Fix segv when passing an unknown protocol
[qemu-kvm/fedora.git] / vl.c
bloba24692c42837bb8f56d154d842dec6f3b2aa1c24
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
160 #include "disas.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #if defined(CONFIG_SLIRP)
167 #include "libslirp.h"
168 #endif
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
172 //#define DEBUG_NET
173 //#define DEBUG_SLIRP
176 #ifdef DEBUG_IOPORT
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178 #else
179 # define LOG_IOPORT(...) do { } while (0)
180 #endif
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
194 const char *bios_name = NULL;
195 static void *ioport_opaque[MAX_IOPORTS];
196 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table[MAX_DRIVES+1];
201 int nb_drives;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 DisplayType display_type = DT_DEFAULT;
205 const char* keyboard_layout = NULL;
206 int64_t ticks_per_sec;
207 ram_addr_t ram_size;
208 int nb_nics;
209 NICInfo nd_table[MAX_NICS];
210 int vm_running;
211 static int autostart;
212 static int rtc_utc = 1;
213 static int rtc_date_offset = -1; /* -1 means no change */
214 int cirrus_vga_enabled = 1;
215 int std_vga_enabled = 0;
216 int vmsvga_enabled = 0;
217 int xenfb_enabled = 0;
218 #ifdef TARGET_SPARC
219 int graphic_width = 1024;
220 int graphic_height = 768;
221 int graphic_depth = 8;
222 #else
223 int graphic_width = 800;
224 int graphic_height = 600;
225 int graphic_depth = 15;
226 #endif
227 static int full_screen = 0;
228 #ifdef CONFIG_SDL
229 static int no_frame = 0;
230 #endif
231 int no_quit = 0;
232 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
233 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
234 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
235 #ifdef TARGET_I386
236 int win2k_install_hack = 0;
237 int rtc_td_hack = 0;
238 #endif
239 int usb_enabled = 0;
240 int singlestep = 0;
241 int smp_cpus = 1;
242 const char *vnc_display;
243 int acpi_enabled = 1;
244 int no_hpet = 0;
245 int fd_bootchk = 1;
246 int no_reboot = 0;
247 int no_shutdown = 0;
248 int cursor_hide = 1;
249 int graphic_rotate = 0;
250 #ifndef _WIN32
251 int daemonize = 0;
252 #endif
253 WatchdogTimerModel *watchdog = NULL;
254 int watchdog_action = WDT_RESET;
255 const char *option_rom[MAX_OPTION_ROMS];
256 int nb_option_roms;
257 int semihosting_enabled = 0;
258 #ifdef TARGET_ARM
259 int old_param = 0;
260 #endif
261 const char *qemu_name;
262 int alt_grab = 0;
263 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
264 unsigned int nb_prom_envs = 0;
265 const char *prom_envs[MAX_PROM_ENVS];
266 #endif
267 int nb_drives_opt;
268 struct drive_opt drives_opt[MAX_DRIVES];
270 int nb_numa_nodes;
271 uint64_t node_mem[MAX_NODES];
272 uint64_t node_cpumask[MAX_NODES];
274 static CPUState *cur_cpu;
275 static CPUState *next_cpu;
276 static int timer_alarm_pending = 1;
277 /* Conversion factor from emulated instructions to virtual clock ticks. */
278 static int icount_time_shift;
279 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280 #define MAX_ICOUNT_SHIFT 10
281 /* Compensate for varying guest execution speed. */
282 static int64_t qemu_icount_bias;
283 static QEMUTimer *icount_rt_timer;
284 static QEMUTimer *icount_vm_timer;
285 static QEMUTimer *nographic_timer;
287 uint8_t qemu_uuid[16];
289 /***********************************************************/
290 /* x86 ISA bus support */
292 target_phys_addr_t isa_mem_base = 0;
293 PicState2 *isa_pic;
295 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
298 static uint32_t ioport_read(int index, uint32_t address)
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
311 static void ioport_write(int index, uint32_t address, uint32_t data)
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
324 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328 #endif
329 return 0xff;
332 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
334 #ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336 #endif
339 /* default is to make two byte accesses */
340 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
349 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
356 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360 #endif
361 return 0xffffffff;
364 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368 #endif
371 /* size is the word size in byte */
372 int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
375 int i, bsize;
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
393 return 0;
396 /* size is the word size in byte */
397 int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
400 int i, bsize;
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
418 return 0;
421 void isa_unassign_ioport(int start, int length)
423 int i;
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
434 ioport_opaque[i] = NULL;
438 /***********************************************************/
440 void cpu_outb(CPUState *env, int addr, int val)
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444 #ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447 #endif
450 void cpu_outw(CPUState *env, int addr, int val)
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454 #ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457 #endif
460 void cpu_outl(CPUState *env, int addr, int val)
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464 #ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
470 int cpu_inb(CPUState *env, int addr)
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475 #ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478 #endif
479 return val;
482 int cpu_inw(CPUState *env, int addr)
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487 #ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490 #endif
491 return val;
494 int cpu_inl(CPUState *env, int addr)
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499 #ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502 #endif
503 return val;
506 /***********************************************************/
507 void hw_error(const char *fmt, ...)
509 va_list ap;
510 CPUState *env;
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518 #ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520 #else
521 cpu_dump_state(env, stderr, fprintf, 0);
522 #endif
524 va_end(ap);
525 abort();
528 /***************/
529 /* ballooning */
531 static QEMUBalloonEvent *qemu_balloon_event;
532 void *qemu_balloon_event_opaque;
534 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
540 void qemu_balloon(ram_addr_t target)
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
546 ram_addr_t qemu_balloon_status(void)
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
553 /***********************************************************/
554 /* keyboard/mouse */
556 static QEMUPutKBDEvent *qemu_put_kbd_event;
557 static void *qemu_put_kbd_event_opaque;
558 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
561 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
567 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
571 QEMUPutMouseEntry *s, *cursor;
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
593 return s;
596 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
598 QEMUPutMouseEntry *prev = NULL, *cursor;
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
620 prev->next = entry->next;
