Apply TCGV_UNUSED on variables that GCC mistakenly thinks can be used
[qemu-kvm/fedora.git] / hw / stellaris.c
blob5f44bff5d0dcbab3902d87c68fffef42f8e64519
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "sysbus.h"
11 #include "ssi.h"
12 #include "arm-misc.h"
13 #include "devices.h"
14 #include "qemu-timer.h"
15 #include "i2c.h"
16 #include "net.h"
17 #include "sysemu.h"
18 #include "boards.h"
20 #define GPIO_A 0
21 #define GPIO_B 1
22 #define GPIO_C 2
23 #define GPIO_D 3
24 #define GPIO_E 4
25 #define GPIO_F 5
26 #define GPIO_G 6
28 #define BP_OLED_I2C 0x01
29 #define BP_OLED_SSI 0x02
30 #define BP_GAMEPAD 0x04
32 typedef const struct {
33 const char *name;
34 uint32_t did0;
35 uint32_t did1;
36 uint32_t dc0;
37 uint32_t dc1;
38 uint32_t dc2;
39 uint32_t dc3;
40 uint32_t dc4;
41 uint32_t peripherals;
42 } stellaris_board_info;
44 /* General purpose timer module. */
46 typedef struct gptm_state {
47 SysBusDevice busdev;
48 uint32_t config;
49 uint32_t mode[2];
50 uint32_t control;
51 uint32_t state;
52 uint32_t mask;
53 uint32_t load[2];
54 uint32_t match[2];
55 uint32_t prescale[2];
56 uint32_t match_prescale[2];
57 uint32_t rtc;
58 int64_t tick[2];
59 struct gptm_state *opaque[2];
60 QEMUTimer *timer[2];
61 /* The timers have an alternate output used to trigger the ADC. */
62 qemu_irq trigger;
63 qemu_irq irq;
64 } gptm_state;
66 static void gptm_update_irq(gptm_state *s)
68 int level;
69 level = (s->state & s->mask) != 0;
70 qemu_set_irq(s->irq, level);
73 static void gptm_stop(gptm_state *s, int n)
75 qemu_del_timer(s->timer[n]);
78 static void gptm_reload(gptm_state *s, int n, int reset)
80 int64_t tick;
81 if (reset)
82 tick = qemu_get_clock(vm_clock);
83 else
84 tick = s->tick[n];
86 if (s->config == 0) {
87 /* 32-bit CountDown. */
88 uint32_t count;
89 count = s->load[0] | (s->load[1] << 16);
90 tick += (int64_t)count * system_clock_scale;
91 } else if (s->config == 1) {
92 /* 32-bit RTC. 1Hz tick. */
93 tick += ticks_per_sec;
94 } else if (s->mode[n] == 0xa) {
95 /* PWM mode. Not implemented. */
96 } else {
97 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
99 s->tick[n] = tick;
100 qemu_mod_timer(s->timer[n], tick);
103 static void gptm_tick(void *opaque)
105 gptm_state **p = (gptm_state **)opaque;
106 gptm_state *s;
107 int n;
109 s = *p;
110 n = p - s->opaque;
111 if (s->config == 0) {
112 s->state |= 1;
113 if ((s->control & 0x20)) {
114 /* Output trigger. */
115 qemu_irq_pulse(s->trigger);
117 if (s->mode[0] & 1) {
118 /* One-shot. */
119 s->control &= ~1;
120 } else {
121 /* Periodic. */
122 gptm_reload(s, 0, 0);
124 } else if (s->config == 1) {
125 /* RTC. */
126 uint32_t match;
127 s->rtc++;
128 match = s->match[0] | (s->match[1] << 16);
129 if (s->rtc > match)
130 s->rtc = 0;
131 if (s->rtc == 0) {
132 s->state |= 8;
134 gptm_reload(s, 0, 0);
135 } else if (s->mode[n] == 0xa) {
136 /* PWM mode. Not implemented. */
137 } else {
138 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
140 gptm_update_irq(s);
143 static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
145 gptm_state *s = (gptm_state *)opaque;
147 switch (offset) {
148 case 0x00: /* CFG */
149 return s->config;
150 case 0x04: /* TAMR */
151 return s->mode[0];
152 case 0x08: /* TBMR */
153 return s->mode[1];
154 case 0x0c: /* CTL */
155 return s->control;
156 case 0x18: /* IMR */
157 return s->mask;
158 case 0x1c: /* RIS */
159 return s->state;
160 case 0x20: /* MIS */
161 return s->state & s->mask;
162 case 0x24: /* CR */
163 return 0;
164 case 0x28: /* TAILR */
165 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
166 case 0x2c: /* TBILR */
167 return s->load[1];
168 case 0x30: /* TAMARCHR */
169 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
170 case 0x34: /* TBMATCHR */
171 return s->match[1];
172 case 0x38: /* TAPR */
173 return s->prescale[0];
174 case 0x3c: /* TBPR */
175 return s->prescale[1];
176 case 0x40: /* TAPMR */
177 return s->match_prescale[0];
178 case 0x44: /* TBPMR */
179 return s->match_prescale[1];
180 case 0x48: /* TAR */
181 if (s->control == 1)
182 return s->rtc;
183 case 0x4c: /* TBR */
184 hw_error("TODO: Timer value read\n");
185 default:
186 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
187 return 0;
191 static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
193 gptm_state *s = (gptm_state *)opaque;
194 uint32_t oldval;
196 /* The timers should be disabled before changing the configuration.
