2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
33 #define __builtin_expect(x, n) (x)
36 #define likely(x) __builtin_expect(!!(x), 1)
37 #define unlikely(x) __builtin_expect(!!(x), 0)
41 #if (__GNUC__ < 3) || defined(__APPLE__)
42 #define always_inline inline
44 #define always_inline __attribute__ (( always_inline )) inline
49 #define REGPARM(n) __attribute((regparm(n)))
54 /* is_jmp field values */
55 #define DISAS_NEXT 0 /* next instruction can be analyzed */
56 #define DISAS_JUMP 1 /* only pc was modified dynamically */
57 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
58 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
60 struct TranslationBlock
;
62 /* XXX: make safe guess about sizes */
63 #define MAX_OP_PER_INSTR 32
64 #define OPC_BUF_SIZE 512
65 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
67 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
69 extern uint16_t gen_opc_buf
[OPC_BUF_SIZE
];
70 extern uint32_t gen_opparam_buf
[OPPARAM_BUF_SIZE
];
71 extern long gen_labels
[OPC_BUF_SIZE
];
72 extern int nb_gen_labels
;
73 extern target_ulong gen_opc_pc
[OPC_BUF_SIZE
];
74 extern target_ulong gen_opc_npc
[OPC_BUF_SIZE
];
75 extern uint8_t gen_opc_cc_op
[OPC_BUF_SIZE
];
76 extern uint8_t gen_opc_instr_start
[OPC_BUF_SIZE
];
77 extern target_ulong gen_opc_jump_pc
[2];
78 extern uint32_t gen_opc_hflags
[OPC_BUF_SIZE
];
80 typedef void (GenOpFunc
)(void);
81 typedef void (GenOpFunc1
)(long);
82 typedef void (GenOpFunc2
)(long, long);
83 typedef void (GenOpFunc3
)(long, long, long);
85 #if defined(TARGET_I386)
87 void optimize_flags_init(void);
94 void muls64(int64_t *phigh
, int64_t *plow
, int64_t a
, int64_t b
);
95 void mulu64(uint64_t *phigh
, uint64_t *plow
, uint64_t a
, uint64_t b
);
97 int gen_intermediate_code(CPUState
*env
, struct TranslationBlock
*tb
);
98 int gen_intermediate_code_pc(CPUState
*env
, struct TranslationBlock
*tb
);
99 void dump_ops(const uint16_t *opc_buf
, const uint32_t *opparam_buf
);
100 int cpu_gen_code(CPUState
*env
, struct TranslationBlock
*tb
,
101 int max_code_size
, int *gen_code_size_ptr
);
102 int cpu_restore_state(struct TranslationBlock
*tb
,
103 CPUState
*env
, unsigned long searched_pc
,
105 int cpu_gen_code_copy(CPUState
*env
, struct TranslationBlock
*tb
,
106 int max_code_size
, int *gen_code_size_ptr
);
107 int cpu_restore_state_copy(struct TranslationBlock
*tb
,
108 CPUState
*env
, unsigned long searched_pc
,
110 void cpu_resume_from_signal(CPUState
*env1
, void *puc
);
111 void cpu_exec_init(CPUState
*env
);
112 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
);
113 void tb_invalidate_phys_page_range(target_ulong start
, target_ulong end
,
114 int is_cpu_write_access
);
115 void tb_invalidate_page_range(target_ulong start
, target_ulong end
);
116 void tlb_flush_page(CPUState
*env
, target_ulong addr
);
117 void tlb_flush(CPUState
*env
, int flush_global
);
118 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
119 target_phys_addr_t paddr
, int prot
,
120 int is_user
, int is_softmmu
);
121 static inline int tlb_set_page(CPUState
*env
, target_ulong vaddr
,
122 target_phys_addr_t paddr
, int prot
,
123 int is_user
, int is_softmmu
)
125 if (prot
& PAGE_READ
)
127 return tlb_set_page_exec(env
, vaddr
, paddr
, prot
, is_user
, is_softmmu
);
130 #define CODE_GEN_MAX_SIZE 65536
131 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
133 #define CODE_GEN_PHYS_HASH_BITS 15
134 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
136 /* maximum total translate dcode allocated */
138 /* NOTE: the translated code area cannot be too big because on some
139 archs the range of "fast" function calls is limited. Here is a
140 summary of the ranges:
142 i386 : signed 32 bits
145 sparc : signed 32 bits
146 alpha : signed 23 bits
149 #if defined(__alpha__)
150 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
151 #elif defined(__ia64)
152 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
