CP0_Status
& (1 << CP0St_FR
))
816 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
818 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
822 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
823 /* set rounding mode */
824 RESTORE_ROUNDING_MODE
;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
830 case 71: env
->active_fpu
.fcr0
= tmp
; break;
832 return sizeof(target_ulong
);
835 case 32: env
->CP0_Status
= tmp
; break;
836 case 33: env
->active_tc
.LO
[0] = tmp
; break;
837 case 34: env
->active_tc
.HI
[0] = tmp
; break;
838 case 35: env
->CP0_BadVAddr
= tmp
; break;
839 case 36: env
->CP0_Cause
= tmp
; break;
840 case 37: env
->active_tc
.PC
= tmp
; break;
841 case 72: /* fp, ignored */ break;
845 /* Other registers are readonly. Ignore writes. */
849 return sizeof(target_ulong
);
851 #elif defined (TARGET_SH4)
853 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854 /* FIXME: We should use XML for this. */
856 #define NUM_CORE_REGS 59
858 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
861 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
862 GET_REGL(env
->gregs
[n
+ 16]);
864 GET_REGL(env
->gregs
[n
]);
867 GET_REGL(env
->gregs
[n
- 8]);
868 } else if (n
>= 25 && n
< 41) {
869 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
870 } else if (n
>= 43 && n
< 51) {
871 GET_REGL(env
->gregs
[n
- 43]);
872 } else if (n
>= 51 && n
< 59) {
873 GET_REGL(env
->gregs
[n
- (51 - 16)]);
876 case 16: GET_REGL(env
->pc
);
877 case 17: GET_REGL(env
->pr
);
878 case 18: GET_REGL(env
->gbr
);
879 case 19: GET_REGL(env
->vbr
);
880 case 20: GET_REGL(env
->mach
);
881 case 21: GET_REGL(env
->macl
);
882 case 22: GET_REGL(env
->sr
);
883 case 23: GET_REGL(env
->fpul
);
884 case 24: GET_REGL(env
->fpscr
);
885 case 41: GET_REGL(env
->ssr
);
886 case 42: GET_REGL(env
->spc
);
892 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
896 tmp
= ldl_p(mem_buf
);
899 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
900 env
->gregs
[n
+ 16] = tmp
;
906 env
->gregs
[n
- 8] = tmp
;
908 } else if (n
>= 25 && n
< 41) {
909 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
910 } else if (n
>= 43 && n
< 51) {
911 env
->gregs
[n
- 43] = tmp
;
913 } else if (n
>= 51 && n
< 59) {
914 env
->gregs
[n
- (51 - 16)] = tmp
;
918 case 16: env
->pc
= tmp
;
919 case 17: env
->pr
= tmp
;
920 case 18: env
->gbr
= tmp
;
921 case 19: env
->vbr
= tmp
;
922 case 20: env
->mach
= tmp
;
923 case 21: env
->macl
= tmp
;
924 case 22: env
->sr
= tmp
;
925 case 23: env
->fpul
= tmp
;
926 case 24: env
->fpscr
= tmp
;
927 case 41: env
->ssr
= tmp
;
928 case 42: env
->spc
= tmp
;
934 #elif defined (TARGET_CRIS)
936 #define NUM_CORE_REGS 49
938 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
942 srs
= env
->pregs
[PR_SRS
];
944 GET_REG32(env
->regs
[n
]);
947 if (n
>= 21 && n
< 32) {
948 GET_REG32(env
->pregs
[n
- 16]);
950 if (n
>= 33 && n
< 49) {
951 GET_REG32(env
->sregs
[srs
][n
- 33]);
954 case 16: GET_REG8(env
->pregs
[0]);
955 case 17: GET_REG8(env
->pregs
[1]);
956 case 18: GET_REG32(env
->pregs
[2]);
957 case 19: GET_REG8(srs
);
958 case 20: GET_REG16(env
->pregs
[4]);
959 case 32: GET_REG32(env
->pc
);
965 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
972 tmp
= ldl_p(mem_buf
);
978 if (n
>= 21 && n
< 32) {
979 env
->pregs
[n
- 16] = tmp
;
982 /* FIXME: Should support function regs be writable? */
986 case 18: env
->pregs
[PR_PID
] = tmp
; break;
989 case 32: env
->pc
= tmp
; break;
996 #define NUM_CORE_REGS 0
