kvm: libkvm: simplify mmio callback
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blobd86fec30e0ac5d1628e16c006cf3f2783e4c3a09
2 #include "config.h"
3 #include "config-host.h"
5 extern int kvm_allowed;
6 extern int kvm_irqchip;
8 #ifdef USE_KVM
10 #include <string.h>
11 #include "hw/hw.h"
13 #include "qemu-kvm.h"
14 #include <libkvm.h>
15 #include <pthread.h>
16 #include <sys/utsname.h>
18 #define MSR_IA32_TSC 0x10
20 static struct kvm_msr_list *kvm_msr_list;
21 extern unsigned int kvm_shadow_memory;
22 extern kvm_context_t kvm_context;
23 static int kvm_has_msr_star;
25 static int lm_capable_kernel;
26 extern __thread CPUState *vcpu_env;
28 int kvm_arch_qemu_create_context(void)
30 int i;
31 if (kvm_shadow_memory)
32 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
34 kvm_msr_list = kvm_get_msr_list(kvm_context);
35 if (!kvm_msr_list)
36 return -1;
37 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
38 if (kvm_msr_list->indices[i] == MSR_STAR)
39 kvm_has_msr_star = 1;
40 return 0;
43 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
44 uint64_t data)
46 entry->index = index;
47 entry->data = data;
50 /* returns 0 on success, non-0 on failure */
51 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
53 switch (entry->index) {
54 case MSR_IA32_SYSENTER_CS:
55 env->sysenter_cs = entry->data;
56 break;
57 case MSR_IA32_SYSENTER_ESP:
58 env->sysenter_esp = entry->data;
59 break;
60 case MSR_IA32_SYSENTER_EIP:
61 env->sysenter_eip = entry->data;
62 break;
63 case MSR_STAR:
64 env->star = entry->data;
65 break;
66 #ifdef TARGET_X86_64
67 case MSR_CSTAR:
68 env->cstar = entry->data;
69 break;
70 case MSR_KERNELGSBASE:
71 env->kernelgsbase = entry->data;
72 break;
73 case MSR_FMASK:
74 env->fmask = entry->data;
75 break;
76 case MSR_LSTAR:
77 env->lstar = entry->data;
78 break;
79 #endif
80 case MSR_IA32_TSC:
81 env->tsc = entry->data;
82 break;
83 default:
84 printf("Warning unknown msr index 0x%x\n", entry->index);
85 return 1;
87 return 0;
90 #ifdef TARGET_X86_64
91 #define MSR_COUNT 9
92 #else
93 #define MSR_COUNT 5
94 #endif
96 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
98 lhs->selector = rhs->selector;
99 lhs->base = rhs->base;
100 lhs->limit = rhs->limit;
101 lhs->type = 3;
102 lhs->present = 1;
103 lhs->dpl = 3;
104 lhs->db = 0;
105 lhs->s = 1;
106 lhs->l = 0;
107 lhs->g = 0;
108 lhs->avl = 0;
109 lhs->unusable = 0;
112 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
114 unsigned flags = rhs->flags;
115 lhs->selector = rhs->selector;
116 lhs->base = rhs->base;
117 lhs->limit = rhs->limit;
118 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
119 lhs->present = (flags & DESC_P_MASK) != 0;
120 lhs->dpl = rhs->selector & 3;
121 lhs->db = (flags >> DESC_B_SHIFT) & 1;
122 lhs->s = (flags & DESC_S_MASK) != 0;
123 lhs->l = (flags >> DESC_L_SHIFT) & 1;
124 lhs->g = (flags & DESC_G_MASK) != 0;
125 lhs->avl = (flags & DESC_AVL_MASK) != 0;
126 lhs->unusable = 0;
129 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
131 lhs->selector = rhs->selector;
132 lhs->base = rhs->base;
133 lhs->limit = rhs->limit;
134 lhs->flags =
135 (rhs->type << DESC_TYPE_SHIFT)
136 | (rhs->present * DESC_P_MASK)
137 | (rhs->dpl << DESC_DPL_SHIFT)
138 | (rhs->db << DESC_B_SHIFT)
139 | (rhs->s * DESC_S_MASK)
140 | (rhs->l << DESC_L_SHIFT)
141 | (rhs->g * DESC_G_MASK)
142 | (rhs->avl * DESC_AVL_MASK);
145 /* the reset values of qemu are not compatible to SVM
146 * this function is used to fix the segment descriptor values */
