2 * QEMU PowerPC 4xx embedded processors shared devices emulation
4 * Copyright (c) 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
31 //#define DEBUG_UNASSIGNED
36 # define LOG_UIC(...) do { \
37 if (loglevel & CPU_LOG_INT) \
38 fprintf(logfile, ## __VA_ARGS__); \
41 # define LOG_UIC(...) do { } while (0)
44 /*****************************************************************************/
45 /* Generic PowerPC 4xx processor instanciation */
46 CPUState
*ppc4xx_init (const char *cpu_model
,
47 clk_setup_t
*cpu_clk
, clk_setup_t
*tb_clk
,
53 env
= cpu_init(cpu_model
);
55 fprintf(stderr
, "Unable to find PowerPC %s CPU definition\n",
59 cpu_clk
->cb
= NULL
; /* We don't care about CPU clock frequency changes */
60 cpu_clk
->opaque
= env
;
61 /* Set time-base frequency to sysclk */
62 tb_clk
->cb
= ppc_emb_timers_init(env
, sysclk
);
64 ppc_dcr_init(env
, NULL
, NULL
);
65 /* Register qemu callbacks */
66 qemu_register_reset(&cpu_ppc_reset
, env
);
71 /*****************************************************************************/
72 /* Fake device used to map multiple devices in a single memory page */
73 #define MMIO_AREA_BITS 8
74 #define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
75 #define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
76 #define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
77 struct ppc4xx_mmio_t
{
78 target_phys_addr_t base
;
79 CPUReadMemoryFunc
**mem_read
[MMIO_AREA_NB
];
80 CPUWriteMemoryFunc
**mem_write
[MMIO_AREA_NB
];
81 void *opaque
[MMIO_AREA_NB
];
84 static uint32_t unassigned_mmio_readb (void *opaque
, target_phys_addr_t addr
)
86 #ifdef DEBUG_UNASSIGNED
90 printf("Unassigned mmio read 0x" PADDRX
" base " PADDRX
"\n",
97 static void unassigned_mmio_writeb (void *opaque
,
98 target_phys_addr_t addr
, uint32_t val
)
100 #ifdef DEBUG_UNASSIGNED
104 printf("Unassigned mmio write 0x" PADDRX
" = 0x%x base " PADDRX
"\n",
105 addr
, val
, mmio
->base
);
109 static CPUReadMemoryFunc
*unassigned_mmio_read
[3] = {
110 unassigned_mmio_readb
,
111 unassigned_mmio_readb
,
112 unassigned_mmio_readb
,
115 static CPUWriteMemoryFunc
*unassigned_mmio_write
[3] = {
116 unassigned_mmio_writeb
,
117 unassigned_mmio_writeb
,
118 unassigned_mmio_writeb
,
121 static uint32_t mmio_readlen (ppc4xx_mmio_t
*mmio
,
122 target_phys_addr_t addr
, int len
)
124 CPUReadMemoryFunc
**mem_read
;
128 idx
= MMIO_IDX(addr
);
129 #if defined(DEBUG_MMIO)
130 printf("%s: mmio %p len %d addr " PADDRX
" idx %d\n", __func__
,
131 mmio
, len
, addr
, idx
);
133 mem_read
= mmio
->mem_read
[idx
];
134 ret
= (*mem_read
[len
])(mmio
->opaque
[idx
], addr
);
139 static void mmio_writelen (ppc4xx_mmio_t
*mmio
,
140 target_phys_addr_t addr
, uint32_t value
, int len
)
142 CPUWriteMemoryFunc
**mem_write
;
145 idx