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
629 void kbd_put_keycode(int keycode)
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
636 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
642 if (!qemu_put_mouse_event_current) {
643 return;
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
665 int kbd_mouse_is_absolute(void)
667 if (!qemu_put_mouse_event_current)
668 return 0;
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
673 void do_info_mice(Monitor *mon)
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
694 void do_mouse_set(Monitor *mon, int index)
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
716 /* compute with 96 bit intermediate result: (a*b)/c */
717 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
719 union {
720 uint64_t ll;
721 struct {
722 #ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724 #else
725 uint32_t low, high;
726 #endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
740 /***********************************************************/
741 /* real time host monotonic timer */
743 #define QEMU_TIMER_BASE 1000000000LL
745 #ifdef WIN32
747 static int64_t clock_freq;
749 static void init_get_clock(void)
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
758 clock_freq = freq.QuadPart;
761 static int64_t get_clock(void)
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
768 #else
770 static int use_rt_clock;
772 static void init_get_clock(void)
774 use_rt_clock = 0;
775 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
783 #endif
786 static int64_t get_clock(void)
788 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795 #endif
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
804 #endif
806 /* Return the virtual CPU time, based on the instruction counter. */
807 static int64_t cpu_get_icount(void)
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
817 return qemu_icount_bias + (icount << icount_time_shift);
820 /***********************************************************/
821 /* guest cycle counter */
823 static int64_t cpu_ticks_prev;
824 static int64_t cpu_ticks_offset;
825 static int64_t cpu_clock_offset;
826 static int cpu_ticks_enabled;
828 /* return the host CPU cycle counter and handle stop/restart */
829 int64_t cpu_get_ticks(void)
831 if (use_icount) {
832 return cpu_get_icount();
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
849 /* return the host CPU monotonic timer and handle stop/restart */
850 static int64_t cpu_get_clock(void)
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
861 /* enable cpu_get_ticks() */
862 void cpu_enable_ticks(void)
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
871 /* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873 void cpu_disable_ticks(void)
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
882 /***********************************************************/
883 /* timers */
885 #define QEMU_TIMER_REALTIME 0
886 #define QEMU_TIMER_VIRTUAL 1
888 struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
893 struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
901 struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
911 #define ALARM_FLAG_DYNTICKS 0x1
912 #define ALARM_FLAG_EXPIRED 0x2
914 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
916 return t && (t->flags & ALARM_FLAG_DYNTICKS);
919 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
921 if (!alarm_has_dynticks(t))
922 return;
924 t->rearm(t);
927 /* TODO: MIN_TIMER_REARM_US should be optimized */
928 #define MIN_TIMER_REARM_US 250
930 static struct qemu_alarm_timer *alarm_timer;
932 #ifdef _WIN32
934 struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937 } alarm_win32_data = {0, -1};
939 static int win32_start_timer(struct qemu_alarm_timer *t);
940 static void win32_stop_timer(struct qemu_alarm_timer *t);
941 static void win32_rearm_timer(struct qemu_alarm_timer *t);
943 #else
945 static int unix_start_timer(struct qemu_alarm_timer *t);
946 static void unix_stop_timer(struct qemu_alarm_timer *t);
948 #ifdef __linux__
950 static int dynticks_start_timer(struct qemu_alarm_timer *t);
951 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954 static int hpet_start_timer(struct qemu_alarm_timer *t);
955 static void hpet_stop_timer(struct qemu_alarm_timer *t);
957 static int rtc_start_timer(struct qemu_alarm_timer *t);
958 static void rtc_stop_timer(struct qemu_alarm_timer *t);
960 #endif /* __linux__ */
962 #endif /* _WIN32 */
964 /* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
970 static void icount_adjust(void)
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1000 static void icount_adjust_rt(void * opaque)
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1007 static void icount_adjust_vm(void * opaque)
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1014 static void init_icount_adjust(void)
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1029 static struct qemu_alarm_timer alarm_timers[] = {
1030 #ifndef _WIN32
1031 #ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038 #endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040 #else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045 #endif
1046 {NULL, }
1049 static void show_available_alarms(void)
1051 int i;
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1058 static void configure_alarms(char const *opt)
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1072 arg = strdup(opt);
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1096 cur++;
1097 next:
1098 name = strtok(NULL, ",");
1101 free(arg);
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1113 QEMUClock *rt_clock;
1114 QEMUClock *vm_clock;
1116 static QEMUTimer *active_timers[2];
1118 static QEMUClock *qemu_new_clock(int type)
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1126 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1128 QEMUTimer *ts;
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1137 void qemu_free_timer(QEMUTimer *ts)
1139 qemu_free(ts);
1142 /* stop a timer, but do not dealloc it */
1143 void qemu_del_timer(QEMUTimer *ts)
1145 QEMUTimer **pt, *t;
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1158 pt = &t->next;
1162 /* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1166 QEMUTimer **pt, *t;
1168 qemu_del_timer(ts);
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1197 int qemu_timer_pending(QEMUTimer *ts)
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1204 return 0;
1207 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1214 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1216 QEMUTimer *ts;
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1231 int64_t qemu_get_clock(QEMUClock *clock)
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1246 static void init_timers(void)
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1254 /* save a timer */
1255 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1257 uint64_t expire_time;
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1264 qemu_put_be64(f, expire_time);
1267 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1269 uint64_t expire_time;
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1279 static void timer_save(QEMUFile *f, void *opaque)
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1289 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1301 return 0;
1304 static void qemu_event_increment(void);