197 We take advantage of this and defer everything until the timer
198 is enabled. */
199 switch (offset) {
200 case 0x00: /* CFG */
201 s->config = value;
202 break;
203 case 0x04: /* TAMR */
204 s->mode[0] = value;
205 break;
206 case 0x08: /* TBMR */
207 s->mode[1] = value;
208 break;
209 case 0x0c: /* CTL */
210 oldval = s->control;
211 s->control = value;
212 /* TODO: Implement pause. */
213 if ((oldval ^ value) & 1) {
214 if (value & 1) {
215 gptm_reload(s, 0, 1);
216 } else {
217 gptm_stop(s, 0);
220 if (((oldval ^ value) & 0x100) && s->config >= 4) {
221 if (value & 0x100) {
222 gptm_reload(s, 1, 1);
223 } else {
224 gptm_stop(s, 1);
227 break;
228 case 0x18: /* IMR */
229 s->mask = value & 0x77;
230 gptm_update_irq(s);
231 break;
232 case 0x24: /* CR */
233 s->state &= ~value;
234 break;
235 case 0x28: /* TAILR */
236 s->load[0] = value & 0xffff;
237 if (s->config < 4) {
238 s->load[1] = value >> 16;
240 break;
241 case 0x2c: /* TBILR */
242 s->load[1] = value & 0xffff;
243 break;
244 case 0x30: /* TAMARCHR */
245 s->match[0] = value & 0xffff;
246 if (s->config < 4) {
247 s->match[1] = value >> 16;
249 break;
250 case 0x34: /* TBMATCHR */
251 s->match[1] = value >> 16;
252 break;
253 case 0x38: /* TAPR */
254 s->prescale[0] = value;
255 break;
256 case 0x3c: /* TBPR */
257 s->prescale[1] = value;
258 break;
259 case 0x40: /* TAPMR */
260 s->match_prescale[0] = value;
261 break;
262 case 0x44: /* TBPMR */
263 s->match_prescale[0] = value;
264 break;
265 default:
266 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
268 gptm_update_irq(s);
271 static CPUReadMemoryFunc *gptm_readfn[] = {
272 gptm_read,
273 gptm_read,
274 gptm_read
277 static CPUWriteMemoryFunc *gptm_writefn[] = {
278 gptm_write,
279 gptm_write,
280 gptm_write
283 static void gptm_save(QEMUFile *f, void *opaque)
285 gptm_state *s = (gptm_state *)opaque;
287 qemu_put_be32(f, s->config);
288 qemu_put_be32(f, s->mode[0]);
289 qemu_put_be32(f, s->mode[1]);
290 qemu_put_be32(f, s->control);
291 qemu_put_be32(f, s->state);
292 qemu_put_be32(f, s->mask);
293 qemu_put_be32(f, s->mode[0]);
294 qemu_put_be32(f, s->mode[0]);
295 qemu_put_be32(f, s->load[0]);
296 qemu_put_be32(f, s->load[1]);
297 qemu_put_be32(f, s->match[0]);
298 qemu_put_be32(f, s->match[1]);
299 qemu_put_be32(f, s->prescale[0]);
300 qemu_put_be32(f, s->prescale[1]);
301 qemu_put_be32(f, s->match_prescale[0]);
302 qemu_put_be32(f, s->match_prescale[1]);
303 qemu_put_be32(f, s->rtc);
304 qemu_put_be64(f, s->tick[0]);
305 qemu_put_be64(f, s->tick[1]);
306 qemu_put_timer(f, s->timer[0]);
307 qemu_put_timer(f, s->timer[1]);
310 static int gptm_load(QEMUFile *f, void *opaque, int version_id)
312 gptm_state *s = (gptm_state *)opaque;
314 if (version_id != 1)
315 return -EINVAL;
317 s->config = qemu_get_be32(f);
318 s->mode[0] = qemu_get_be32(f);
319 s->mode[1] = qemu_get_be32(f);
320 s->control = qemu_get_be32(f);
321 s->state = qemu_get_be32(f);
322 s->mask = qemu_get_be32(f);
323 s->mode[0] = qemu_get_be32(f);
324 s->mode[0] = qemu_get_be32(f);
325 s->load[0] = qemu_get_be32(f);
326 s->load[1] = qemu_get_be32(f);
327 s->match[0] = qemu_get_be32(f);
328 s->match[1] = qemu_get_be32(f);
329 s->prescale[0] = qemu_get_be32(f);
330 s->prescale[1] = qemu_get_be32(f);
331 s->match_prescale[0] = qemu_get_be32(f);
332 s->match_prescale[1] = qemu_get_be32(f);
333 s->rtc = qemu_get_be32(f);
334 s->tick[0] = qemu_get_be64(f);
335 s->tick[1] = qemu_get_be64(f);
336 qemu_get_timer(f, s->timer[0]);
337 qemu_get_timer(f, s->timer[1]);
339 return 0;
342 static void stellaris_gptm_init(SysBusDevice *dev)
344 int iomemtype;
345 gptm_state *s = FROM_SYSBUS(gptm_state, dev);
347 sysbus_init_irq(dev, &s->irq);
348 qdev_init_gpio_out(&dev->qdev, &s->trigger, 1);
350 iomemtype = cpu_register_io_memory(gptm_readfn,
351 gptm_writefn, s);
352 sysbus_init_mmio(dev, 0x1000, iomemtype);
354 s->opaque[0] = s->opaque[1] = s;
355 s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
356 s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
357 register_savevm("stellaris_gptm", -1, 1, gptm_save, gptm_load, s);
361 /* System controller. */
363 typedef struct {
364 uint32_t pborctl;
365 uint32_t ldopctl;
366 uint32_t int_status;
367 uint32_t int_mask;
368 uint32_t resc;
369 uint32_t rcc;
370 uint32_t rcgc[3];
371 uint32_t scgc[3];
372 uint32_t dcgc[3];
373 uint32_t clkvclr;
374 uint32_t ldoarst;
375 uint32_t user0;
376 uint32_t user1;
377 qemu_irq irq;
378 stellaris_board_info *board;
379 } ssys_state;
381 static void ssys_update(ssys_state *s)
383 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