147 static void fix_realmode_dataseg(struct kvm_segment *seg)
149 seg->type = 0x02;
150 seg->present = 1;
151 seg->s = 1;
154 void kvm_arch_load_regs(CPUState *env)
156 struct kvm_regs regs;
157 struct kvm_fpu fpu;
158 struct kvm_sregs sregs;
159 struct kvm_msr_entry msrs[MSR_COUNT];
160 int rc, n, i;
162 regs.rax = env->regs[R_EAX];
163 regs.rbx = env->regs[R_EBX];
164 regs.rcx = env->regs[R_ECX];
165 regs.rdx = env->regs[R_EDX];
166 regs.rsi = env->regs[R_ESI];
167 regs.rdi = env->regs[R_EDI];
168 regs.rsp = env->regs[R_ESP];
169 regs.rbp = env->regs[R_EBP];
170 #ifdef TARGET_X86_64
171 regs.r8 = env->regs[8];
172 regs.r9 = env->regs[9];
173 regs.r10 = env->regs[10];
174 regs.r11 = env->regs[11];
175 regs.r12 = env->regs[12];
176 regs.r13 = env->regs[13];
177 regs.r14 = env->regs[14];
178 regs.r15 = env->regs[15];
179 #endif
181 regs.rflags = env->eflags;
182 regs.rip = env->eip;
184 kvm_set_regs(kvm_context, env->cpu_index, &regs);
186 memset(&fpu, 0, sizeof fpu);
187 fpu.fsw = env->fpus & ~(7 << 11);
188 fpu.fsw |= (env->fpstt & 7) << 11;
189 fpu.fcw = env->fpuc;
190 for (i = 0; i < 8; ++i)
191 fpu.ftwx |= (!env->fptags[i]) << i;
192 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
193 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
194 fpu.mxcsr = env->mxcsr;
195 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
197 memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
199 if ((env->eflags & VM_MASK)) {
200 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
201 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
202 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
203 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
204 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
205 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
206 } else {
207 set_seg(&sregs.cs, &env->segs[R_CS]);
208 set_seg(&sregs.ds, &env->segs[R_DS]);
209 set_seg(&sregs.es, &env->segs[R_ES]);
210 set_seg(&sregs.fs, &env->segs[R_FS]);
211 set_seg(&sregs.gs, &env->segs[R_GS]);
212 set_seg(&sregs.ss, &env->segs[R_SS]);
214 if (env->cr[0] & CR0_PE_MASK) {
215 /* force ss cpl to cs cpl */
216 sregs.ss.selector = (sregs.ss.selector & ~3) |
217 (sregs.cs.selector & 3);
218 sregs.ss.dpl = sregs.ss.selector & 3;
221 if (!(env->cr[0] & CR0_PG_MASK)) {
222 fix_realmode_dataseg(&sregs.cs);
223 fix_realmode_dataseg(&sregs.ds);
224 fix_realmode_dataseg(&sregs.es);
225 fix_realmode_dataseg(&sregs.fs);
226 fix_realmode_dataseg(&sregs.gs);
227 fix_realmode_dataseg(&sregs.ss);
231 set_seg(&sregs.tr, &env->tr);
232 set_seg(&sregs.ldt, &env->ldt);
234 sregs.idt.limit = env->idt.limit;
235 sregs.idt.base = env->idt.base;
236 sregs.gdt.limit = env->gdt.limit;
237 sregs.gdt.base = env->gdt.base;
239 sregs.cr0 = env->cr[0];
240 sregs.cr2 = env->cr[2];
241 sregs.cr3 = env->cr[3];
242 sregs.cr4 = env->cr[4];
244 sregs.apic_base = cpu_get_apic_base(env);
245 sregs.efer = env->efer;
246 sregs.cr8 = cpu_get_apic_tpr(env);
248 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
250 /* msrs */
251 n = 0;
252 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
253 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
254 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
255 if (kvm_has_msr_star)
256 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
257 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
258 #ifdef TARGET_X86_64
259 if (lm_capable_kernel) {