153 #elif defined(__powerpc__)
154 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
156 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
159 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
161 /* estimated block size for TB allocation */
162 /* XXX: use a per code average code fragment size and modulate it
163 according to the host CPU */
164 #if defined(CONFIG_SOFTMMU)
165 #define CODE_GEN_AVG_BLOCK_SIZE 128
167 #define CODE_GEN_AVG_BLOCK_SIZE 64
170 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
172 #if defined(__powerpc__)
173 #define USE_DIRECT_JUMP
175 #if defined(__i386__) && !defined(_WIN32)
176 #define USE_DIRECT_JUMP
179 typedef struct TranslationBlock
{
180 target_ulong pc
; /* simulated PC corresponding to this block (EIP + CS base) */
181 target_ulong cs_base
; /* CS base for this block */
182 uint64_t flags
; /* flags defining in which context the code was generated */
183 uint16_t size
; /* size of target code for this block (1 <=
184 size <= TARGET_PAGE_SIZE) */
185 uint16_t cflags
; /* compile flags */
186 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
187 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
188 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
189 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
191 uint8_t *tc_ptr
; /* pointer to the translated code */
192 /* next matching tb for physical address. */
193 struct TranslationBlock
*phys_hash_next
;
194 /* first and second physical page containing code. The lower bit
195 of the pointer tells the index in page_next[] */
196 struct TranslationBlock
*page_next
[2];
197 target_ulong page_addr
[2];
199 /* the following data are used to directly call another TB from
200 the code of this one. */
201 uint16_t tb_next_offset
[2]; /* offset of original jump target */
202 #ifdef USE_DIRECT_JUMP
203 uint16_t tb_jmp_offset
[4]; /* offset of jump instruction */
205 uint32_t tb_next
[2]; /* address of jump generated code */
207 /* list of TBs jumping to this one. This is a circular list using
208 the two least significant bits of the pointers to tell what is
209 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
211 struct TranslationBlock
*jmp_next
[2];
212 struct TranslationBlock
*jmp_first
;
215 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc
)
218 tmp
= pc
^ (pc
>> (TARGET_PAGE_BITS
- TB_JMP_PAGE_BITS
));
219 return (tmp
>> TB_JMP_PAGE_BITS
) & TB_JMP_PAGE_MASK
;
222 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc
)
225 tmp
= pc
^ (pc
>> (TARGET_PAGE_BITS
- TB_JMP_PAGE_BITS
));
226 return (((tmp
>> TB_JMP_PAGE_BITS
) & TB_JMP_PAGE_MASK
) |
227 (tmp
& TB_JMP_ADDR_MASK
));
230 static inline unsigned int tb_phys_hash_func(unsigned long pc
)
232 return pc
& (CODE_GEN_PHYS_HASH_SIZE
- 1);
235 TranslationBlock
*tb_alloc(target_ulong pc
);
236 void tb_flush(CPUState
*env
);
237 void tb_link_phys(TranslationBlock
*tb
,
238 target_ulong phys_pc
, target_ulong phys_page2
);
240 extern TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
242 extern uint8_t code_gen_buffer
[CODE_GEN_BUFFER_SIZE
];
243 extern uint8_t *code_gen_ptr
;
245 #if defined(USE_DIRECT_JUMP)
247 #if defined(__powerpc__)
248 static inline void tb_set_jmp_target1(unsigned long jmp_addr
, unsigned long addr
)
252 /* patch the branch destination */
253 ptr
= (uint32_t *)jmp_addr
;
255 val
= (val
& ~0x03fffffc) | ((addr
- jmp_addr
) & 0x03fffffc);
258 asm volatile ("dcbst 0,%0" : : "r"(ptr
) : "memory");
259 asm volatile ("sync" : : : "memory");
260 asm volatile ("icbi 0,%0" : : "r"(ptr
) : "memory");
261 asm volatile ("sync" : : : "memory");
262 asm volatile ("isync" : : : "memory");
264 #elif defined(__i386__)
265 static inline void tb_set_jmp_target1(unsigned long jmp_addr
, unsigned long addr
)
267 /* patch the branch destination */
268 *(uint32_t *)jmp_addr
= addr
- (jmp_addr
+ 4);
269 /* no need to flush icache explicitely */
273 static inline void tb_set_jmp_target(TranslationBlock
*tb
,
274 int n