1306 #ifdef _WIN32
1307 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310 #else
1311 static void host_alarm_handler(int host_signum)
1312 #endif
1314 #if 0
1315 #define DISP_FREQ 1000
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1340 last_clock = ti;
1342 #endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 qemu_event_increment();
1350 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1352 #ifndef CONFIG_IOTHREAD
1353 if (next_cpu) {
1354 /* stop the currently executing cpu because a timer occured */
1355 cpu_exit(next_cpu);
1356 #ifdef CONFIG_KQEMU
1357 if (next_cpu->kqemu_enabled) {
1358 kqemu_cpu_interrupt(next_cpu);
1360 #endif
1362 #endif
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1368 static int64_t qemu_next_deadline(void)
1370 int64_t delta;
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1380 if (delta < 0)
1381 delta = 0;
1383 return delta;
1386 #if defined(__linux__) || defined(_WIN32)
1387 static uint64_t qemu_next_deadline_dyntick(void)
1389 int64_t delta;
1390 int64_t rtdelta;
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1407 return delta;
1409 #endif
1411 #ifndef _WIN32
1413 /* Sets a specific flag */
1414 static int fcntl_setfl(int fd, int flag)
1416 int flags;
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1425 return 0;
1428 #if defined(__linux__)
1430 #define RTC_FREQ 1024
1432 static void enable_sigio_timer(int fd)
1434 struct sigaction act;
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1446 static int hpet_start_timer(struct qemu_alarm_timer *t)
1448 struct hpet_info info;
1449 int r, fd;
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1482 return 0;
1483 fail:
1484 close(fd);
1485 return -1;
1488 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490 int fd = (long)t->priv;
1492 close(fd);
1495 static int rtc_start_timer(struct qemu_alarm_timer *t)
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1517 enable_sigio_timer(rtc_fd);
1519 t->priv = (void *)(long)rtc_fd;
1521 return 0;
1524 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526 int rtc_fd = (long)t->priv;
1528 close(rtc_fd);
1531 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1541 sigaction(SIGALRM, &act, NULL);
1544 * Initialize ev struct to 0 to avoid valgrind complaining
1545 * about uninitialized data in timer_create call
1547 memset(&ev, 0, sizeof(ev));
1548 ev.sigev_value.sival_int = 0;
1549 ev.sigev_notify = SIGEV_SIGNAL;
1550 ev.sigev_signo = SIGALRM;
1552 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1553 perror("timer_create");
1555 /* disable dynticks */
1556 fprintf(stderr, "Dynamic Ticks disabled\n");
1558 return -1;
1561 t->priv = (void *)(long)host_timer;
1563 return 0;
1566 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1568 timer_t host_timer = (timer_t)(long)t->priv;
1570 timer_delete(host_timer);
1573 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1575 timer_t host_timer = (timer_t)(long)t->priv;
1576 struct itimerspec timeout;
1577 int64_t nearest_delta_us = INT64_MAX;
1578 int64_t current_us;
1580 if (!active_timers[QEMU_TIMER_REALTIME] &&
1581 !active_timers[QEMU_TIMER_VIRTUAL])
1582 return;
1584 nearest_delta_us = qemu_next_deadline_dyntick();
1586 /* check whether a timer is already running */
1587 if (timer_gettime(host_timer, &timeout)) {
1588 perror("gettime");
1589 fprintf(stderr, "Internal timer error: aborting\n");
1590 exit(1);
1592 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1593 if (current_us && current_us <= nearest_delta_us)
1594 return;
1596 timeout.it_interval.tv_sec = 0;
1597 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1598 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1599 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1600 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1601 perror("settime");
1602 fprintf(stderr, "Internal timer error: aborting\n");
1603 exit(1);
1607 #endif /* defined(__linux__) */
1609 static int unix_start_timer(struct qemu_alarm_timer *t)
1611 struct sigaction act;
1612 struct itimerval itv;
1613 int err;
1615 /* timer signal */
1616 sigfillset(&act.sa_mask);
1617 act.sa_flags = 0;
1618 act.sa_handler = host_alarm_handler;
1620 sigaction(SIGALRM, &act, NULL);
1622 itv.it_interval.tv_sec = 0;
1623 /* for i386 kernel 2.6 to get 1 ms */
1624 itv.it_interval.tv_usec = 999;
1625 itv.it_value.tv_sec = 0;
1626 itv.it_value.tv_usec = 10 * 1000;
1628 err = setitimer(ITIMER_REAL, &itv, NULL);
1629 if (err)
1630 return -1;
1632 return 0;
1635 static void unix_stop_timer(struct qemu_alarm_timer *t)
1637 struct itimerval itv;
1639 memset(&itv, 0, sizeof(itv));
1640 setitimer(ITIMER_REAL, &itv, NULL);
1643 #endif /* !defined(_WIN32) */
1646 #ifdef _WIN32
1648 static int win32_start_timer(struct qemu_alarm_timer *t)
1650 TIMECAPS tc;
1651 struct qemu_alarm_win32 *data = t->priv;
1652 UINT flags;
1654 memset(&tc, 0, sizeof(tc));
1655 timeGetDevCaps(&tc, sizeof(tc));
1657 if (data->period < tc.wPeriodMin)
1658 data->period = tc.wPeriodMin;
1660 timeBeginPeriod(data->period);
1662 flags = TIME_CALLBACK_FUNCTION;
1663 if (alarm_has_dynticks(t))
1664 flags |= TIME_ONESHOT;
1665 else
1666 flags |= TIME_PERIODIC;
1668 data->timerId = timeSetEvent(1, // interval (ms)
1669 data->period, // resolution
1670 host_alarm_handler, // function
1671 (DWORD)t, // parameter
1672 flags);
1674 if (!data->timerId) {
1675 perror("Failed to initialize win32 alarm timer");
1676 timeEndPeriod(data->period);
1677 return -1;
1680 return 0;
1683 static void win32_stop_timer(struct qemu_alarm_timer *t)
1685 struct qemu_alarm_win32 *data = t->priv;
1687 timeKillEvent(data->timerId);
1688 timeEndPeriod(data->period);
1691 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1693 struct qemu_alarm_win32 *data = t->priv;
1694 uint64_t nearest_delta_us;
1696 if (!active_timers[QEMU_TIMER_REALTIME] &&
1697 !active_timers[QEMU_TIMER_VIRTUAL])
1698 return;
1700 nearest_delta_us = qemu_next_deadline_dyntick();
1701 nearest_delta_us /= 1000;
1703 timeKillEvent(data->timerId);
1705 data->timerId = timeSetEvent(1,
1706 data->period,
1707 host_alarm_handler,
1708 (DWORD)t,
1709 TIME_ONESHOT | TIME_PERIODIC);
1711 if (!data->timerId) {
1712 perror("Failed to re-arm win32 alarm timer");
1714 timeEndPeriod(data->period);
1715 exit(1);
1719 #endif /* _WIN32 */
1721 static int init_timer_alarm(void)
1723 struct qemu_alarm_timer *t = NULL;
1724 int i, err = -1;
1726 for (i = 0; alarm_timers[i].name; i++) {
1727 t = &alarm_timers[i];
1729 err = t->start(t);
1730 if (!err)
1731 break;
1734 if (err) {
1735 err = -ENOENT;
1736 goto fail;
1739 alarm_timer = t;
1741 return 0;
1743 fail:
1744 return err;
1747 static void quit_timers(void)
1749 alarm_timer->stop(alarm_timer);
1750 alarm_timer = NULL;
1753 /***********************************************************/
1754 /* host time/date access */
1755 void qemu_get_timedate(struct tm *tm, int offset)
1757 time_t ti;
1758 struct tm *ret;
1760 time(&ti);
1761 ti += offset;
1762 if (rtc_date_offset == -1) {
1763 if (rtc_utc)
1764 ret = gmtime(&ti);
1765 else
1766 ret = localtime(&ti);
1767 } else {
1768 ti -= rtc_date_offset;
1769 ret = gmtime(&ti);
1772 memcpy(tm, ret, sizeof(struct tm));
1775 int qemu_timedate_diff(struct tm *tm)
1777 time_t seconds;
1779 if (rtc_date_offset == -1)
1780 if (rtc_utc)
1781 seconds = mktimegm(tm);
1782 else
1783 seconds = mktime(tm);