= MMIO_IDX(addr
);
146 #if defined(DEBUG_MMIO)
147 printf("%s: mmio %p len %d addr " PADDRX
" idx %d value %08" PRIx32
"\n",
148 __func__
, mmio
, len
, addr
, idx
, value
);
150 mem_write
= mmio
->mem_write
[idx
];
151 (*mem_write
[len
])(mmio
->opaque
[idx
], addr
, value
);
154 static uint32_t mmio_readb (void *opaque
, target_phys_addr_t addr
)
156 #if defined(DEBUG_MMIO)
157 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
160 return mmio_readlen(opaque
, addr
, 0);
163 static void mmio_writeb (void *opaque
,
164 target_phys_addr_t addr
, uint32_t value
)
166 #if defined(DEBUG_MMIO)
167 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
169 mmio_writelen(opaque
, addr
, value
, 0);
172 static uint32_t mmio_readw (void *opaque
, target_phys_addr_t addr
)
174 #if defined(DEBUG_MMIO)
175 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
178 return mmio_readlen(opaque
, addr
, 1);
181 static void mmio_writew (void *opaque
,
182 target_phys_addr_t addr
, uint32_t value
)
184 #if defined(DEBUG_MMIO)
185 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
187 mmio_writelen(opaque
, addr
, value
, 1);
190 static uint32_t mmio_readl (void *opaque
, target_phys_addr_t addr
)
192 #if defined(DEBUG_MMIO)
193 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
196 return mmio_readlen(opaque
, addr
, 2);
199 static void mmio_writel (void *opaque
,
200 target_phys_addr_t addr
, uint32_t value
)
202 #if defined(DEBUG_MMIO)
203 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
205 mmio_writelen(opaque
, addr
, value
, 2);
208 static CPUReadMemoryFunc
*mmio_read
[] = {
214 static CPUWriteMemoryFunc
*mmio_write
[] = {
220 int ppc4xx_mmio_register (CPUState
*env
, ppc4xx_mmio_t
*mmio
,
221 target_phys_addr_t offset
, uint32_t len
,
222 CPUReadMemoryFunc
**mem_read
,
223 CPUWriteMemoryFunc
**mem_write
, void *opaque
)
225 target_phys_addr_t end
;
228 if ((offset
+ len
) > TARGET_PAGE_SIZE
)
230 idx
= MMIO_IDX(offset
);
231 end
= offset
+ len
- 1;
232 eidx
= MMIO_IDX(end
);
233 #if defined(DEBUG_MMIO)
234 printf("%s: offset " PADDRX
" len %08" PRIx32
" " PADDRX
" %d %d\n",
235 __func__
, offset
, len
, end
, idx
, eidx
);
237 for (; idx
<= eidx
; idx
++) {
238 mmio
->mem_read
[idx
] = mem_read
;
239 mmio
->mem_write
[idx
] = mem_write
;
240 mmio
->opaque
[idx
] = opaque
;
246 ppc4xx_mmio_t
*ppc4xx_mmio_init (CPUState
*env
, target_phys_addr_t base
)
251 mmio
= qemu_mallocz(sizeof(ppc4xx_mmio_t
));
254 mmio_memory
= cpu_register_io_memory(0, mmio_read
, mmio_write
, mmio
);
255 #if defined(DEBUG_MMIO)
256 printf("%s: base " PADDRX
" len %08x %d\n", __func__
,
257 base
, TARGET_PAGE_SIZE
, mmio_memory
);
259 cpu_register_physical_memory(base
, TARGET_PAGE_SIZE
, mmio_memory
);
260 ppc4xx_mmio_register(env
, mmio