, unsigned long addr
)
276 unsigned long offset
;
278 offset
= tb
->tb_jmp_offset
[n
];
279 tb_set_jmp_target1((unsigned long)(tb
->tc_ptr
+ offset
), addr
);
280 offset
= tb
->tb_jmp_offset
[n
+ 2];
281 if (offset
!= 0xffff)
282 tb_set_jmp_target1((unsigned long)(tb
->tc_ptr
+ offset
), addr
);
287 /* set the jump target */
288 static inline void tb_set_jmp_target(TranslationBlock
*tb
,
289 int n
, unsigned long addr
)
291 tb
->tb_next
[n
] = addr
;
296 static inline void tb_add_jump(TranslationBlock
*tb
, int n
,
297 TranslationBlock
*tb_next
)
299 /* NOTE: this test is only needed for thread safety */
300 if (!tb
->jmp_next
[n
]) {
301 /* patch the native jump address */
302 tb_set_jmp_target(tb
, n
, (unsigned long)tb_next
->tc_ptr
);
304 /* add in TB jmp circular list */
305 tb
->jmp_next
[n
] = tb_next
->jmp_first
;
306 tb_next
->jmp_first
= (TranslationBlock
*)((long)(tb
) | (n
));
310 TranslationBlock
*tb_find_pc(unsigned long pc_ptr
);
313 #define offsetof(type, field) ((size_t) &((type *)0)->field)
317 #define ASM_DATA_SECTION ".section \".data\"\n"
318 #define ASM_PREVIOUS_SECTION ".section .text\n"
319 #elif defined(__APPLE__)
320 #define ASM_DATA_SECTION ".data\n"
321 #define ASM_PREVIOUS_SECTION ".text\n"
323 #define ASM_DATA_SECTION ".section \".data\"\n"
324 #define ASM_PREVIOUS_SECTION ".previous\n"
327 #define ASM_OP_LABEL_NAME(n, opname) \
328 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
330 #if defined(__powerpc__)
332 /* we patch the jump instruction directly */
333 #define GOTO_TB(opname, tbparam, n)\
335 asm volatile (ASM_DATA_SECTION\
336 ASM_OP_LABEL_NAME(n, opname) ":\n"\
338 ASM_PREVIOUS_SECTION \
339 "b " ASM_NAME(__op_jmp) #n "\n"\
343 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
345 /* we patch the jump instruction directly */
346 #define GOTO_TB(opname, tbparam, n)\
348 asm volatile (".section .data\n"\
349 ASM_OP_LABEL_NAME(n, opname) ":\n"\
351 ASM_PREVIOUS_SECTION \
352 "jmp " ASM_NAME(__op_jmp) #n "\n"\
356 #elif defined(__s390__)
357 /* GCC spills R13, so we have to restore it before branching away */
359 #define GOTO_TB(opname, tbparam, n)\
361 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
362 static void __attribute__((used)) *__op_label ## n \
363 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
364 __asm__ __volatile__ ( \
365 "l %%r13,52(%%r15)\n" \
367 : : "r" (((TranslationBlock*)tbparam)->tb_next[n]));\
369 for(;*((int*)0);); /* just to keep GCC busy */ \
376 /* jump to next block operations (more portable code, does not need
377 cache flushing, but slower because of indirect jump) */
378 #define GOTO_TB(opname, tbparam, n)\
380 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
381 static void __attribute__((used)) *__op_label ## n \
382 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
383 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
390 extern CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
391 extern CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
392 extern void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
394 #if defined(__powerpc__)
395 static inline int testandset (int *p
)
398 __asm__
__volatile__ (
406 : "r" (p
), "r" (1), "r" (0)
410 #elif defined(__i386__)
411 static inline int testandset (int *p
)
413 long int readval
= 0;
415 __asm__
__volatile__ ("lock; cmpxchgl %2, %0"
416 : "+m" (*p
), "+a" (readval
)
421 #elif defined(__x86_64__)
422 static inline int testandset (int *p
)
424 long int readval
= 0;
426 __asm__
__volatile__ ("lock; cmpxchgl %2, %0"
427 : "+m" (*p
), "+a" (readval
)
432 #elif defined(__s390__)
433 static inline int testandset (int *p
)
437 __asm__
__volatile__ ("0: cs %0,%1,0(%2)\n"
440 : "r" (1), "a" (p
), "0" (*p
)
444 #elif defined(__alpha__)
445 static inline int testandset (int *p
)
450 __asm__
__volatile__ ("0: mov 1,%2\n"
457 : "=r" (ret
), "=m" (*p
), "=r" (one
)
461 #elif defined(__sparc__)
462 static inline int testandset (int *p
)