1784 else
1785 seconds = mktimegm(tm) + rtc_date_offset;
1787 return seconds - time(NULL);
1790 #ifdef _WIN32
1791 static void socket_cleanup(void)
1793 WSACleanup();
1796 static int socket_init(void)
1798 WSADATA Data;
1799 int ret, err;
1801 ret = WSAStartup(MAKEWORD(2,2), &Data);
1802 if (ret != 0) {
1803 err = WSAGetLastError();
1804 fprintf(stderr, "WSAStartup: %d\n", err);
1805 return -1;
1807 atexit(socket_cleanup);
1808 return 0;
1810 #endif
1812 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1814 char *q;
1816 q = buf;
1817 while (*p != '\0' && *p != delim) {
1818 if (q && (q - buf) < buf_size - 1)
1819 *q++ = *p;
1820 p++;
1822 if (q)
1823 *q = '\0';
1825 return p;
1828 const char *get_opt_value(char *buf, int buf_size, const char *p)
1830 char *q;
1832 q = buf;
1833 while (*p != '\0') {
1834 if (*p == ',') {
1835 if (*(p + 1) != ',')
1836 break;
1837 p++;
1839 if (q && (q - buf) < buf_size - 1)
1840 *q++ = *p;
1841 p++;
1843 if (q)
1844 *q = '\0';
1846 return p;
1849 int get_param_value(char *buf, int buf_size,
1850 const char *tag, const char *str)
1852 const char *p;
1853 char option[128];
1855 p = str;
1856 for(;;) {
1857 p = get_opt_name(option, sizeof(option), p, '=');
1858 if (*p != '=')
1859 break;
1860 p++;
1861 if (!strcmp(tag, option)) {
1862 (void)get_opt_value(buf, buf_size, p);
1863 return strlen(buf);
1864 } else {
1865 p = get_opt_value(NULL, 0, p);
1867 if (*p != ',')
1868 break;
1869 p++;
1871 return 0;
1874 int check_params(const char * const *params, const char *str)
1876 int name_buf_size = 1;
1877 const char *p;
1878 char *name_buf;
1879 int i, len;
1880 int ret = 0;
1882 for (i = 0; params[i] != NULL; i++) {
1883 len = strlen(params[i]) + 1;
1884 if (len > name_buf_size) {
1885 name_buf_size = len;
1888 name_buf = qemu_malloc(name_buf_size);
1890 p = str;
1891 while (*p != '\0') {
1892 p = get_opt_name(name_buf, name_buf_size, p, '=');
1893 if (*p != '=') {
1894 ret = -1;
1895 break;
1897 p++;
1898 for(i = 0; params[i] != NULL; i++)
1899 if (!strcmp(params[i], name_buf))
1900 break;
1901 if (params[i] == NULL) {
1902 ret = -1;
1903 break;
1905 p = get_opt_value(NULL, 0, p);
1906 if (*p != ',')
1907 break;
1908 p++;
1911 qemu_free(name_buf);
1912 return ret;
1915 /***********************************************************/
1916 /* Bluetooth support */
1917 static int nb_hcis;
1918 static int cur_hci;
1919 static struct HCIInfo *hci_table[MAX_NICS];
1921 static struct bt_vlan_s {
1922 struct bt_scatternet_s net;
1923 int id;
1924 struct bt_vlan_s *next;
1925 } *first_bt_vlan;
1927 /* find or alloc a new bluetooth "VLAN" */
1928 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1930 struct bt_vlan_s **pvlan, *vlan;
1931 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1932 if (vlan->id == id)
1933 return &vlan->net;
1935 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1936 vlan->id = id;
1937 pvlan = &first_bt_vlan;
1938 while (*pvlan != NULL)
1939 pvlan = &(*pvlan)->next;
1940 *pvlan = vlan;
1941 return &vlan->net;
1944 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1948 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1950 return -ENOTSUP;
1953 static struct HCIInfo null_hci = {
1954 .cmd_send = null_hci_send,
1955 .sco_send = null_hci_send,
1956 .acl_send = null_hci_send,
1957 .bdaddr_set = null_hci_addr_set,
1960 struct HCIInfo *qemu_next_hci(void)
1962 if (cur_hci == nb_hcis)
1963 return &null_hci;
1965 return hci_table[cur_hci++];
1968 static struct HCIInfo *hci_init(const char *str)
1970 char *endp;
1971 struct bt_scatternet_s *vlan = 0;
1973 if (!strcmp(str, "null"))
1974 /* null */
1975 return &null_hci;
1976 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1977 /* host[:hciN] */
1978 return bt_host_hci(str[4] ? str + 5 : "hci0");
1979 else if (!strncmp(str, "hci", 3)) {
1980 /* hci[,vlan=n] */
1981 if (str[3]) {
1982 if (!strncmp(str + 3, ",vlan=", 6)) {
1983 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1984 if (*endp)
1985 vlan = 0;
1987 } else
1988 vlan = qemu_find_bt_vlan(0);
1989 if (vlan)
1990 return bt_new_hci(vlan);
1993 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1995 return 0;
1998 static int bt_hci_parse(const char *str)
2000 struct HCIInfo *hci;
2001 bdaddr_t bdaddr;
2003 if (nb_hcis >= MAX_NICS) {
2004 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2005 return -1;
2008 hci = hci_init(str);
2009 if (!hci)
2010 return -1;
2012 bdaddr.b[0] = 0x52;
2013 bdaddr.b[1] = 0x54;
2014 bdaddr.b[2] = 0x00;
2015 bdaddr.b[3] = 0x12;
2016 bdaddr.b[4] = 0x34;
2017 bdaddr.b[5] = 0x56 + nb_hcis;
2018 hci->bdaddr_set(hci, bdaddr.b);
2020 hci_table[nb_hcis++] = hci;
2022 return 0;
2025 static void bt_vhci_add(int vlan_id)
2027 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2029 if (!vlan->slave)
2030 fprintf(stderr, "qemu: warning: adding a VHCI to "
2031 "an empty scatternet %i\n", vlan_id);
2033 bt_vhci_init(bt_new_hci(vlan));
2036 static struct bt_device_s *bt_device_add(const char *opt)
2038 struct bt_scatternet_s *vlan;
2039 int vlan_id = 0;
2040 char *endp = strstr(opt, ",vlan=");
2041 int len = (endp ? endp - opt : strlen(opt)) + 1;
2042 char devname[10];
2044 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2046 if (endp) {
2047 vlan_id = strtol(endp + 6, &endp, 0);
2048 if (*endp) {
2049 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2050 return 0;
2054 vlan = qemu_find_bt_vlan(vlan_id);
2056 if (!vlan->slave)
2057 fprintf(stderr, "qemu: warning: adding a slave device to "
2058 "an empty scatternet %i\n", vlan_id);
2060 if (!strcmp(devname, "keyboard"))
2061 return bt_keyboard_init(vlan);
2063 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2064 return 0;
2067 static int bt_parse(const char *opt)
2069 const char *endp, *p;
2070 int vlan;
2072 if (strstart(opt, "hci", &endp)) {
2073 if (!*endp || *endp == ',') {
2074 if (*endp)
2075 if (!strstart(endp, ",vlan=", 0))
2076 opt = endp + 1;
2078 return bt_hci_parse(opt);
2080 } else if (strstart(opt, "vhci", &endp)) {
2081 if (!*endp || *endp == ',') {
2082 if (*endp) {
2083 if (strstart(endp, ",vlan=", &p)) {
2084 vlan = strtol(p, (char **) &endp, 0);
2085 if (*endp) {
2086 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2087 return 1;
2089 } else {
2090 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2091 return 1;
2093 } else
2094 vlan = 0;
2096 bt_vhci_add(vlan);
2097 return 0;
2099 } else if (strstart(opt, "device:", &endp))
2100 return !bt_device_add(endp);
2102 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2103 return 1;
2106 /***********************************************************/
2107 /* QEMU Block devices */
2109 #define HD_ALIAS "index=%d,media=disk"
2110 #define CDROM_ALIAS "index=2,media=cdrom"
2111 #define FD_ALIAS "index=%d,if=floppy"
2112 #define PFLASH_ALIAS "if=pflash"
2113 #define MTD_ALIAS "if=mtd"
2114 #define SD_ALIAS "index=0,if=sd"
2116 static int drive_opt_get_free_idx(void)
2118 int index;
2120 for (index = 0; index < MAX_DRIVES; index++)
2121 if (!drives_opt[index].used) {
2122 drives_opt[index].used = 1;
2123 return index;
2126 return -1;
2129 static int drive_get_free_idx(void)
2131 int index;
2133 for (index = 0; index < MAX_DRIVES; index++)
2134 if (!drives_table[index].used) {
2135 drives_table[index].used = 1;
2136 return index;
2139 return -1;
2142 int drive_add(const char *file, const char *fmt, ...)