998 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1003 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1010 static int num_g_regs
= NUM_CORE_REGS
;
1013 /* Encode data using the encoding for 'x' packets. */
1014 static int memtox(char *buf
, const char *mem
, int len
)
1022 case '#': case '$': case '*': case '}':
1034 const char *get_feature_xml(CPUState
*env
, const char *p
, const char **newp
)
1036 extern const char *const xml_builtin
[][2];
1040 static char target_xml
[1024];
1043 while (p
[len
] && p
[len
] != ':')
1048 if (strncmp(p
, "target.xml", len
) == 0) {
1049 /* Generate the XML description for this CPU. */
1050 if (!target_xml
[0]) {
1051 GDBRegisterState
*r
;
1053 snprintf(target_xml
, sizeof(target_xml
),
1054 "<?xml version=\"1.0\"?>"
1055 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1057 "<xi:include href=\"%s\"/>",
1060 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1061 strcat(target_xml
, "<xi:include href=\"");
1062 strcat(target_xml
, r
->xml
);
1063 strcat(target_xml
, "\"/>");
1065 strcat(target_xml
, "</target>");
1069 for (i
= 0; ; i
++) {
1070 name
= xml_builtin
[i
][0];
1071 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1074 return name
? xml_builtin
[i
][1] : NULL
;
1078 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1080 GDBRegisterState
*r
;
1082 if (reg
< NUM_CORE_REGS
)
1083 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1085 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1086 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1087 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1093 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1095 GDBRegisterState
*r
;
1097 if (reg
< NUM_CORE_REGS
)
1098 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1100 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1101 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1102 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1108 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1109 specifies the first register number and these registers are included in
1110 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1111 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1114 void gdb_register_coprocessor(CPUState
* env
,
1115 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1116 int num_regs
, const char *xml
, int g_pos
)
1118 GDBRegisterState
*s
;
1119 GDBRegisterState
**p
;
1120 static int last_reg
= NUM_CORE_REGS
;
1122 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1123 s
->base_reg
= last_reg
;
1124 s
->num_regs
= num_regs
;
1125 s
->get_reg
= get_reg
;
1126 s
->set_reg
= set_reg
;
1130 /* Check for duplicates. */
1131 if (strcmp((*p
)->xml
, xml
) == 0)
1135 /* Add to end of list. */
1136 last_reg
+= num_regs
;
1139 if (g_pos
!= s
->base_reg
) {
1140 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1141 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1143 num_g_regs
= last_reg
;
1148 static int gdb_handle_packet(GDBState
*s
, CPUState
*env
, const char *line_buf
)
1151 int ch
, reg_size
, type
;
1152 char buf
[MAX_PACKET_LENGTH
];
1153 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1155 target_ulong addr
, len
;
1158 printf("command='%s'\n", line_buf
);
1164 /* TODO: Make this return the correct value for user-mode. */
1165 snprintf(buf
, sizeof(buf
), "S%02x", SIGTRAP
);
1167 /* Remove all the breakpoints when this query is issued,
1168 * because gdb is doing and initial connect and the state
1169 * should be cleaned up.