260 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
261 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
262 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
263 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
265 #endif
267 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
268 if (rc == -1)
269 perror("kvm_set_msrs FAILED");
273 void kvm_arch_save_regs(CPUState *env)
275 struct kvm_regs regs;
276 struct kvm_fpu fpu;
277 struct kvm_sregs sregs;
278 struct kvm_msr_entry msrs[MSR_COUNT];
279 uint32_t hflags;
280 uint32_t i, n, rc;
282 kvm_get_regs(kvm_context, env->cpu_index, &regs);
284 env->regs[R_EAX] = regs.rax;
285 env->regs[R_EBX] = regs.rbx;
286 env->regs[R_ECX] = regs.rcx;
287 env->regs[R_EDX] = regs.rdx;
288 env->regs[R_ESI] = regs.rsi;
289 env->regs[R_EDI] = regs.rdi;
290 env->regs[R_ESP] = regs.rsp;
291 env->regs[R_EBP] = regs.rbp;
292 #ifdef TARGET_X86_64
293 env->regs[8] = regs.r8;
294 env->regs[9] = regs.r9;
295 env->regs[10] = regs.r10;
296 env->regs[11] = regs.r11;
297 env->regs[12] = regs.r12;
298 env->regs[13] = regs.r13;
299 env->regs[14] = regs.r14;
300 env->regs[15] = regs.r15;
301 #endif
303 env->eflags = regs.rflags;
304 env->eip = regs.rip;
306 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
307 env->fpstt = (fpu.fsw >> 11) & 7;
308 env->fpus = fpu.fsw;
309 env->fpuc = fpu.fcw;
310 for (i = 0; i < 8; ++i)
311 env->fptags[i] = !((fpu.ftwx >> i) & 1);
312 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
313 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
314 env->mxcsr = fpu.mxcsr;
316 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
318 memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));
320 get_seg(&env->segs[R_CS], &sregs.cs);
321 get_seg(&env->segs[R_DS], &sregs.ds);
322 get_seg(&env->segs[R_ES], &sregs.es);
323 get_seg(&env->segs[R_FS], &sregs.fs);
324 get_seg(&env->segs[R_GS], &sregs.gs);
325 get_seg(&env->segs[R_SS], &sregs.ss);
327 get_seg(&env->tr, &sregs.tr);
328 get_seg(&env->ldt, &sregs.ldt);
330 env->idt.limit = sregs.idt.limit;
331 env->idt.base = sregs.idt.base;
332 env->gdt.limit = sregs.gdt.limit;
333 env->gdt.base = sregs.gdt.base;
335 env->cr[0] = sregs.cr0;
336 env->cr[2] = sregs.cr2;
337 env->cr[3] = sregs.cr3;
338 env->cr[4] = sregs.cr4;
340 cpu_set_apic_base(env, sregs.apic_base);
342 env->efer = sregs.efer;
343 //cpu_set_apic_tpr(env, sregs.cr8);
345 #define HFLAG_COPY_MASK ~( \
346 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
347 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
348 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
349 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
353 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
354 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
355 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
356 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
357 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
358 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
359 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
361 if (env->efer & MSR_EFER_LMA) {
362 hflags |= HF_LMA_MASK;
365 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
366 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
367 } else {
368 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
369 (DESC_B_SHIFT - HF_CS32_SHIFT);
370 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
371 (DESC_B_SHIFT - HF_SS32_SHIFT);
372 if (!(env->cr[0] & CR0_PE_MASK) ||
373 (env->eflags & VM_MASK) ||