386 static uint32_t pllcfg_sandstorm[16] = {
387 0x31c0, /* 1 Mhz */
388 0x1ae0, /* 1.8432 Mhz */
389 0x18c0, /* 2 Mhz */
390 0xd573, /* 2.4576 Mhz */
391 0x37a6, /* 3.57954 Mhz */
392 0x1ae2, /* 3.6864 Mhz */
393 0x0c40, /* 4 Mhz */
394 0x98bc, /* 4.906 Mhz */
395 0x935b, /* 4.9152 Mhz */
396 0x09c0, /* 5 Mhz */
397 0x4dee, /* 5.12 Mhz */
398 0x0c41, /* 6 Mhz */
399 0x75db, /* 6.144 Mhz */
400 0x1ae6, /* 7.3728 Mhz */
401 0x0600, /* 8 Mhz */
402 0x585b /* 8.192 Mhz */
405 static uint32_t pllcfg_fury[16] = {
406 0x3200, /* 1 Mhz */
407 0x1b20, /* 1.8432 Mhz */
408 0x1900, /* 2 Mhz */
409 0xf42b, /* 2.4576 Mhz */
410 0x37e3, /* 3.57954 Mhz */
411 0x1b21, /* 3.6864 Mhz */
412 0x0c80, /* 4 Mhz */
413 0x98ee, /* 4.906 Mhz */
414 0xd5b4, /* 4.9152 Mhz */
415 0x0a00, /* 5 Mhz */
416 0x4e27, /* 5.12 Mhz */
417 0x1902, /* 6 Mhz */
418 0xec1c, /* 6.144 Mhz */
419 0x1b23, /* 7.3728 Mhz */
420 0x0640, /* 8 Mhz */
421 0xb11c /* 8.192 Mhz */
424 static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
426 ssys_state *s = (ssys_state *)opaque;
428 switch (offset) {
429 case 0x000: /* DID0 */
430 return s->board->did0;
431 case 0x004: /* DID1 */
432 return s->board->did1;
433 case 0x008: /* DC0 */
434 return s->board->dc0;
435 case 0x010: /* DC1 */
436 return s->board->dc1;
437 case 0x014: /* DC2 */
438 return s->board->dc2;
439 case 0x018: /* DC3 */
440 return s->board->dc3;
441 case 0x01c: /* DC4 */
442 return s->board->dc4;
443 case 0x030: /* PBORCTL */
444 return s->pborctl;
445 case 0x034: /* LDOPCTL */
446 return s->ldopctl;
447 case 0x040: /* SRCR0 */
448 return 0;
449 case 0x044: /* SRCR1 */
450 return 0;
451 case 0x048: /* SRCR2 */
452 return 0;
453 case 0x050: /* RIS */
454 return s->int_status;
455 case 0x054: /* IMC */
456 return s->int_mask;
457 case 0x058: /* MISC */
458 return s->int_status & s->int_mask;
459 case 0x05c: /* RESC */
460 return s->resc;
461 case 0x060: /* RCC */
462 return s->rcc;
463 case 0x064: /* PLLCFG */
465 int xtal;
466 xtal = (s->rcc >> 6) & 0xf;
467 if (s->board->did0 & (1 << 16)) {
468 return pllcfg_fury[xtal];
469 } else {
470 return pllcfg_sandstorm[xtal];
473 case 0x100: /* RCGC0 */
474 return s->rcgc[0];
475 case 0x104: /* RCGC1 */
476 return s->rcgc[1];
477 case 0x108: /* RCGC2 */
478 return s->rcgc[2];
479 case 0x110: /* SCGC0 */
480 return s->scgc[0];
481 case 0x114: /* SCGC1 */
482 return s->scgc[1];
483 case 0x118: /* SCGC2 */
484 return s->scgc[2];
485 case 0x120: /* DCGC0 */
486 return s->dcgc[0];
487 case 0x124: /* DCGC1 */
488 return s->dcgc[1];
489 case 0x128: /* DCGC2 */
490 return s->dcgc[2];
491 case 0x150: /* CLKVCLR */
492 return s->clkvclr;
493 case 0x160: /* LDOARST */
494 return s->ldoarst;
495 case 0x1e0: /* USER0 */
496 return s->user0;
497 case 0x1e4: /* USER1 */
498 return s->user1;
499 default:
500 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
501 return 0;
505 static void ssys_calculate_system_clock(ssys_state *s)
507 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
510 static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
512 ssys_state *s = (ssys_state *)opaque;
514 switch (offset) {
515 case 0x030: /* PBORCTL */
516 s->pborctl = value & 0xffff;
517 break;
518 case 0x034: /* LDOPCTL */
519 s->ldopctl = value & 0x1f;
520 break;
521 case 0x040: /* SRCR0 */
522 case 0x044: /* SRCR1 */
523 case 0x048: /* SRCR2 */
524 fprintf(stderr, "Peripheral reset not implemented\n");
525 break;
526 case 0x054: /* IMC */
527 s->int_mask = value & 0x7f;
528 break;
529 case 0x058: /* MISC */
530 s->int_status &= ~value;
531 break;
532 case 0x05c: /* RESC */
533 s->resc = value & 0x3f;
534 break;
535 case 0x060: /* RCC */
536 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
537 /* PLL enable. */
538 s->int_status |= (1 << 6);
540 s->rcc = value;
541 ssys_calculate_system_clock(s);
542 break;
543 case 0x100: /* RCGC0 */
544 s->rcgc[0] = value;
545 break;
546 case 0x104: /* RCGC1 */
547 s->rcgc[1] = value;
548 break;
549 case 0x108: /* RCGC2 */
550 s->rcgc[2] = value;
551 break;
552 case 0x110: /* SCGC0 */
553 s->scgc[0] = value;
554 break;
555 case 0x114: /* SCGC1 */
556 s->scgc[1] = value;
557 break;
558 case 0x118: /* SCGC2 */
559 s->scgc[2] = value;
560 break;
561 case 0x120: /* DCGC0 */
562 s->dcgc[0] = value;
563 break;
564 case 0x124: /* DCGC1 */
565 s->dcgc[1] = value;
566 break;
567 case 0x128: /* DCGC2 */
568 s->dcgc[2] = value;
569 break;
570 case 0x150: /* CLKVCLR */
571 s->clkvclr = value;
572 break;
573 case 0x160: /* LDOARST */
574 s->ldoarst = value;
575 break;
576 default:
577 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