, 0, TARGET_PAGE_SIZE
,
261 unassigned_mmio_read
, unassigned_mmio_write
,
268 /*****************************************************************************/
269 /* "Universal" Interrupt controller */
283 #define UIC_MAX_IRQ 32
284 typedef struct ppcuic_t ppcuic_t
;
288 uint32_t level
; /* Remembers the state of level-triggered interrupts. */
289 uint32_t uicsr
; /* Status register */
290 uint32_t uicer
; /* Enable register */
291 uint32_t uiccr
; /* Critical register */
292 uint32_t uicpr
; /* Polarity register */
293 uint32_t uictr
; /* Triggering register */
294 uint32_t uicvcr
; /* Vector configuration register */
299 static void ppcuic_trigger_irq (ppcuic_t
*uic
)
302 int start
, end
, inc
, i
;
304 /* Trigger interrupt if any is pending */
305 ir
= uic
->uicsr
& uic
->uicer
& (~uic
->uiccr
);
306 cr
= uic
->uicsr
& uic
->uicer
& uic
->uiccr
;
307 LOG_UIC("%s: uicsr %08" PRIx32
" uicer %08" PRIx32
308 " uiccr %08" PRIx32
"\n"
309 " %08" PRIx32
" ir %08" PRIx32
" cr %08" PRIx32
"\n",
310 __func__
, uic
->uicsr
, uic
->uicer
, uic
->uiccr
,
311 uic
->uicsr
& uic
->uicer
, ir
, cr
);
312 if (ir
!= 0x0000000) {
313 LOG_UIC("Raise UIC interrupt\n");
314 qemu_irq_raise(uic
->irqs
[PPCUIC_OUTPUT_INT
]);
316 LOG_UIC("Lower UIC interrupt\n");
317 qemu_irq_lower(uic
->irqs
[PPCUIC_OUTPUT_INT
]);
319 /* Trigger critical interrupt if any is pending and update vector */
320 if (cr
!= 0x0000000) {
321 qemu_irq_raise(uic
->irqs
[PPCUIC_OUTPUT_CINT
]);
322 if (uic
->use_vectors
) {
323 /* Compute critical IRQ vector */
324 if (uic
->uicvcr
& 1) {
333 uic
->uicvr
= uic
->uicvcr
& 0xFFFFFFFC;
334 for (i
= start
; i
<= end
; i
+= inc
) {
336 uic
->uicvr
+= (i
- start
) * 512 * inc
;
341 LOG_UIC("Raise UIC critical interrupt - "
342 "vector %08" PRIx32
"\n", uic
->uicvr
);
344 LOG_UIC("Lower UIC critical interrupt\n");
345 qemu_irq_lower(uic
->irqs
[PPCUIC_OUTPUT_CINT
]);
346 uic
->uicvr
= 0x00000000;
350 static void ppcuic_set_irq (void *opaque
, int irq_num
, int level
)
356 mask
= 1 << (31-irq_num
);
357 LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
358 " mask %08" PRIx32
" => %08" PRIx32
" %08" PRIx32
"\n",
359 __func__
, irq_num
, level
,
360 uic
->uicsr
, mask
, uic
->uicsr
& mask
, level
<< irq_num
);
361 if (irq_num
< 0 || irq_num
> 31)
365 /* Update status register */
366 if (uic
->uictr
& mask
) {
367 /* Edge sensitive interrupt */
371 /* Level sensitive interrupt */
380 LOG_UIC("%s: irq %d level %d sr %" PRIx32
" => "
381 "%08" PRIx32
"\n", __func__
, irq_num
, level
, uic
->uicsr
, sr
);
382 if (sr
!= uic
->uicsr
)
383 ppcuic_trigger_irq(uic
);
386 static target_ulong
dcr_read_uic (void *opaque
, int dcrn
)
392 dcrn
-= uic
->dcr_base
;
411 ret
= uic
->uicsr
& uic
->uicer
;
414 if (!uic
->use_vectors
)
419 if (!uic
->use_vectors