374 !(hflags & HF_CS32_MASK)) {
375 hflags |= HF_ADDSEG_MASK;
376 } else {
377 hflags |= ((env->segs[R_DS].base |
378 env->segs[R_ES].base |
379 env->segs[R_SS].base) != 0) <<
380 HF_ADDSEG_SHIFT;
383 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
384 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
385 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
386 env->cc_op = CC_OP_EFLAGS;
387 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
389 /* msrs */
390 n = 0;
391 msrs[n++].index = MSR_IA32_SYSENTER_CS;
392 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
393 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
394 if (kvm_has_msr_star)
395 msrs[n++].index = MSR_STAR;
396 msrs[n++].index = MSR_IA32_TSC;
397 #ifdef TARGET_X86_64
398 if (lm_capable_kernel) {
399 msrs[n++].index = MSR_CSTAR;
400 msrs[n++].index = MSR_KERNELGSBASE;
401 msrs[n++].index = MSR_FMASK;
402 msrs[n++].index = MSR_LSTAR;
404 #endif
405 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
406 if (rc == -1) {
407 perror("kvm_get_msrs FAILED");
409 else {
410 n = rc; /* actual number of MSRs */
411 for (i=0 ; i<n; i++) {
412 if (get_msr_entry(&msrs[i], env))
413 return;
418 static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
419 uint32_t *ecx, uint32_t *edx)
421 uint32_t vec[4];
423 vec[0] = function;
424 asm volatile (
425 #ifdef __x86_64__
426 "sub $128, %%rsp \n\t" /* skip red zone */
427 "push %0; push %%rsi \n\t"
428 "push %%rax; push %%rbx; push %%rcx; push %%rdx \n\t"
429 "mov 8*5(%%rsp), %%rsi \n\t"
430 "mov (%%rsi), %%eax \n\t"
431 "cpuid \n\t"
432 "mov %%eax, (%%rsi) \n\t"
433 "mov %%ebx, 4(%%rsi) \n\t"
434 "mov %%ecx, 8(%%rsi) \n\t"
435 "mov %%edx, 12(%%rsi) \n\t"
436 "pop %%rdx; pop %%rcx; pop %%rbx; pop %%rax \n\t"
437 "pop %%rsi; pop %0 \n\t"
438 "add $128, %%rsp"
439 #else
440 "push %0; push %%esi \n\t"
441 "push %%eax; push %%ebx; push %%ecx; push %%edx \n\t"
442 "mov 4*5(%%esp), %%esi \n\t"
443 "mov (%%esi), %%eax \n\t"
444 "cpuid \n\t"
445 "mov %%eax, (%%esi) \n\t"
446 "mov %%ebx, 4(%%esi) \n\t"
447 "mov %%ecx, 8(%%esi) \n\t"
448 "mov %%edx, 12(%%esi) \n\t"
449 "pop %%edx; pop %%ecx; pop %%ebx; pop %%eax \n\t"
450 "pop %%esi; pop %0 \n\t"
451 #endif
452 : : "rm"(vec) : "memory");
453 if (eax)
454 *eax = vec[0];
455 if (ebx)
456 *ebx = vec[1];
457 if (ecx)
458 *ecx = vec[2];
459 if (edx)
460 *edx = vec[3];
464 static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
465 CPUState *env)
467 env->regs[R_EAX] = function;
468 qemu_kvm_cpuid_on_env(env);
469 e->function = function;
470 e->eax = env->regs[R_EAX];
471 e->ebx = env->regs[R_EBX];
472 e->ecx = env->regs[R_ECX];
473 e->edx = env->regs[R_EDX];
474 if (function == 0x80000001) {
475 uint32_t h_eax, h_edx;
476 struct utsname utsname;
478 host_cpuid(function, &h_eax, NULL, NULL, &h_edx);
479 uname(&utsname);
480 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
482 // long mode
483 if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
484 e->edx &= ~0x20000000u;
485 // syscall
486 if ((h_edx & 0x00000800) == 0)
487 e->edx &= ~0x00000800u;
488 // nx
489 if ((h_edx & 0x00100000) == 0)
490 e->edx &= ~0x00100000u;
491 // svm
492 if (e->ecx & 4)
493 e->ecx &= ~4u;
495 // sysenter isn't supported on compatibility mode on AMD. and syscall
496 // isn't supported in compatibility mode on Intel. so advertise the
497 // actuall cpu, and say goodbye to migration between different vendors
498 // is you use compatibility mode.