579 ssys_update(s);
582 static CPUReadMemoryFunc *ssys_readfn[] = {
583 ssys_read,
584 ssys_read,
585 ssys_read
588 static CPUWriteMemoryFunc *ssys_writefn[] = {
589 ssys_write,
590 ssys_write,
591 ssys_write
594 static void ssys_reset(void *opaque)
596 ssys_state *s = (ssys_state *)opaque;
598 s->pborctl = 0x7ffd;
599 s->rcc = 0x078e3ac0;
600 s->rcgc[0] = 1;
601 s->scgc[0] = 1;
602 s->dcgc[0] = 1;
605 static void ssys_save(QEMUFile *f, void *opaque)
607 ssys_state *s = (ssys_state *)opaque;
609 qemu_put_be32(f, s->pborctl);
610 qemu_put_be32(f, s->ldopctl);
611 qemu_put_be32(f, s->int_mask);
612 qemu_put_be32(f, s->int_status);
613 qemu_put_be32(f, s->resc);
614 qemu_put_be32(f, s->rcc);
615 qemu_put_be32(f, s->rcgc[0]);
616 qemu_put_be32(f, s->rcgc[1]);
617 qemu_put_be32(f, s->rcgc[2]);
618 qemu_put_be32(f, s->scgc[0]);
619 qemu_put_be32(f, s->scgc[1]);
620 qemu_put_be32(f, s->scgc[2]);
621 qemu_put_be32(f, s->dcgc[0]);
622 qemu_put_be32(f, s->dcgc[1]);
623 qemu_put_be32(f, s->dcgc[2]);
624 qemu_put_be32(f, s->clkvclr);
625 qemu_put_be32(f, s->ldoarst);
628 static int ssys_load(QEMUFile *f, void *opaque, int version_id)
630 ssys_state *s = (ssys_state *)opaque;
632 if (version_id != 1)
633 return -EINVAL;
635 s->pborctl = qemu_get_be32(f);
636 s->ldopctl = qemu_get_be32(f);
637 s->int_mask = qemu_get_be32(f);
638 s->int_status = qemu_get_be32(f);
639 s->resc = qemu_get_be32(f);
640 s->rcc = qemu_get_be32(f);
641 s->rcgc[0] = qemu_get_be32(f);
642 s->rcgc[1] = qemu_get_be32(f);
643 s->rcgc[2] = qemu_get_be32(f);
644 s->scgc[0] = qemu_get_be32(f);
645 s->scgc[1] = qemu_get_be32(f);
646 s->scgc[2] = qemu_get_be32(f);
647 s->dcgc[0] = qemu_get_be32(f);
648 s->dcgc[1] = qemu_get_be32(f);
649 s->dcgc[2] = qemu_get_be32(f);
650 s->clkvclr = qemu_get_be32(f);
651 s->ldoarst = qemu_get_be32(f);
652 ssys_calculate_system_clock(s);
654 return 0;
657 static void stellaris_sys_init(uint32_t base, qemu_irq irq,
658 stellaris_board_info * board,
659 uint8_t *macaddr)
661 int iomemtype;
662 ssys_state *s;
664 s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
665 s->irq = irq;
666 s->board = board;
667 /* Most devices come preprogrammed with a MAC address in the user data. */
668 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
669 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
671 iomemtype = cpu_register_io_memory(ssys_readfn,
672 ssys_writefn, s);
673 cpu_register_physical_memory(base, 0x00001000, iomemtype);
674 ssys_reset(s);
675 register_savevm("stellaris_sys", -1, 1, ssys_save, ssys_load, s);
679 /* I2C controller. */
681 typedef struct {
682 SysBusDevice busdev;
683 i2c_bus *bus;
684 qemu_irq irq;
685 uint32_t msa;
686 uint32_t mcs;
687 uint32_t mdr;
688 uint32_t mtpr;
689 uint32_t mimr;
690 uint32_t mris;
691 uint32_t mcr;
692 } stellaris_i2c_state;
694 #define STELLARIS_I2C_MCS_BUSY 0x01
695 #define STELLARIS_I2C_MCS_ERROR 0x02
696 #define STELLARIS_I2C_MCS_ADRACK 0x04
697 #define STELLARIS_I2C_MCS_DATACK 0x08
698 #define STELLARIS_I2C_MCS_ARBLST 0x10
699 #define STELLARIS_I2C_MCS_IDLE 0x20
700 #define STELLARIS_I2C_MCS_BUSBSY 0x40
702 static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
704 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
706 switch (offset) {
707 case 0x00: /* MSA */
708 return s->msa;
709 case 0x04: /* MCS */
710 /* We don't emulate timing, so the controller is never busy. */
711 return s->mcs | STELLARIS_I2C_MCS_IDLE;
712 case 0x08: /* MDR */
713 return s->mdr;
714 case 0x0c: /* MTPR */
715 return s->mtpr;
716 case 0x10: /* MIMR */
717 return s->mimr;
718 case 0x14: /* MRIS */
719 return s->mris;
720 case 0x18: /* MMIS */
721 return s->mris & s->mimr;
722 case 0x20: /* MCR */
723 return s->mcr;
724 default:
725 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
726 return 0;
730 static void stellaris_i2c_update(stellaris_i2c_state *s)
732 int level;
734 level = (s->mris & s->mimr) != 0;
735 qemu_set_irq(s->irq, level);
738 static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
739 uint32_t value)
741 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
743 switch (offset) {
744 case 0x00: /* MSA */
745 s->msa = value & 0xff;
746 break;
747 case 0x04: /* MCS */
748 if ((s->mcr & 0x10) == 0) {
749 /* Disabled. Do nothing. */
750 break;
752 /* Grab the bus if this is starting a transfer. */
753 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
754 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
755 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
756 } else {
757 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