1171 cpu_breakpoint_remove_all(env
);
1172 cpu_watchpoint_remove_all(env
);
1176 addr
= strtoull(p
, (char **)&p
, 16);
1177 #if defined(TARGET_I386)
1179 #elif defined (TARGET_PPC)
1181 #elif defined (TARGET_SPARC)
1183 env
->npc
= addr
+ 4;
1184 #elif defined (TARGET_ARM)
1185 env
->regs
[15] = addr
;
1186 #elif defined (TARGET_SH4)
1188 #elif defined (TARGET_MIPS)
1189 env
->active_tc
.PC
= addr
;
1190 #elif defined (TARGET_CRIS)
1197 s
->signal
= strtoul(p
, (char **)&p
, 16);
1201 /* Kill the target */
1202 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1206 cpu_breakpoint_remove_all(env
);
1207 cpu_watchpoint_remove_all(env
);
1209 put_packet(s
, "OK");
1213 addr
= strtoull(p
, (char **)&p
, 16);
1214 #if defined(TARGET_I386)
1216 #elif defined (TARGET_PPC)
1218 #elif defined (TARGET_SPARC)
1220 env
->npc
= addr
+ 4;
1221 #elif defined (TARGET_ARM)
1222 env
->regs
[15] = addr
;
1223 #elif defined (TARGET_SH4)
1225 #elif defined (TARGET_MIPS)
1226 env
->active_tc
.PC
= addr
;
1227 #elif defined (TARGET_CRIS)
1231 cpu_single_step(env
, sstep_flags
);
1239 ret
= strtoull(p
, (char **)&p
, 16);
1242 err
= strtoull(p
, (char **)&p
, 16);
1249 if (gdb_current_syscall_cb
)
1250 gdb_current_syscall_cb(s
->env
, ret
, err
);
1252 put_packet(s
, "T02");
1260 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1261 reg_size
= gdb_read_register(env
, mem_buf
+ len
, addr
);
1264 memtohex(buf
, mem_buf
, len
);
1268 registers
= mem_buf
;
1269 len
= strlen(p
) / 2;
1270 hextomem((uint8_t *)registers
, p
, len
);
1271 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1272 reg_size
= gdb_write_register(env
, registers
, addr
);
1274 registers
+= reg_size
;
1276 put_packet(s
, "OK");
1279 addr
= strtoull(p
, (char **)&p
, 16);
1282 len
= strtoull(p
, NULL
, 16);
1283 if (cpu_memory_rw_debug(env
, addr
, mem_buf
, len
, 0) != 0) {
1284 put_packet (s
, "E14");
1286 memtohex(buf
, mem_buf
, len
);
1291 addr
= strtoull(p
, (char **)&p
, 16);
1294 len
= strtoull(p
, (char **)&p
, 16);
1297 hextomem(mem_buf
, p
, len
);
1298 if (cpu_memory_rw_debug(env
, addr
, mem_buf
, len
, 1) != 0)
1299 put_packet(s
, "E14");
1301 put_packet(s
, "OK");
1304 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1305 This works, but can be very slow. Anything new enough to
1306 understand XML also knows how to use this properly. */
1308 goto unknown_command
;
1309 addr
= strtoull(p
, (char **)&p
, 16);
1310 reg_size
= gdb_read_register(env
, mem_buf
, addr
);
1312 memtohex(buf
, mem_buf
, reg_size
);
1315 put_packet(s
, "E14");
1320 goto unknown_command
;
1321 addr
= strtoull(p
, (char **)&p
, 16);
1324 reg_size
= strlen(p
) / 2;
1325 hextomem(mem_buf
, p
, reg_size
);
1326 gdb_write_register(env
, mem_buf
, addr
);
1327 put_packet(s
, "OK");
1330 type
= strtoul(p
, (char **)&p
, 16);
1333 addr
= strtoull(p
, (char **)&p
, 16);
1336 len
= strtoull(p
, (char **)&p
, 16);
1340 if (cpu_breakpoint_insert(env
, addr
) < 0)
1341 goto breakpoint_error
;
1342 put_packet(s
, "OK");
1344 #ifndef CONFIG_USER_ONLY
1347 goto insert_watchpoint
;
1350 goto insert_watchpoint
;
1352 type
= PAGE_READ
| PAGE_WRITE
;
1354 if (cpu_watchpoint_insert(env
, addr
, type
) < 0)
1355 goto breakpoint_error
;
1356 put_packet(s
, "OK");
1365 put_packet(s
, "E22");
1369 type
= strtoul(p
, (char **)&p
, 16);
1372 addr
= strtoull(p
, (char **)&p
, 16);
1375 len
= strtoull(p
, (char **)&p
, 16);
1376 if (type
== 0 || type
== 1) {
1377 cpu_breakpoint_remove(env
, addr
);
1378 put_packet(s
, "OK");
1379 #ifndef CONFIG_USER_ONLY
1380 } else if (type
>= 2 || type
<= 4) {
1381 cpu_watchpoint_remove(env
, addr
);
1382 put_packet(s
, "OK");
1390 /* parse any 'q' packets here */
1391 if (!strcmp(p
,"qemu.sstepbits")) {
1392 /* Query Breakpoint bit definitions */