466 __asm__
__volatile__("ldstub [%1], %0"
471 return (ret
? 1 : 0);
473 #elif defined(__arm__)
474 static inline int testandset (int *spinlock
)
476 register unsigned int ret
;
477 __asm__
__volatile__("swp %0, %1, [%2]"
479 : "0"(1), "r"(spinlock
));
483 #elif defined(__mc68000)
484 static inline int testandset (int *p
)
487 __asm__
__volatile__("tas %1; sne %0"
493 #elif defined(__ia64)
495 #include <ia64intrin.h>
497 static inline int testandset (int *p
)
499 return __sync_lock_test_and_set (p
, 1);
501 #elif defined(__mips__)
502 static inline int testandset (int *p
)
506 __asm__
__volatile__ (
515 : "=r" (ret
), "+R" (*p
)
522 #error unimplemented CPU support
525 typedef int spinlock_t
;
527 #define SPIN_LOCK_UNLOCKED 0
529 #if defined(CONFIG_USER_ONLY)
530 static inline void spin_lock(spinlock_t
*lock
)
532 while (testandset(lock
));
535 static inline void spin_unlock(spinlock_t
*lock
)
540 static inline int spin_trylock(spinlock_t
*lock
)
542 return !testandset(lock
);
545 static inline void spin_lock(spinlock_t
*lock
)
549 static inline void spin_unlock(spinlock_t
*lock
)
553 static inline int spin_trylock(spinlock_t
*lock
)
559 extern spinlock_t tb_lock
;
561 extern int tb_invalidated_flag
;
563 #if !defined(CONFIG_USER_ONLY)
565 void tlb_fill(target_ulong addr
, int is_write
, int is_user
,
568 #define ACCESS_TYPE 3
569 #define MEMSUFFIX _code
570 #define env cpu_single_env
573 #include "softmmu_header.h"
576 #include "softmmu_header.h"
579 #include "softmmu_header.h"
582 #include "softmmu_header.h"
590 #if defined(CONFIG_USER_ONLY)
591 static inline target_ulong
get_phys_addr_code(CPUState
*env
, target_ulong addr
)
596 /* NOTE: this function can trigger an exception */
597 /* NOTE2: the returned address is not exactly the physical address: it
598 is the offset relative to phys_ram_base */
599 static inline target_ulong
get_phys_addr_code(CPUState
*env
, target_ulong addr
)
601 int is_user
, index
, pd
;
603 index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
604 #if defined(TARGET_I386)
605 is_user
= ((env
->hflags
& HF_CPL_MASK
) == 3);
606 #elif defined (TARGET_PPC)
608 #elif defined (TARGET_MIPS)
609 is_user
= ((env
->hflags
& MIPS_HFLAG_MODE
) == MIPS_HFLAG_UM
);
610 #elif defined (TARGET_SPARC)
611 is_user
= (env
->psrs
== 0);
612 #elif defined (TARGET_ARM)
613 is_user
= ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
);
614 #elif defined (TARGET_SH4)
615 is_user
= ((env
->sr
& SR_MD
) == 0);
616 #elif defined (TARGET_ALPHA)
617 is_user
= ((env
->ps
>> 3) & 3);
618 #elif defined (TARGET_M68K)
619 is_user
= ((env
->sr
& SR_S
) == 0);
621 #error unimplemented CPU
623 if (__builtin_expect(env
->tlb_table
[is_user
][index
].addr_code
!=
624 (addr
& TARGET_PAGE_MASK
), 0)) {
627 pd
= env
->tlb_table
[is_user
][index
].addr_code
& ~TARGET_PAGE_MASK
;
628 if (pd
> IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
630 do_unassigned_access(addr
, 0, 1, 0);
632 cpu_abort(env
, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx
"\n", addr
);
635 return addr
+ env
->tlb_table
[is_user
][index
].addend
- (unsigned long)phys_ram_base
;
640 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
642 int kqemu_init(CPUState
*env
);
643 int kqemu_cpu_exec(CPUState
*env
);
644 void kqemu_flush_page(CPUState
*env
, target_ulong addr
);
645 void kqemu_flush(CPUState
*env
, int global
);
646 void kqemu_set_notdirty(CPUState
*env
, ram_addr_t ram_addr
);
647 void kqemu_modify_page(CPUState
*env
, ram_addr_t ram_addr
);
648 void kqemu_cpu_interrupt(CPUState
*env
);
649 void kqemu_record_dump(void);
651 static inline int kqemu_is_ok(CPUState
*env
)
653 return(env
->kqemu_enabled
&&
654 (env
->cr
[0] & CR0_PE_MASK
) &&
655 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
) &&
656 (env
->eflags
& IF_MASK
) &&
657 !(env
->eflags
& VM_MASK
) &&
658 (env
->kqemu_enabled
== 2 ||
659 ((env
->hflags
& HF_CPL_MASK
) == 3 &&
660 (env
->eflags
& IOPL_MASK
) != IOPL_MASK
)));