499 if (function == 0) {
500 uint32_t bcd[3];
502 host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
503 e->ebx = bcd[0];
504 e->ecx = bcd[1];
505 e->edx = bcd[2];
509 int kvm_arch_qemu_init_env(CPUState *cenv)
511 struct kvm_cpuid_entry cpuid_ent[100];
512 #ifdef KVM_CPUID_SIGNATURE
513 struct kvm_cpuid_entry *pv_ent;
514 uint32_t signature[3];
515 #endif
516 int cpuid_nent = 0;
517 CPUState copy;
518 uint32_t i, limit;
520 copy = *cenv;
522 #ifdef KVM_CPUID_SIGNATURE
523 /* Paravirtualization CPUIDs */
524 memcpy(signature, "KVMKVMKVM", 12);
525 pv_ent = &cpuid_ent[cpuid_nent++];
526 memset(pv_ent, 0, sizeof(*pv_ent));
527 pv_ent->function = KVM_CPUID_SIGNATURE;
528 pv_ent->eax = 0;
529 pv_ent->ebx = signature[0];
530 pv_ent->ecx = signature[1];
531 pv_ent->edx = signature[2];
533 pv_ent = &cpuid_ent[cpuid_nent++];
534 memset(pv_ent, 0, sizeof(*pv_ent));
535 pv_ent->function = KVM_CPUID_FEATURES;
536 pv_ent->eax = 0;
537 #endif
539 copy.regs[R_EAX] = 0;
540 qemu_kvm_cpuid_on_env(&copy);
541 limit = copy.regs[R_EAX];
543 for (i = 0; i <= limit; ++i)
544 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
546 copy.regs[R_EAX] = 0x80000000;
547 qemu_kvm_cpuid_on_env(&copy);
548 limit = copy.regs[R_EAX];
550 for (i = 0x80000000; i <= limit; ++i)
551 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
553 kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
554 return 0;
557 int kvm_arch_halt(void *opaque, int vcpu)
559 CPUState *env = cpu_single_env;
561 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
562 (env->eflags & IF_MASK))) {
563 env->hflags |= HF_HALTED_MASK;
564 env->exception_index = EXCP_HLT;
566 return 1;
569 void kvm_arch_pre_kvm_run(void *opaque, int vcpu)
571 CPUState *env = cpu_single_env;
573 if (!kvm_irqchip_in_kernel(kvm_context))
574 kvm_set_cr8(kvm_context, vcpu, cpu_get_apic_tpr(env));
577 void kvm_arch_post_kvm_run(void *opaque, int vcpu)
579 CPUState *env = vcpu_env;
580 cpu_single_env = env;
582 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
583 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
584 env->ready_for_interrupt_injection
585 = kvm_is_ready_for_interrupt_injection(kvm_context, vcpu);
587 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
588 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
591 int kvm_arch_has_work(CPUState *env)
593 if ((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
594 (env->eflags & IF_MASK))
595 return 1;
596 return 0;
599 int kvm_arch_try_push_interrupts(void *opaque)
601 CPUState *env = cpu_single_env;
602 int r, irq;
604 if (env->ready_for_interrupt_injection &&
605 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
606 (env->eflags & IF_MASK)) {
607 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
608 irq = cpu_get_pic_interrupt(env);
609 if (irq >= 0) {
610 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
611 if (r < 0)
612 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
616 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
619 void kvm_arch_update_regs_for_sipi(CPUState *env)
621 SegmentCache cs = env->segs[R_CS];
623 kvm_arch_save_regs(env);
624 env->segs[R_CS] = cs;
625 env->eip = 0;
626 kvm_arch_load_regs(env);
628 #endif