758 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
761 /* If we don't have the bus then indicate an error. */
762 if (!i2c_bus_busy(s->bus)
763 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
764 s->mcs |= STELLARIS_I2C_MCS_ERROR;
765 break;
767 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
768 if (value & 1) {
769 /* Transfer a byte. */
770 /* TODO: Handle errors. */
771 if (s->msa & 1) {
772 /* Recv */
773 s->mdr = i2c_recv(s->bus) & 0xff;
774 } else {
775 /* Send */
776 i2c_send(s->bus, s->mdr);
778 /* Raise an interrupt. */
779 s->mris |= 1;
781 if (value & 4) {
782 /* Finish transfer. */
783 i2c_end_transfer(s->bus);
784 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
786 break;
787 case 0x08: /* MDR */
788 s->mdr = value & 0xff;
789 break;
790 case 0x0c: /* MTPR */
791 s->mtpr = value & 0xff;
792 break;
793 case 0x10: /* MIMR */
794 s->mimr = 1;
795 break;
796 case 0x1c: /* MICR */
797 s->mris &= ~value;
798 break;
799 case 0x20: /* MCR */
800 if (value & 1)
801 hw_error(
802 "stellaris_i2c_write: Loopback not implemented\n");
803 if (value & 0x20)
804 hw_error(
805 "stellaris_i2c_write: Slave mode not implemented\n");
806 s->mcr = value & 0x31;
807 break;
808 default:
809 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
810 (int)offset);
812 stellaris_i2c_update(s);
815 static void stellaris_i2c_reset(stellaris_i2c_state *s)
817 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
818 i2c_end_transfer(s->bus);
820 s->msa = 0;
821 s->mcs = 0;
822 s->mdr = 0;
823 s->mtpr = 1;
824 s->mimr = 0;
825 s->mris = 0;
826 s->mcr = 0;
827 stellaris_i2c_update(s);
830 static CPUReadMemoryFunc *stellaris_i2c_readfn[] = {
831 stellaris_i2c_read,
832 stellaris_i2c_read,
833 stellaris_i2c_read
836 static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = {
837 stellaris_i2c_write,
838 stellaris_i2c_write,
839 stellaris_i2c_write
842 static void stellaris_i2c_save(QEMUFile *f, void *opaque)
844 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
846 qemu_put_be32(f, s->msa);
847 qemu_put_be32(f, s->mcs);
848 qemu_put_be32(f, s->mdr);
849 qemu_put_be32(f, s->mtpr);
850 qemu_put_be32(f, s->mimr);
851 qemu_put_be32(f, s->mris);
852 qemu_put_be32(f, s->mcr);
855 static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id)
857 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
859 if (version_id != 1)
860 return -EINVAL;
862 s->msa = qemu_get_be32(f);
863 s->mcs = qemu_get_be32(f);
864 s->mdr = qemu_get_be32(f);
865 s->mtpr = qemu_get_be32(f);
866 s->mimr = qemu_get_be32(f);
867 s->mris = qemu_get_be32(f);
868 s->mcr = qemu_get_be32(f);
870 return 0;
873 static void stellaris_i2c_init(SysBusDevice * dev)
875 stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
876 i2c_bus *bus;
877 int iomemtype;
879 sysbus_init_irq(dev, &s->irq);
880 bus = i2c_init_bus(&dev->qdev, "i2c");
881 s->bus = bus;
883 iomemtype = cpu_register_io_memory(stellaris_i2c_readfn,
884 stellaris_i2c_writefn, s);
885 sysbus_init_mmio(dev, 0x1000, iomemtype);
886 /* ??? For now we only implement the master interface. */
887 stellaris_i2c_reset(s);
888 register_savevm("stellaris_i2c", -1, 1,
889 stellaris_i2c_save, stellaris_i2c_load, s);
892 /* Analogue to Digital Converter. This is only partially implemented,
893 enough for applications that use a combined ADC and timer tick. */
895 #define STELLARIS_ADC_EM_CONTROLLER 0
896 #define STELLARIS_ADC_EM_COMP 1
897 #define STELLARIS_ADC_EM_EXTERNAL 4
898 #define STELLARIS_ADC_EM_TIMER 5
899 #define STELLARIS_ADC_EM_PWM0 6
900 #define STELLARIS_ADC_EM_PWM1 7
901 #define STELLARIS_ADC_EM_PWM2 8
903 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
904 #define STELLARIS_ADC_FIFO_FULL 0x1000
906 typedef struct
908 SysBusDevice busdev;
909 uint32_t actss;
910 uint32_t ris;
911 uint32_t im;
912 uint32_t emux;
913 uint32_t ostat;
914 uint32_t ustat;
915 uint32_t sspri;
916 uint32_t sac;
917 struct {
918 uint32_t state;
919 uint32_t data[16];
920 } fifo[4];
921 uint32_t ssmux[4];
922 uint32_t ssctl[4];
923 uint32_t noise;
924 qemu_irq irq[4];
925 } stellaris_adc_state;
927 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
929 int tail;
931 tail = s->fifo[n].state & 0xf;
932 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
933 s->ustat |= 1 << n;
934 } else {
935 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
936 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
937 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
938 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
940 return s->fifo[n].data[tail];