)
432 static void dcr_write_uic (void *opaque
, int dcrn
, target_ulong val
)
437 dcrn
-= uic
->dcr_base
;
438 LOG_UIC("%s: dcr %d val " ADDRX
"\n", __func__
, dcrn
, val
);
442 uic
->uicsr
|= uic
->level
;
443 ppcuic_trigger_irq(uic
);
447 ppcuic_trigger_irq(uic
);
451 ppcuic_trigger_irq(uic
);
455 ppcuic_trigger_irq(uic
);
462 ppcuic_trigger_irq(uic
);
469 uic
->uicvcr
= val
& 0xFFFFFFFD;
470 ppcuic_trigger_irq(uic
);
475 static void ppcuic_reset (void *opaque
)
480 uic
->uiccr
= 0x00000000;
481 uic
->uicer
= 0x00000000;
482 uic
->uicpr
= 0x00000000;
483 uic
->uicsr
= 0x00000000;
484 uic
->uictr
= 0x00000000;
485 if (uic
->use_vectors
) {
486 uic
->uicvcr
= 0x00000000;
487 uic
->uicvr
= 0x0000000;
491 qemu_irq
*ppcuic_init (CPUState
*env
, qemu_irq
*irqs
,
492 uint32_t dcr_base
, int has_ssr
, int has_vr
)
497 uic
= qemu_mallocz(sizeof(ppcuic_t
));
499 uic
->dcr_base
= dcr_base
;
502 uic
->use_vectors
= 1;
503 for (i
= 0; i
< DCR_UICMAX
; i
++) {
504 ppc_dcr_register(env
, dcr_base
+ i
, uic
,
505 &dcr_read_uic
, &dcr_write_uic
);
507 qemu_register_reset(ppcuic_reset
, uic
);
511 return qemu_allocate_irqs(&ppcuic_set_irq
, uic
, UIC_MAX_IRQ
);
514 /*****************************************************************************/
515 /* SDRAM controller */
516 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t
;
517 struct ppc4xx_sdram_t
{
520 target_phys_addr_t ram_bases
[4];
521 target_phys_addr_t ram_sizes
[4];
537 SDRAM0_CFGADDR
= 0x010,
538 SDRAM0_CFGDATA
= 0x011,
541 /* XXX: TOFIX: some patches have made this code become inconsistent:
542 * there are type inconsistencies, mixing target_phys_addr_t, target_ulong
545 static uint32_t sdram_bcr (target_phys_addr_t ram_base
,
546 target_phys_addr_t ram_size
)
551 case (4 * 1024 * 1024):
554 case (8 * 1024 * 1024):
557 case (16 * 1024 * 1024):
560 case (32 * 1024 * 1024):
563 case (64 * 1024 * 1024):
566 case (128 * 1024 * 1024):
569 case (256 * 1024 * 1024):
573 printf("%s: invalid RAM size " PADDRX
"\n", __func__
, ram_size
);
576 bcr
|= ram_base
& 0xFF800000;
582 static always_inline target_phys_addr_t
sdram_base (uint32_t bcr
)
584 return bcr
& 0xFF800000;
587 static target_ulong
sdram_size (uint32_t bcr
)
592 sh
= (bcr
>> 17) & 0x7;
596 size
= (4 * 1024 * 1024) << sh
;
601 static void sdram_set_bcr (uint32_t *bcrp
, uint32_t bcr
, int enabled
)
603 if (*bcrp
& 0x00000001) {
606 printf("%s: unmap RAM area " PADDRX
" " ADDRX
"\n",
607 __func__
, sdram_base(*bcrp
), sdram_size(*bcrp
));
609 cpu_register_physical_memory(sdram_base(*bcrp
), sdram_size(*bcrp
),
612 *bcrp
= bcr
& 0xFFDEE001;
613 if (enabled
&& (bcr
& 0x00000001)) {
615 printf("%s: Map RAM area " PADDRX
" " ADDRX
"\n",
616 __func__
, sdram_base(bcr
), sdram_size(bcr
));
618 cpu_register_physical_memory(sdram_base(bcr