2144 va_list ap;
2145 int index = drive_opt_get_free_idx();
2147 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2148 fprintf(stderr, "qemu: too many drives\n");
2149 return -1;
2152 drives_opt[index].file = file;
2153 va_start(ap, fmt);
2154 vsnprintf(drives_opt[index].opt,
2155 sizeof(drives_opt[0].opt), fmt, ap);
2156 va_end(ap);
2158 nb_drives_opt++;
2159 return index;
2162 void drive_remove(int index)
2164 drives_opt[index].used = 0;
2165 nb_drives_opt--;
2168 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2170 int index;
2172 /* seek interface, bus and unit */
2174 for (index = 0; index < MAX_DRIVES; index++)
2175 if (drives_table[index].type == type &&
2176 drives_table[index].bus == bus &&
2177 drives_table[index].unit == unit &&
2178 drives_table[index].used)
2179 return index;
2181 return -1;
2184 int drive_get_max_bus(BlockInterfaceType type)
2186 int max_bus;
2187 int index;
2189 max_bus = -1;
2190 for (index = 0; index < nb_drives; index++) {
2191 if(drives_table[index].type == type &&
2192 drives_table[index].bus > max_bus)
2193 max_bus = drives_table[index].bus;
2195 return max_bus;
2198 const char *drive_get_serial(BlockDriverState *bdrv)
2200 int index;
2202 for (index = 0; index < nb_drives; index++)
2203 if (drives_table[index].bdrv == bdrv)
2204 return drives_table[index].serial;
2206 return "\0";
2209 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2211 int index;
2213 for (index = 0; index < nb_drives; index++)
2214 if (drives_table[index].bdrv == bdrv)
2215 return drives_table[index].onerror;
2217 return BLOCK_ERR_STOP_ENOSPC;
2220 static void bdrv_format_print(void *opaque, const char *name)
2222 fprintf(stderr, " %s", name);
2225 void drive_uninit(BlockDriverState *bdrv)
2227 int i;
2229 for (i = 0; i < MAX_DRIVES; i++)
2230 if (drives_table[i].bdrv == bdrv) {
2231 drives_table[i].bdrv = NULL;
2232 drives_table[i].used = 0;
2233 drive_remove(drives_table[i].drive_opt_idx);
2234 nb_drives--;
2235 break;
2239 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2241 char buf[128];
2242 char file[1024];
2243 char devname[128];
2244 char serial[21];
2245 const char *mediastr = "";
2246 BlockInterfaceType type;
2247 enum { MEDIA_DISK, MEDIA_CDROM } media;
2248 int bus_id, unit_id;
2249 int cyls, heads, secs, translation;
2250 BlockDriverState *bdrv;
2251 BlockDriver *drv = NULL;
2252 QEMUMachine *machine = opaque;
2253 int max_devs;
2254 int index;
2255 int cache;
2256 int bdrv_flags, onerror;
2257 int drives_table_idx;
2258 char *str = arg->opt;
2259 static const char * const params[] = { "bus", "unit", "if", "index",
2260 "cyls", "heads", "secs", "trans",
2261 "media", "snapshot", "file",
2262 "cache", "format", "serial", "werror",
2263 NULL };
2265 if (check_params(params, str) < 0) {
2266 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2267 buf, str);
2268 return -1;
2271 file[0] = 0;
2272 cyls = heads = secs = 0;
2273 bus_id = 0;
2274 unit_id = -1;
2275 translation = BIOS_ATA_TRANSLATION_AUTO;
2276 index = -1;
2277 cache = 3;
2279 if (machine->use_scsi) {
2280 type = IF_SCSI;
2281 max_devs = MAX_SCSI_DEVS;
2282 pstrcpy(devname, sizeof(devname), "scsi");
2283 } else {
2284 type = IF_IDE;
2285 max_devs = MAX_IDE_DEVS;
2286 pstrcpy(devname, sizeof(devname), "ide");
2288 media = MEDIA_DISK;
2290 /* extract parameters */
2292 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2293 bus_id = strtol(buf, NULL, 0);
2294 if (bus_id < 0) {
2295 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2296 return -1;
2300 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2301 unit_id = strtol(buf, NULL, 0);
2302 if (unit_id < 0) {
2303 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2304 return -1;
2308 if (get_param_value(buf, sizeof(buf), "if", str)) {
2309 pstrcpy(devname, sizeof(devname), buf);
2310 if (!strcmp(buf, "ide")) {
2311 type = IF_IDE;
2312 max_devs = MAX_IDE_DEVS;
2313 } else if (!strcmp(buf, "scsi")) {
2314 type = IF_SCSI;
2315 max_devs = MAX_SCSI_DEVS;
2316 } else if (!strcmp(buf, "floppy")) {
2317 type = IF_FLOPPY;
2318 max_devs = 0;
2319 } else if (!strcmp(buf, "pflash")) {
2320 type = IF_PFLASH;
2321 max_devs = 0;
2322 } else if (!strcmp(buf, "mtd")) {
2323 type = IF_MTD;
2324 max_devs = 0;
2325 } else if (!strcmp(buf, "sd")) {
2326 type = IF_SD;
2327 max_devs = 0;
2328 } else if (!strcmp(buf, "virtio")) {
2329 type = IF_VIRTIO;
2330 max_devs = 0;
2331 } else if (!strcmp(buf, "xen")) {
2332 type = IF_XEN;
2333 max_devs = 0;
2334 } else {
2335 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2336 return -1;
2340 if (get_param_value(buf, sizeof(buf), "index", str)) {
2341 index = strtol(buf, NULL, 0);
2342 if (index < 0) {
2343 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2344 return -1;
2348 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2349 cyls = strtol(buf, NULL, 0);
2352 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2353 heads = strtol(buf, NULL, 0);
2356 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2357 secs = strtol(buf, NULL, 0);
2360 if (cyls || heads || secs) {
2361 if (cyls < 1 || cyls > 16383) {
2362 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2363 return -1;
2365 if (heads < 1 || heads > 16) {
2366 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2367 return -1;
2369 if (secs < 1 || secs > 63) {
2370 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2371 return -1;
2375 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2376 if (!cyls) {
2377 fprintf(stderr,
2378 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2379 str);
2380 return -1;
2382 if (!strcmp(buf, "none"))
2383 translation = BIOS_ATA_TRANSLATION_NONE;
2384 else if (!strcmp(buf, "lba"))
2385 translation = BIOS_ATA_TRANSLATION_LBA;
2386 else if (!strcmp(buf, "auto"))
2387 translation = BIOS_ATA_TRANSLATION_AUTO;
2388 else {
2389 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2390 return -1;
2394 if (get_param_value(buf, sizeof(buf), "media", str)) {
2395 if (!strcmp(buf, "disk")) {
2396 media = MEDIA_DISK;
2397 } else if (!strcmp(buf, "cdrom")) {
2398 if (cyls || secs || heads) {
2399 fprintf(stderr,
2400 "qemu: '%s' invalid physical CHS format\n", str);
2401 return -1;
2403 media = MEDIA_CDROM;
2404 } else {
2405 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2406 return -1;
2410 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2411 if (!strcmp(buf, "on"))
2412 snapshot = 1;
2413 else if (!strcmp(buf, "off"))
2414 snapshot = 0;
2415 else {
2416 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2417 return -1;
2421 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2422 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2423 cache = 0;
2424 else if (!strcmp(buf, "writethrough"))
2425 cache = 1;
2426 else if (!strcmp(buf, "writeback"))
2427 cache = 2;
2428 else {
2429 fprintf(stderr, "qemu: invalid cache option\n");
2430 return -1;
2434 if (get_param_value(buf, sizeof(buf), "format", str)) {
2435 if (strcmp(buf, "?") == 0) {
2436 fprintf(stderr, "qemu: Supported formats:");
2437 bdrv_iterate_format(bdrv_format_print, NULL);
2438 fprintf(stderr, "\n");
2439 return -1;
2441 drv = bdrv_find_format(buf);
2442 if (!drv) {
2443 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2444 return -1;