943 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
944 uint32_t value)
946 int head;
948 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
949 FIFO fir each sequencer. */
950 head = (s->fifo[n].state >> 4) & 0xf;
951 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
952 s->ostat |= 1 << n;
953 return;
955 s->fifo[n].data[head] = value;
956 head = (head + 1) & 0xf;
957 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
958 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
959 if ((s->fifo[n].state & 0xf) == head)
960 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
963 static void stellaris_adc_update(stellaris_adc_state *s)
965 int level;
966 int n;
968 for (n = 0; n < 4; n++) {
969 level = (s->ris & s->im & (1 << n)) != 0;
970 qemu_set_irq(s->irq[n], level);
974 static void stellaris_adc_trigger(void *opaque, int irq, int level)
976 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
977 int n;
979 for (n = 0; n < 4; n++) {
980 if ((s->actss & (1 << n)) == 0) {
981 continue;
984 if (((s->emux >> (n * 4)) & 0xff) != 5) {
985 continue;
988 /* Some applications use the ADC as a random number source, so introduce
989 some variation into the signal. */
990 s->noise = s->noise * 314159 + 1;
991 /* ??? actual inputs not implemented. Return an arbitrary value. */
992 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
993 s->ris |= (1 << n);
994 stellaris_adc_update(s);
998 static void stellaris_adc_reset(stellaris_adc_state *s)
1000 int n;
1002 for (n = 0; n < 4; n++) {
1003 s->ssmux[n] = 0;
1004 s->ssctl[n] = 0;
1005 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1009 static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
1011 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1013 /* TODO: Implement this. */
1014 if (offset >= 0x40 && offset < 0xc0) {
1015 int n;
1016 n = (offset - 0x40) >> 5;
1017 switch (offset & 0x1f) {
1018 case 0x00: /* SSMUX */
1019 return s->ssmux[n];
1020 case 0x04: /* SSCTL */
1021 return s->ssctl[n];
1022 case 0x08: /* SSFIFO */
1023 return stellaris_adc_fifo_read(s, n);
1024 case 0x0c: /* SSFSTAT */
1025 return s->fifo[n].state;
1026 default:
1027 break;
1030 switch (offset) {
1031 case 0x00: /* ACTSS */
1032 return s->actss;
1033 case 0x04: /* RIS */
1034 return s->ris;
1035 case 0x08: /* IM */
1036 return s->im;
1037 case 0x0c: /* ISC */
1038 return s->ris & s->im;
1039 case 0x10: /* OSTAT */
1040 return s->ostat;
1041 case 0x14: /* EMUX */
1042 return s->emux;
1043 case 0x18: /* USTAT */
1044 return s->ustat;
1045 case 0x20: /* SSPRI */
1046 return s->sspri;
1047 case 0x30: /* SAC */
1048 return s->sac;
1049 default:
1050 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1051 (int)offset);
1052 return 0;
1056 static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
1057 uint32_t value)
1059 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1061 /* TODO: Implement this. */
1062 if (offset >= 0x40 && offset < 0xc0) {
1063 int n;
1064 n = (offset - 0x40) >> 5;
1065 switch (offset & 0x1f) {
1066 case 0x00: /* SSMUX */
1067 s->ssmux[n] = value & 0x33333333;
1068 return;
1069 case 0x04: /* SSCTL */
1070 if (value != 6) {
1071 hw_error("ADC: Unimplemented sequence %x\n",
1072 value);
1074 s->ssctl[n] = value;
1075 return;
1076 default:
1077 break;
1080 switch (offset) {
1081 case 0x00: /* ACTSS */
1082 s->actss = value & 0xf;
1083 break;
1084 case 0x08: /* IM */
1085 s->im = value;
1086 break;
1087 case 0x0c: /* ISC */
1088 s->ris &= ~value;
1089 break;
1090 case 0x10: /* OSTAT */
1091 s->ostat &= ~value;
1092 break;
1093 case 0x14: /* EMUX */
1094 s->emux = value;
1095 break;
1096 case 0x18: /* USTAT */
1097 s->ustat &= ~value;
1098 break;
1099 case 0x20: /* SSPRI */
1100 s->sspri = value;
1101 break;
1102 case 0x28: /* PSSI */
1103 hw_error("Not implemented: ADC sample initiate\n");
1104 break;
1105 case 0x30: /* SAC */
1106 s->sac = value;
1107 break;
1108 default:
1109 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1111 stellaris_adc_update(s);
1114 static CPUReadMemoryFunc *stellaris_adc_readfn[] = {
1115 stellaris_adc_read,
1116 stellaris_adc_read,
1117 stellaris_adc_read
1120 static CPUWriteMemoryFunc *stellaris_adc_writefn[] = {
1121 stellaris_adc_write,
1122 stellaris_adc_write,
1123 stellaris_adc_write
1126 static void stellaris_adc_save(QEMUFile *f, void *opaque)
1128 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1129 int i;
1130 int j;
1132 qemu_put_be32(f, s->actss);
1133 qemu_put_be32(f, s->ris);
1134 qemu_put_be32(f, s->im);
1135 qemu_put_be32(f, s->emux);
1136 qemu_put_be32(f, s->ostat);