), sdram_size(bcr
),
619 sdram_base(bcr
) | IO_MEM_RAM
);
623 static void sdram_map_bcr (ppc4xx_sdram_t
*sdram
)
627 for (i
= 0; i
< sdram
->nbanks
; i
++) {
628 if (sdram
->ram_sizes
[i
] != 0) {
629 sdram_set_bcr(&sdram
->bcr
[i
],
630 sdram_bcr(sdram
->ram_bases
[i
], sdram
->ram_sizes
[i
]),
633 sdram_set_bcr(&sdram
->bcr
[i
], 0x00000000, 0);
638 static void sdram_unmap_bcr (ppc4xx_sdram_t
*sdram
)
642 for (i
= 0; i
< sdram
->nbanks
; i
++) {
644 printf("%s: Unmap RAM area " PADDRX
" " ADDRX
"\n",
645 __func__
, sdram_base(sdram
->bcr
[i
]), sdram_size(sdram
->bcr
[i
]));
647 cpu_register_physical_memory(sdram_base(sdram
->bcr
[i
]),
648 sdram_size(sdram
->bcr
[i
]),
653 static target_ulong
dcr_read_sdram (void *opaque
, int dcrn
)
655 ppc4xx_sdram_t
*sdram
;
664 switch (sdram
->addr
) {
665 case 0x00: /* SDRAM_BESR0 */
668 case 0x08: /* SDRAM_BESR1 */
671 case 0x10: /* SDRAM_BEAR */
674 case 0x20: /* SDRAM_CFG */
677 case 0x24: /* SDRAM_STATUS */
680 case 0x30: /* SDRAM_RTR */
683 case 0x34: /* SDRAM_PMIT */
686 case 0x40: /* SDRAM_B0CR */
689 case 0x44: /* SDRAM_B1CR */
692 case 0x48: /* SDRAM_B2CR */
695 case 0x4C: /* SDRAM_B3CR */
698 case 0x80: /* SDRAM_TR */
701 case 0x94: /* SDRAM_ECCCFG */
704 case 0x98: /* SDRAM_ECCESR */
713 /* Avoid gcc warning */
721 static void dcr_write_sdram (void *opaque
, int dcrn
, target_ulong val
)
723 ppc4xx_sdram_t
*sdram
;
731 switch (sdram
->addr
) {
732 case 0x00: /* SDRAM_BESR0 */
733 sdram
->besr0
&= ~val
;
735 case 0x08: /* SDRAM_BESR1 */
736 sdram
->besr1
&= ~val
;
738 case 0x10: /* SDRAM_BEAR */
741 case 0x20: /* SDRAM_CFG */
743 if (!(sdram
->cfg
& 0x80000000) && (val
& 0x80000000)) {
745 printf("%s: enable SDRAM controller\n", __func__
);
747 /* validate all RAM mappings */
748 sdram_map_bcr(sdram
);
749 sdram
->status
&= ~0x80000000;
750 } else if ((sdram
->cfg
& 0x80000000) && !(val
& 0x80000000)) {
752 printf("%s: disable SDRAM controller\n", __func__
);
754 /* invalidate all RAM mappings */
755 sdram_unmap_bcr(sdram
);
756 sdram
->status
|= 0x80000000;
758 if (!(sdram
->cfg
& 0x40000000) && (val
& 0x40000000))
759 sdram
->status
|= 0x40000000;
760 else if ((sdram
->cfg
& 0x40000000) && !(val
& 0x40000000))
761 sdram
->status
&= ~0x40000000;
764 case 0x24: /* SDRAM_STATUS */
765 /* Read-only register */
767 case 0x30: /* SDRAM_RTR */
768 sdram
->rtr
= val
& 0x3FF80000;
770 case 0x34: /* SDRAM_PMIT */
771 sdram
->pmit
= (val
& 0xF8000000) | 0x07C00000;
773 case 0x40: /* SDRAM_B0CR */
774 sdram_set_bcr(&sdram
->bcr
[0], val
, sdram
->cfg
& 0x80000000);
776 case 0x44: /* SDRAM_B1CR */
777 sdram_set_bcr(&sdram
->bcr
[1], val
, sdram
->cfg
& 0x80000000);
779 case 0x48: /* SDRAM_B2CR */
780 sdram_set_bcr(&sdram
->bcr
[2], val
, sdram
->cfg
& 0x80000000);