2448 if (arg->file == NULL)
2449 get_param_value(file, sizeof(file), "file", str);
2450 else
2451 pstrcpy(file, sizeof(file), arg->file);
2453 if (!get_param_value(serial, sizeof(serial), "serial", str))
2454 memset(serial, 0, sizeof(serial));
2456 onerror = BLOCK_ERR_STOP_ENOSPC;
2457 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2458 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2459 fprintf(stderr, "werror is no supported by this format\n");
2460 return -1;
2462 if (!strcmp(buf, "ignore"))
2463 onerror = BLOCK_ERR_IGNORE;
2464 else if (!strcmp(buf, "enospc"))
2465 onerror = BLOCK_ERR_STOP_ENOSPC;
2466 else if (!strcmp(buf, "stop"))
2467 onerror = BLOCK_ERR_STOP_ANY;
2468 else if (!strcmp(buf, "report"))
2469 onerror = BLOCK_ERR_REPORT;
2470 else {
2471 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2472 return -1;
2476 /* compute bus and unit according index */
2478 if (index != -1) {
2479 if (bus_id != 0 || unit_id != -1) {
2480 fprintf(stderr,
2481 "qemu: '%s' index cannot be used with bus and unit\n", str);
2482 return -1;
2484 if (max_devs == 0)
2486 unit_id = index;
2487 bus_id = 0;
2488 } else {
2489 unit_id = index % max_devs;
2490 bus_id = index / max_devs;
2494 /* if user doesn't specify a unit_id,
2495 * try to find the first free
2498 if (unit_id == -1) {
2499 unit_id = 0;
2500 while (drive_get_index(type, bus_id, unit_id) != -1) {
2501 unit_id++;
2502 if (max_devs && unit_id >= max_devs) {
2503 unit_id -= max_devs;
2504 bus_id++;
2509 /* check unit id */
2511 if (max_devs && unit_id >= max_devs) {
2512 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2513 str, unit_id, max_devs - 1);
2514 return -1;
2518 * ignore multiple definitions
2521 if (drive_get_index(type, bus_id, unit_id) != -1)
2522 return -2;
2524 /* init */
2526 if (type == IF_IDE || type == IF_SCSI)
2527 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2528 if (max_devs)
2529 snprintf(buf, sizeof(buf), "%s%i%s%i",
2530 devname, bus_id, mediastr, unit_id);
2531 else
2532 snprintf(buf, sizeof(buf), "%s%s%i",
2533 devname, mediastr, unit_id);
2534 bdrv = bdrv_new(buf);
2535 drives_table_idx = drive_get_free_idx();
2536 drives_table[drives_table_idx].bdrv = bdrv;
2537 drives_table[drives_table_idx].type = type;
2538 drives_table[drives_table_idx].bus = bus_id;
2539 drives_table[drives_table_idx].unit = unit_id;
2540 drives_table[drives_table_idx].onerror = onerror;
2541 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2542 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2543 nb_drives++;
2545 switch(type) {
2546 case IF_IDE:
2547 case IF_SCSI:
2548 case IF_XEN:
2549 switch(media) {
2550 case MEDIA_DISK:
2551 if (cyls != 0) {
2552 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2553 bdrv_set_translation_hint(bdrv, translation);
2555 break;
2556 case MEDIA_CDROM:
2557 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2558 break;
2560 break;
2561 case IF_SD:
2562 /* FIXME: This isn't really a floppy, but it's a reasonable
2563 approximation. */
2564 case IF_FLOPPY:
2565 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2566 break;
2567 case IF_PFLASH:
2568 case IF_MTD:
2569 case IF_VIRTIO:
2570 break;
2571 case IF_COUNT:
2572 abort();
2574 if (!file[0])
2575 return -2;
2576 bdrv_flags = 0;
2577 if (snapshot) {
2578 bdrv_flags |= BDRV_O_SNAPSHOT;
2579 cache = 2; /* always use write-back with snapshot */
2581 if (cache == 0) /* no caching */
2582 bdrv_flags |= BDRV_O_NOCACHE;
2583 else if (cache == 2) /* write-back */
2584 bdrv_flags |= BDRV_O_CACHE_WB;
2585 else if (cache == 3) /* not specified */
2586 bdrv_flags |= BDRV_O_CACHE_DEF;
2587 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2588 fprintf(stderr, "qemu: could not open disk image %s\n",
2589 file);
2590 return -1;
2592 if (bdrv_key_required(bdrv))
2593 autostart = 0;
2594 return drives_table_idx;
2597 static void numa_add(const char *optarg)
2599 char option[128];
2600 char *endptr;
2601 unsigned long long value, endvalue;
2602 int nodenr;
2604 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2605 if (!strcmp(option, "node")) {
2606 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2607 nodenr = nb_numa_nodes;
2608 } else {
2609 nodenr = strtoull(option, NULL, 10);
2612 if (get_param_value(option, 128, "mem", optarg) == 0) {
2613 node_mem[nodenr] = 0;
2614 } else {
2615 value = strtoull(option, &endptr, 0);
2616 switch (*endptr) {
2617 case 0: case 'M': case 'm':
2618 value <<= 20;
2619 break;
2620 case 'G': case 'g':
2621 value <<= 30;
2622 break;
2624 node_mem[nodenr] = value;
2626 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2627 node_cpumask[nodenr] = 0;
2628 } else {
2629 value = strtoull(option, &endptr, 10);
2630 if (value >= 64) {
2631 value = 63;
2632 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2633 } else {
2634 if (*endptr == '-') {
2635 endvalue = strtoull(endptr+1, &endptr, 10);
2636 if (endvalue >= 63) {
2637 endvalue = 62;
2638 fprintf(stderr,
2639 "only 63 CPUs in NUMA mode supported.\n");
2641 value = (1 << (endvalue + 1)) - (1 << value);
2642 } else {
2643 value = 1 << value;
2646 node_cpumask[nodenr] = value;
2648 nb_numa_nodes++;
2650 return;
2653 /***********************************************************/
2654 /* USB devices */
2656 static USBPort *used_usb_ports;
2657 static USBPort *free_usb_ports;
2659 /* ??? Maybe change this to register a hub to keep track of the topology. */
2660 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2661 usb_attachfn attach)
2663 port->opaque = opaque;
2664 port->index = index;
2665 port->attach = attach;
2666 port->next = free_usb_ports;
2667 free_usb_ports = port;
2670 int usb_device_add_dev(USBDevice *dev)
2672 USBPort *port;
2674 /* Find a USB port to add the device to. */
2675 port = free_usb_ports;
2676 if (!port->next) {
2677 USBDevice *hub;
2679 /* Create a new hub and chain it on. */
2680 free_usb_ports = NULL;
2681 port->next = used_usb_ports;
2682 used_usb_ports = port;
2684 hub = usb_hub_init(VM_USB_HUB_SIZE);
2685 usb_attach(port, hub);
2686 port = free_usb_ports;
2689 free_usb_ports = port->next;
2690 port->next = used_usb_ports;
2691 used_usb_ports = port;
2692 usb_attach(port, dev);
2693 return 0;
2696 static void usb_msd_password_cb(void *opaque, int err)
2698 USBDevice *dev = opaque;
2700 if (!err)
2701 usb_device_add_dev(dev);
2702 else
2703 dev->handle_destroy(dev);
2706 static int usb_device_add(const char *devname, int is_hotplug)
2708 const char *p;
2709 USBDevice *dev;
2711 if (!free_usb_ports)
2712 return -1;
2714 if (strstart(devname, "host:", &p)) {
2715 dev = usb_host_device_open(p);
2716 } else if (!strcmp(devname, "mouse")) {
2717 dev = usb_mouse_init();
2718 } else if (!strcmp(devname, "tablet")) {
2719 dev = usb_tablet_init();
2720 } else if (!strcmp(devname, "keyboard")) {
2721 dev = usb_keyboard_init();
2722 } else if (strstart(devname, "disk:", &p)) {
2723 BlockDriverState *bs;
2725 dev = usb_msd_init(p);
2726 if (!dev)
2727 return -1;
2728 bs = usb_msd_get_bdrv(dev);
2729 if (bdrv_key_required(bs)) {
2730 autostart = 0;
2731 if (is_hotplug) {
2732 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2733 dev);
2734 return 0;