1137 qemu_put_be32(f, s->ustat);
1138 qemu_put_be32(f, s->sspri);
1139 qemu_put_be32(f, s->sac);
1140 for (i = 0; i < 4; i++) {
1141 qemu_put_be32(f, s->fifo[i].state);
1142 for (j = 0; j < 16; j++) {
1143 qemu_put_be32(f, s->fifo[i].data[j]);
1145 qemu_put_be32(f, s->ssmux[i]);
1146 qemu_put_be32(f, s->ssctl[i]);
1148 qemu_put_be32(f, s->noise);
1151 static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id)
1153 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1154 int i;
1155 int j;
1157 if (version_id != 1)
1158 return -EINVAL;
1160 s->actss = qemu_get_be32(f);
1161 s->ris = qemu_get_be32(f);
1162 s->im = qemu_get_be32(f);
1163 s->emux = qemu_get_be32(f);
1164 s->ostat = qemu_get_be32(f);
1165 s->ustat = qemu_get_be32(f);
1166 s->sspri = qemu_get_be32(f);
1167 s->sac = qemu_get_be32(f);
1168 for (i = 0; i < 4; i++) {
1169 s->fifo[i].state = qemu_get_be32(f);
1170 for (j = 0; j < 16; j++) {
1171 s->fifo[i].data[j] = qemu_get_be32(f);
1173 s->ssmux[i] = qemu_get_be32(f);
1174 s->ssctl[i] = qemu_get_be32(f);
1176 s->noise = qemu_get_be32(f);
1178 return 0;
1181 static void stellaris_adc_init(SysBusDevice *dev)
1183 stellaris_adc_state *s = FROM_SYSBUS(stellaris_adc_state, dev);
1184 int iomemtype;
1185 int n;
1187 for (n = 0; n < 4; n++) {
1188 sysbus_init_irq(dev, &s->irq[n]);
1191 iomemtype = cpu_register_io_memory(stellaris_adc_readfn,
1192 stellaris_adc_writefn, s);
1193 sysbus_init_mmio(dev, 0x1000, iomemtype);
1194 stellaris_adc_reset(s);
1195 qdev_init_gpio_in(&dev->qdev, stellaris_adc_trigger, 1);
1196 register_savevm("stellaris_adc", -1, 1,
1197 stellaris_adc_save, stellaris_adc_load, s);
1200 /* Some boards have both an OLED controller and SD card connected to
1201 the same SSI port, with the SD card chip select connected to a
1202 GPIO pin. Technically the OLED chip select is connected to the SSI
1203 Fss pin. We do not bother emulating that as both devices should
1204 never be selected simultaneously, and our OLED controller ignores stray
1205 0xff commands that occur when deselecting the SD card. */
1207 typedef struct {
1208 SSISlave ssidev;
1209 qemu_irq irq;
1210 int current_dev;
1211 SSIBus *bus[2];
1212 } stellaris_ssi_bus_state;
1214 static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
1216 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1218 s->current_dev = level;
1221 static uint32_t stellaris_ssi_bus_transfer(SSISlave *dev, uint32_t val)
1223 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1225 return ssi_transfer(s->bus[s->current_dev], val);
1228 static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque)
1230 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1232 qemu_put_be32(f, s->current_dev);
1235 static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id)
1237 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1239 if (version_id != 1)
1240 return -EINVAL;
1242 s->current_dev = qemu_get_be32(f);
1244 return 0;
1247 static void stellaris_ssi_bus_init(SSISlave *dev)
1249 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1251 s->bus[0] = ssi_create_bus(&dev->qdev, "ssi0");
1252 s->bus[1] = ssi_create_bus(&dev->qdev, "ssi1");
1253 qdev_init_gpio_in(&dev->qdev, stellaris_ssi_bus_select, 1);
1255 register_savevm("stellaris_ssi_bus", -1, 1,
1256 stellaris_ssi_bus_save, stellaris_ssi_bus_load, s);
1259 /* Board init. */
1260 static stellaris_board_info stellaris_boards[] = {
1261 { "LM3S811EVB",
1263 0x0032000e,
1264 0x001f001f, /* dc0 */
1265 0x001132bf,
1266 0x01071013,
1267 0x3f0f01ff,
1268 0x0000001f,
1269 BP_OLED_I2C
1271 { "LM3S6965EVB",
1272 0x10010002,
1273 0x1073402e,
1274 0x00ff007f, /* dc0 */
1275 0x001133ff,
1276 0x030f5317,
1277 0x0f0f87ff,
1278 0x5000007f,
1279 BP_OLED_SSI | BP_GAMEPAD
1283 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1284 stellaris_board_info *board)
1286 static const int uart_irq[] = {5, 6, 33, 34};
1287 static const int timer_irq[] = {19, 21, 23, 35};
1288 static const uint32_t gpio_addr[7] =
1289 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1290 0x40024000, 0x40025000, 0x40026000};
1291 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1293 qemu_irq *pic;
1294 DeviceState *gpio_dev[7];
1295 qemu_irq gpio_in[7][8];
1296 qemu_irq gpio_out[7][8];
1297 qemu_irq adc;
1298 int sram_size;
1299 int flash_size;
1300 i2c_bus *i2c;
1301 DeviceState *dev;
1302 int i;
1303 int j;
1305 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1306 sram_size = (board->dc0 >> 18) + 1;
1307 pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1309 if (board->dc1 & (1 << 16)) {