1393 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1399 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
1400 /* Display or change the sstep_flags */
1403 /* Display current setting */
1404 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
1409 type
= strtoul(p
, (char **)&p
, 16);
1411 put_packet(s
, "OK");
1414 #ifdef CONFIG_LINUX_USER
1415 else if (strncmp(p
, "Offsets", 7) == 0) {
1416 TaskState
*ts
= env
->opaque
;
1418 snprintf(buf
, sizeof(buf
),
1419 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
1420 ";Bss=" TARGET_ABI_FMT_lx
,
1421 ts
->info
->code_offset
,
1422 ts
->info
->data_offset
,
1423 ts
->info
->data_offset
);
1428 if (strncmp(p
, "Supported", 9) == 0) {
1429 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
1431 strcat(buf
, ";qXfer:features:read+");
1437 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
1439 target_ulong total_len
;
1443 xml
= get_feature_xml(env
, p
, &p
);
1445 snprintf(buf
, sizeof(buf
), "E00");
1452 addr
= strtoul(p
, (char **)&p
, 16);
1455 len
= strtoul(p
, (char **)&p
, 16);
1457 total_len
= strlen(xml
);
1458 if (addr
> total_len
) {
1459 snprintf(buf
, sizeof(buf
), "E00");
1463 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
1464 len
= (MAX_PACKET_LENGTH
- 5) / 2;
1465 if (len
< total_len
- addr
) {
1467 len
= memtox(buf
+ 1, xml
+ addr
, len
);
1470 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
1472 put_packet_binary(s
, buf
, len
+ 1);
1476 /* Unrecognised 'q' command. */
1477 goto unknown_command
;
1481 /* put empty packet */
1489 extern void tb_flush(CPUState
*env
);
1491 #ifndef CONFIG_USER_ONLY
1492 static void gdb_vm_stopped(void *opaque
, int reason
)
1494 GDBState
*s
= opaque
;
1498 if (s
->state
== RS_SYSCALL
)
1501 /* disable single step if it was enable */
1502 cpu_single_step(s
->env
, 0);
1504 if (reason
== EXCP_DEBUG
) {
1505 if (s
->env
->watchpoint_hit
) {
1506 snprintf(buf
, sizeof(buf
), "T%02xwatch:" TARGET_FMT_lx
";",
1508 s
->env
->watchpoint
[s
->env
->watchpoint_hit
- 1].vaddr
);
1510 s
->env
->watchpoint_hit
= 0;
1515 } else if (reason
== EXCP_INTERRUPT
) {
1520 snprintf(buf
, sizeof(buf
), "S%02x", ret
);
1525 /* Send a gdb syscall request.
1526 This accepts limited printf-style format specifiers, specifically:
1527 %x - target_ulong argument printed in hex.
1528 %lx - 64-bit argument printed in hex.
1529 %s - string pointer (target_ulong) and length (int) pair. */
1530 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
1539 s
= gdb_syscall_state
;
1542 gdb_current_syscall_cb
= cb
;
1543 s
->state
= RS_SYSCALL
;
1544 #ifndef CONFIG_USER_ONLY
1545 vm_stop(EXCP_DEBUG
);
1556 addr
= va_arg(va
, target_ulong
);
1557 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
1560 if (*(fmt
++) != 'x')
1562 i64
= va_arg(va
, uint64_t);
1563 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
1566 addr
= va_arg(va
, target_ulong
);
1567 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
1568 addr
, va_arg(va
, int));
1572 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
1583 #ifdef CONFIG_USER_ONLY
1584 gdb_handlesig(s
->env
, 0);
1586 cpu_interrupt(s
->env
, CPU_INTERRUPT_EXIT
);
1590 static void gdb_read_byte(GDBState
*s
, int ch
)
1592 CPUState
*env
= s
->env
;
1596 #ifndef CONFIG_USER_ONLY
1597 if (s
->last_packet_len
) {
1598 /* Waiting for a response to the last packet. If we see the start
1599 of a new command then abandon the previous response. */
1602 printf("Got NACK, retransmitting\n");
1604 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
1608 printf("Got ACK\n");
1610 printf("Got '%c' when expecting ACK/NACK\n", ch
);
1612 if (ch
== '+' || ch
== '$')
1613 s
->last_packet_len
= 0;
1618 /* when the CPU is running, we cannot do anything except stop
1619 it when receiving a char */