2737 } else if (!strcmp(devname, "wacom-tablet")) {
2738 dev = usb_wacom_init();
2739 } else if (strstart(devname, "serial:", &p)) {
2740 dev = usb_serial_init(p);
2741 #ifdef CONFIG_BRLAPI
2742 } else if (!strcmp(devname, "braille")) {
2743 dev = usb_baum_init();
2744 #endif
2745 } else if (strstart(devname, "net:", &p)) {
2746 int nic = nb_nics;
2748 if (net_client_init("nic", p) < 0)
2749 return -1;
2750 nd_table[nic].model = "usb";
2751 dev = usb_net_init(&nd_table[nic]);
2752 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2753 dev = usb_bt_init(devname[2] ? hci_init(p) :
2754 bt_new_hci(qemu_find_bt_vlan(0)));
2755 } else {
2756 return -1;
2758 if (!dev)
2759 return -1;
2761 return usb_device_add_dev(dev);
2764 int usb_device_del_addr(int bus_num, int addr)
2766 USBPort *port;
2767 USBPort **lastp;
2768 USBDevice *dev;
2770 if (!used_usb_ports)
2771 return -1;
2773 if (bus_num != 0)
2774 return -1;
2776 lastp = &used_usb_ports;
2777 port = used_usb_ports;
2778 while (port && port->dev->addr != addr) {
2779 lastp = &port->next;
2780 port = port->next;
2783 if (!port)
2784 return -1;
2786 dev = port->dev;
2787 *lastp = port->next;
2788 usb_attach(port, NULL);
2789 dev->handle_destroy(dev);
2790 port->next = free_usb_ports;
2791 free_usb_ports = port;
2792 return 0;
2795 static int usb_device_del(const char *devname)
2797 int bus_num, addr;
2798 const char *p;
2800 if (strstart(devname, "host:", &p))
2801 return usb_host_device_close(p);
2803 if (!used_usb_ports)
2804 return -1;
2806 p = strchr(devname, '.');
2807 if (!p)
2808 return -1;
2809 bus_num = strtoul(devname, NULL, 0);
2810 addr = strtoul(p + 1, NULL, 0);
2812 return usb_device_del_addr(bus_num, addr);
2815 void do_usb_add(Monitor *mon, const char *devname)
2817 usb_device_add(devname, 1);
2820 void do_usb_del(Monitor *mon, const char *devname)
2822 usb_device_del(devname);
2825 void usb_info(Monitor *mon)
2827 USBDevice *dev;
2828 USBPort *port;
2829 const char *speed_str;
2831 if (!usb_enabled) {
2832 monitor_printf(mon, "USB support not enabled\n");
2833 return;
2836 for (port = used_usb_ports; port; port = port->next) {
2837 dev = port->dev;
2838 if (!dev)
2839 continue;
2840 switch(dev->speed) {
2841 case USB_SPEED_LOW:
2842 speed_str = "1.5";
2843 break;
2844 case USB_SPEED_FULL:
2845 speed_str = "12";
2846 break;
2847 case USB_SPEED_HIGH:
2848 speed_str = "480";
2849 break;
2850 default:
2851 speed_str = "?";
2852 break;
2854 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2855 0, dev->addr, speed_str, dev->devname);
2859 /***********************************************************/
2860 /* PCMCIA/Cardbus */
2862 static struct pcmcia_socket_entry_s {
2863 PCMCIASocket *socket;
2864 struct pcmcia_socket_entry_s *next;
2865 } *pcmcia_sockets = 0;
2867 void pcmcia_socket_register(PCMCIASocket *socket)
2869 struct pcmcia_socket_entry_s *entry;
2871 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2872 entry->socket = socket;
2873 entry->next = pcmcia_sockets;
2874 pcmcia_sockets = entry;
2877 void pcmcia_socket_unregister(PCMCIASocket *socket)
2879 struct pcmcia_socket_entry_s *entry, **ptr;
2881 ptr = &pcmcia_sockets;
2882 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2883 if (entry->socket == socket) {
2884 *ptr = entry->next;
2885 qemu_free(entry);
2889 void pcmcia_info(Monitor *mon)
2891 struct pcmcia_socket_entry_s *iter;
2893 if (!pcmcia_sockets)
2894 monitor_printf(mon, "No PCMCIA sockets\n");
2896 for (iter = pcmcia_sockets; iter; iter = iter->next)
2897 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2898 iter->socket->attached ? iter->socket->card_string :
2899 "Empty");
2902 /***********************************************************/
2903 /* register display */
2905 struct DisplayAllocator default_allocator = {
2906 defaultallocator_create_displaysurface,
2907 defaultallocator_resize_displaysurface,
2908 defaultallocator_free_displaysurface
2911 void register_displaystate(DisplayState *ds)
2913 DisplayState **s;
2914 s = &display_state;
2915 while (*s != NULL)
2916 s = &(*s)->next;
2917 ds->next = NULL;
2918 *s = ds;
2921 DisplayState *get_displaystate(void)
2923 return display_state;
2926 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2928 if(ds->allocator == &default_allocator) ds->allocator = da;
2929 return ds->allocator;
2932 /* dumb display */
2934 static void dumb_display_init(void)
2936 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2937 ds->allocator = &default_allocator;
2938 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2939 register_displaystate(ds);
2942 /***********************************************************/
2943 /* I/O handling */
2945 typedef struct IOHandlerRecord {
2946 int fd;
2947 IOCanRWHandler *fd_read_poll;
2948 IOHandler *fd_read;
2949 IOHandler *fd_write;
2950 int deleted;
2951 void *opaque;
2952 /* temporary data */
2953 struct pollfd *ufd;
2954 struct IOHandlerRecord *next;
2955 } IOHandlerRecord;
2957 static IOHandlerRecord *first_io_handler;
2959 /* XXX: fd_read_poll should be suppressed, but an API change is
2960 necessary in the character devices to suppress fd_can_read(). */
2961 int qemu_set_fd_handler2(int fd,
2962 IOCanRWHandler *fd_read_poll,
2963 IOHandler *fd_read,
2964 IOHandler *fd_write,
2965 void *opaque)
2967 IOHandlerRecord **pioh, *ioh;
2969 if (!fd_read && !fd_write) {
2970 pioh = &first_io_handler;
2971 for(;;) {
2972 ioh = *pioh;
2973 if (ioh == NULL)
2974 break;
2975 if (ioh->fd == fd) {
2976 ioh->deleted = 1;
2977 break;
2979 pioh = &ioh->next;
2981 } else {
2982 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2983 if (ioh->fd == fd)
2984 goto found;
2986 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2987 ioh->next = first_io_handler;
2988 first_io_handler = ioh;
2989 found:
2990 ioh->fd = fd;
2991 ioh->fd_read_poll = fd_read_poll;
2992 ioh->fd_read = fd_read;
2993 ioh->fd_write = fd_write;
2994 ioh->opaque = opaque;
2995 ioh->deleted = 0;
2997 return 0;
3000 int qemu_set_fd_handler(int fd,
3001 IOHandler *fd_read,
3002 IOHandler *fd_write,
3003 void *opaque)
3005 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3008 #ifdef _WIN32
3009 /***********************************************************/
3010 /* Polling handling */
3012 typedef struct PollingEntry {
3013 PollingFunc *func;
3014 void *opaque;
3015 struct PollingEntry *next;
3016 } PollingEntry;
3018 static PollingEntry *first_polling_entry;
3020 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3022 PollingEntry **ppe, *pe;
3023 pe = qemu_mallocz(sizeof(PollingEntry));
3024 pe->func = func;
3025 pe->opaque = opaque;
3026 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3027 *ppe = pe;
3028 return 0;
3031 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3033 PollingEntry **ppe, *pe;
3034 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3035 pe = *ppe;
3036 if (pe->func == func && pe->opaque == opaque) {
3037 *ppe = pe->next;
3038 qemu_free(pe);
3039 break;
3044 /***********************************************************/
3045 /* Wait objects support */
3046 typedef struct WaitObjects {
3047 int num;
3048 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3049 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3050 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3051 } WaitObjects;