1310 dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
1311 pic[14], pic[15], pic[16], pic[17], NULL);
1312 adc = qdev_get_gpio_in(dev, 0);
1313 } else {
1314 adc = NULL;
1316 for (i = 0; i < 4; i++) {
1317 if (board->dc2 & (0x10000 << i)) {
1318 dev = sysbus_create_simple("stellaris-gptm",
1319 0x40030000 + i * 0x1000,
1320 pic[timer_irq[i]]);
1321 /* TODO: This is incorrect, but we get away with it because
1322 the ADC output is only ever pulsed. */
1323 qdev_connect_gpio_out(dev, 0, adc);
1327 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
1329 for (i = 0; i < 7; i++) {
1330 if (board->dc4 & (1 << i)) {
1331 gpio_dev[i] = sysbus_create_simple("pl061", gpio_addr[i],
1332 pic[gpio_irq[i]]);
1333 for (j = 0; j < 8; j++) {
1334 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1335 gpio_out[i][j] = NULL;
1340 if (board->dc2 & (1 << 12)) {
1341 dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1342 i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1343 if (board->peripherals & BP_OLED_I2C) {
1344 i2c_create_slave(i2c, "ssd0303", 0x3d);
1348 for (i = 0; i < 4; i++) {
1349 if (board->dc2 & (1 << i)) {
1350 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1351 pic[uart_irq[i]]);
1354 if (board->dc2 & (1 << 4)) {
1355 dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1356 if (board->peripherals & BP_OLED_SSI) {
1357 DeviceState *mux;
1358 void *bus;
1360 bus = qdev_get_child_bus(dev, "ssi");
1361 mux = ssi_create_slave(bus, "evb6965-ssi");
1362 gpio_out[GPIO_D][0] = qdev_get_gpio_in(mux, 0);
1364 bus = qdev_get_child_bus(mux, "ssi0");
1365 dev = ssi_create_slave(bus, "ssi-sd");
1367 bus = qdev_get_child_bus(mux, "ssi1");
1368 dev = ssi_create_slave(bus, "ssd0323");
1369 gpio_out[GPIO_C][7] = qdev_get_gpio_in(dev, 0);
1371 /* Make sure the select pin is high. */
1372 qemu_irq_raise(gpio_out[GPIO_D][0]);
1375 if (board->dc4 & (1 << 28)) {
1376 DeviceState *enet;
1378 qemu_check_nic_model(&nd_table[0], "stellaris");
1380 enet = qdev_create(NULL, "stellaris_enet");
1381 qdev_set_netdev(enet, &nd_table[0]);
1382 qdev_init(enet);
1383 sysbus_mmio_map(sysbus_from_qdev(enet), 0, 0x40048000);
1384 sysbus_connect_irq(sysbus_from_qdev(enet), 0, pic[42]);
1386 if (board->peripherals & BP_GAMEPAD) {
1387 qemu_irq gpad_irq[5];
1388 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1390 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1391 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1392 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1393 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1394 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1396 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1398 for (i = 0; i < 7; i++) {
1399 if (board->dc4 & (1 << i)) {
1400 for (j = 0; j < 8; j++) {
1401 if (gpio_out[i][j]) {
1402 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1409 /* FIXME: Figure out how to generate these from stellaris_boards. */
1410 static void lm3s811evb_init(ram_addr_t ram_size,
1411 const char *boot_device,
1412 const char *kernel_filename, const char *kernel_cmdline,
1413 const char *initrd_filename, const char *cpu_model)
1415 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1418 static void lm3s6965evb_init(ram_addr_t ram_size,
1419 const char *boot_device,
1420 const char *kernel_filename, const char *kernel_cmdline,
1421 const char *initrd_filename, const char *cpu_model)
1423 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1426 static QEMUMachine lm3s811evb_machine = {
1427 .name = "lm3s811evb",
1428 .desc = "Stellaris LM3S811EVB",
1429 .init = lm3s811evb_init,
1432 static QEMUMachine lm3s6965evb_machine = {
1433 .name = "lm3s6965evb",
1434 .desc = "Stellaris LM3S6965EVB",
1435 .init = lm3s6965evb_init,
1438 static void stellaris_machine_init(void)
1440 qemu_register_machine(&lm3s811evb_machine);
1441 qemu_register_machine(&lm3s6965evb_machine);
1444 machine_init(stellaris_machine_init);
1446 static SSISlaveInfo stellaris_ssi_bus_info = {
1447 .qdev.name = "evb6965-ssi",
1448 .qdev.size = sizeof(stellaris_ssi_bus_state),
1449 .init = stellaris_ssi_bus_init,
1450 .transfer = stellaris_ssi_bus_transfer
1453 static void stellaris_register_devices(void)
1455 sysbus_register_dev("stellaris-i2c", sizeof(stellaris_i2c_state),
1456 stellaris_i2c_init);
1457 sysbus_register_dev("stellaris-gptm", sizeof(gptm_state),
1458 stellaris_gptm_init);
1459 sysbus_register_dev("stellaris-adc", sizeof(stellaris_adc_state),
1460 stellaris_adc_init);
1461 ssi_register_slave(&stellaris_ssi_bus_info);
1464 device_init(stellaris_register_devices)