1620 vm_stop(EXCP_INTERRUPT
);
1627 s
->line_buf_index
= 0;
1628 s
->state
= RS_GETLINE
;
1633 s
->state
= RS_CHKSUM1
;
1634 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
1637 s
->line_buf
[s
->line_buf_index
++] = ch
;
1641 s
->line_buf
[s
->line_buf_index
] = '\0';
1642 s
->line_csum
= fromhex(ch
) << 4;
1643 s
->state
= RS_CHKSUM2
;
1646 s
->line_csum
|= fromhex(ch
);
1648 for(i
= 0; i
< s
->line_buf_index
; i
++) {
1649 csum
+= s
->line_buf
[i
];
1651 if (s
->line_csum
!= (csum
& 0xff)) {
1653 put_buffer(s
, &reply
, 1);
1657 put_buffer(s
, &reply
, 1);
1658 s
->state
= gdb_handle_packet(s
, env
, s
->line_buf
);
1667 #ifdef CONFIG_USER_ONLY
1669 gdb_handlesig (CPUState
*env
, int sig
)
1675 s
= &gdbserver_state
;
1676 if (gdbserver_fd
< 0 || s
->fd
< 0)
1679 /* disable single step if it was enabled */
1680 cpu_single_step(env
, 0);
1685 snprintf(buf
, sizeof(buf
), "S%02x", sig
);
1688 /* put_packet() might have detected that the peer terminated the
1695 s
->running_state
= 0;
1696 while (s
->running_state
== 0) {
1697 n
= read (s
->fd
, buf
, 256);
1702 for (i
= 0; i
< n
; i
++)
1703 gdb_read_byte (s
, buf
[i
]);
1705 else if (n
== 0 || errno
!= EAGAIN
)
1707 /* XXX: Connection closed. Should probably wait for annother
1708 connection before continuing. */
1717 /* Tell the remote gdb that the process has exited. */
1718 void gdb_exit(CPUState
*env
, int code
)
1723 s
= &gdbserver_state
;
1724 if (gdbserver_fd
< 0 || s
->fd
< 0)
1727 snprintf(buf
, sizeof(buf
), "W%02x", code
);
1732 static void gdb_accept(void *opaque
)
1735 struct sockaddr_in sockaddr
;
1740 len
= sizeof(sockaddr
);
1741 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
1742 if (fd
< 0 && errno
!= EINTR
) {
1745 } else if (fd
>= 0) {
1750 /* set short latency */
1752 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
1754 s
= &gdbserver_state
;
1755 memset (s
, 0, sizeof (GDBState
));
1756 s
->env
= first_cpu
; /* XXX: allow to change CPU */
1760 gdb_syscall_state
= s
;
1762 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
1765 static int gdbserver_open(int port
)
1767 struct sockaddr_in sockaddr
;
1770 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
1776 /* allow fast reuse */
1778 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
1780 sockaddr
.sin_family
= AF_INET
;
1781 sockaddr
.sin_port
= htons(port
);
1782 sockaddr
.sin_addr
.s_addr
= 0;
1783 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
1788 ret
= listen(fd
, 0);
1796 int gdbserver_start(int port
)
1798 gdbserver_fd
= gdbserver_open(port
);
1799 if (gdbserver_fd
< 0)
1801 /* accept connections */
1806 static int gdb_chr_can_receive(void *opaque
)
1808 /* We can handle an arbitrarily large amount of data.
1809 Pick the maximum packet size, which is as good as anything. */
1810 return MAX_PACKET_LENGTH
;
1813 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
1815 GDBState
*s
= opaque
;
1818 for (i
= 0; i
< size
; i
++) {
1819 gdb_read_byte(s
, buf
[i
]);
1823 static void gdb_chr_event(void *opaque
, int event
)
1826 case CHR_EVENT_RESET
:
1827 vm_stop(EXCP_INTERRUPT
);
1828 gdb_syscall_state
= opaque
;
1836 int gdbserver_start(const char *port
)
1839 char gdbstub_port_name
[128];
1842 CharDriverState
*chr
;
1844 if (!port
|| !*port
)
1847 port_num
= strtol(port
, &p
, 10);
1849 /* A numeric value is interpreted as a port number. */
1850 snprintf(gdbstub_port_name
, sizeof(gdbstub_port_name
),
1851 "tcp::%d,nowait,nodelay,server", port_num
);
1852 port
= gdbstub_port_name
;
1855 chr
= qemu_chr_open("gdb", port
);
1859 s
= qemu_mallocz(sizeof(GDBState
));
1863 s
->env
= first_cpu
; /* XXX: allow to change CPU */
1865 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
1867 qemu_add_vm_stop_handler(gdb_vm_stopped
, s
);