782 case 0x4C: /* SDRAM_B3CR */
783 sdram_set_bcr(&sdram
->bcr
[3], val
, sdram
->cfg
& 0x80000000);
785 case 0x80: /* SDRAM_TR */
786 sdram
->tr
= val
& 0x018FC01F;
788 case 0x94: /* SDRAM_ECCCFG */
789 sdram
->ecccfg
= val
& 0x00F00000;
791 case 0x98: /* SDRAM_ECCESR */
793 if (sdram
->eccesr
== 0 && val
!= 0)
794 qemu_irq_raise(sdram
->irq
);
795 else if (sdram
->eccesr
!= 0 && val
== 0)
796 qemu_irq_lower(sdram
->irq
);
806 static void sdram_reset (void *opaque
)
808 ppc4xx_sdram_t
*sdram
;
811 sdram
->addr
= 0x00000000;
812 sdram
->bear
= 0x00000000;
813 sdram
->besr0
= 0x00000000; /* No error */
814 sdram
->besr1
= 0x00000000; /* No error */
815 sdram
->cfg
= 0x00000000;
816 sdram
->ecccfg
= 0x00000000; /* No ECC */
817 sdram
->eccesr
= 0x00000000; /* No error */
818 sdram
->pmit
= 0x07C00000;
819 sdram
->rtr
= 0x05F00000;
820 sdram
->tr
= 0x00854009;
821 /* We pre-initialize RAM banks */
822 sdram
->status
= 0x00000000;
823 sdram
->cfg
= 0x00800000;
824 sdram_unmap_bcr(sdram
);
827 void ppc4xx_sdram_init (CPUState
*env
, qemu_irq irq
, int nbanks
,
828 target_phys_addr_t
*ram_bases
,
829 target_phys_addr_t
*ram_sizes
,
832 ppc4xx_sdram_t
*sdram
;
834 sdram
= qemu_mallocz(sizeof(ppc4xx_sdram_t
));
837 sdram
->nbanks
= nbanks
;
838 memset(sdram
->ram_bases
, 0, 4 * sizeof(target_phys_addr_t
));
839 memcpy(sdram
->ram_bases
, ram_bases
,
840 nbanks
* sizeof(target_phys_addr_t
));
841 memset(sdram
->ram_sizes
, 0, 4 * sizeof(target_phys_addr_t
));
842 memcpy(sdram
->ram_sizes
, ram_sizes
,
843 nbanks
* sizeof(target_phys_addr_t
));
845 qemu_register_reset(&sdram_reset
, sdram
);
846 ppc_dcr_register(env
, SDRAM0_CFGADDR
,
847 sdram
, &dcr_read_sdram
, &dcr_write_sdram
);
848 ppc_dcr_register(env
, SDRAM0_CFGDATA
,
849 sdram
, &dcr_read_sdram
, &dcr_write_sdram
);
851 sdram_map_bcr(sdram
);
855 /* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
857 * sdram_bank_sizes[] must be 0-terminated.
859 * The 4xx SDRAM controller supports a small number of banks, and each bank
860 * must be one of a small set of sizes. The number of banks and the supported
861 * sizes varies by SoC. */
862 ram_addr_t
ppc4xx_sdram_adjust(ram_addr_t ram_size
, int nr_banks
,
863 target_phys_addr_t ram_bases
[],
864 target_phys_addr_t ram_sizes
[],
865 const unsigned int sdram_bank_sizes
[])
867 ram_addr_t ram_end
= 0;
871 for (i
= 0; i
< nr_banks
; i
++) {
872 for (j
= 0; sdram_bank_sizes
[j
] != 0; j
++) {
873 unsigned int bank_size
= sdram_bank_sizes
[j
];
875 if (bank_size
<= ram_size
) {
876 ram_bases
[i
] = ram_end
;
877 ram_sizes
[i
] = bank_size
;
878 ram_end
+= bank_size
;
879 ram_size
-= bank_size
;
885 /* No need to use the remaining banks. */
891 printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
892 (int)(ram_end
>> 20));