3053 static WaitObjects wait_objects = {0};
3055 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3057 WaitObjects *w = &wait_objects;
3059 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3060 return -1;
3061 w->events[w->num] = handle;
3062 w->func[w->num] = func;
3063 w->opaque[w->num] = opaque;
3064 w->num++;
3065 return 0;
3068 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3070 int i, found;
3071 WaitObjects *w = &wait_objects;
3073 found = 0;
3074 for (i = 0; i < w->num; i++) {
3075 if (w->events[i] == handle)
3076 found = 1;
3077 if (found) {
3078 w->events[i] = w->events[i + 1];
3079 w->func[i] = w->func[i + 1];
3080 w->opaque[i] = w->opaque[i + 1];
3083 if (found)
3084 w->num--;
3086 #endif
3088 /***********************************************************/
3089 /* ram save/restore */
3091 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3093 int v;
3095 v = qemu_get_byte(f);
3096 switch(v) {
3097 case 0:
3098 if (qemu_get_buffer(f, buf, len) != len)
3099 return -EIO;
3100 break;
3101 case 1:
3102 v = qemu_get_byte(f);
3103 memset(buf, v, len);
3104 break;
3105 default:
3106 return -EINVAL;
3109 if (qemu_file_has_error(f))
3110 return -EIO;
3112 return 0;
3115 static int ram_load_v1(QEMUFile *f, void *opaque)
3117 int ret;
3118 ram_addr_t i;
3120 if (qemu_get_be32(f) != last_ram_offset)
3121 return -EINVAL;
3122 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3123 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3124 if (ret)
3125 return ret;
3127 return 0;
3130 #define BDRV_HASH_BLOCK_SIZE 1024
3131 #define IOBUF_SIZE 4096
3132 #define RAM_CBLOCK_MAGIC 0xfabe
3134 typedef struct RamDecompressState {
3135 z_stream zstream;
3136 QEMUFile *f;
3137 uint8_t buf[IOBUF_SIZE];
3138 } RamDecompressState;
3140 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3142 int ret;
3143 memset(s, 0, sizeof(*s));
3144 s->f = f;
3145 ret = inflateInit(&s->zstream);
3146 if (ret != Z_OK)
3147 return -1;
3148 return 0;
3151 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3153 int ret, clen;
3155 s->zstream.avail_out = len;
3156 s->zstream.next_out = buf;
3157 while (s->zstream.avail_out > 0) {
3158 if (s->zstream.avail_in == 0) {
3159 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3160 return -1;
3161 clen = qemu_get_be16(s->f);
3162 if (clen > IOBUF_SIZE)
3163 return -1;
3164 qemu_get_buffer(s->f, s->buf, clen);
3165 s->zstream.avail_in = clen;
3166 s->zstream.next_in = s->buf;
3168 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3169 if (ret != Z_OK && ret != Z_STREAM_END) {
3170 return -1;
3173 return 0;
3176 static void ram_decompress_close(RamDecompressState *s)
3178 inflateEnd(&s->zstream);
3181 #define RAM_SAVE_FLAG_FULL 0x01
3182 #define RAM_SAVE_FLAG_COMPRESS 0x02
3183 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3184 #define RAM_SAVE_FLAG_PAGE 0x08
3185 #define RAM_SAVE_FLAG_EOS 0x10
3187 static int is_dup_page(uint8_t *page, uint8_t ch)
3189 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3190 uint32_t *array = (uint32_t *)page;
3191 int i;
3193 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3194 if (array[i] != val)
3195 return 0;
3198 return 1;
3201 static int ram_save_block(QEMUFile *f)
3203 static ram_addr_t current_addr = 0;
3204 ram_addr_t saved_addr = current_addr;
3205 ram_addr_t addr = 0;
3206 int found = 0;
3208 while (addr < last_ram_offset) {
3209 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3210 uint8_t *p;
3212 cpu_physical_memory_reset_dirty(current_addr,
3213 current_addr + TARGET_PAGE_SIZE,
3214 MIGRATION_DIRTY_FLAG);
3216 p = qemu_get_ram_ptr(current_addr);
3218 if (is_dup_page(p, *p)) {
3219 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3220 qemu_put_byte(f, *p);
3221 } else {
3222 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3223 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3226 found = 1;
3227 break;
3229 addr += TARGET_PAGE_SIZE;
3230 current_addr = (saved_addr + addr) % last_ram_offset;
3233 return found;
3236 static ram_addr_t ram_save_threshold = 10;
3238 static ram_addr_t ram_save_remaining(void)
3240 ram_addr_t addr;
3241 ram_addr_t count = 0;
3243 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3244 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3245 count++;
3248 return count;
3251 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3253 ram_addr_t addr;
3255 if (stage == 1) {
3256 /* Make sure all dirty bits are set */
3257 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3258 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3259 cpu_physical_memory_set_dirty(addr);
3262 /* Enable dirty memory tracking */
3263 cpu_physical_memory_set_dirty_tracking(1);
3265 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3268 while (!qemu_file_rate_limit(f)) {
3269 int ret;
3271 ret = ram_save_block(f);
3272 if (ret == 0) /* no more blocks */
3273 break;
3276 /* try transferring iterative blocks of memory */
3278 if (stage == 3) {
3280 /* flush all remaining blocks regardless of rate limiting */
3281 while (ram_save_block(f) != 0);
3282 cpu_physical_memory_set_dirty_tracking(0);
3285 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3287 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3290 static int ram_load_dead(QEMUFile *f, void *opaque)
3292 RamDecompressState s1, *s = &s1;
3293 uint8_t buf[10];
3294 ram_addr_t i;
3296 if (ram_decompress_open(s, f) < 0)
3297 return -EINVAL;
3298 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3299 if (ram_decompress_buf(s, buf, 1) < 0) {
3300 fprintf(stderr, "Error while reading ram block header\n");
3301 goto error;
3303 if (buf[0] == 0) {
3304 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3305 BDRV_HASH_BLOCK_SIZE) < 0) {
3306 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3307 goto error;
3309 } else {
3310 error:
3311 printf("Error block header\n");
3312 return -EINVAL;
3315 ram_decompress_close(s);
3317 return 0;
3320 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3322 ram_addr_t addr;
3323 int flags;
3325 if (version_id == 1)
3326 return ram_load_v1(f, opaque);
3328 if (version_id == 2) {
3329 if (qemu_get_be32(f) != last_ram_offset)
3330 return -EINVAL;
3331 return ram_load_dead(f, opaque);
3334 if (version_id != 3)
3335 return -EINVAL;
3337 do {
3338 addr = qemu_get_be64(f);
3340 flags = addr & ~TARGET_PAGE_MASK;
3341 addr &= TARGET_PAGE_MASK;
3343 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3344 if (addr != last_ram_offset)
3345 return -EINVAL;
3348 if (flags & RAM_SAVE_FLAG_FULL) {
3349 if (ram_load_dead(f, opaque) < 0)
3350 return -EINVAL;
3353 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3354 uint8_t ch = qemu_get_byte(f);
3355 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3356 } else if (flags & RAM_SAVE_FLAG_PAGE)
3357 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3358 } while (!(flags & RAM_SAVE_FLAG_EOS));
3360 return 0;
3363 void qemu_service_io(void)
3365 qemu_notify_event();
3368 /***********************************************************/
3369 /* bottom halves (can be seen as timers which expire ASAP) */
3371 struct QEMUBH {
3372 QEMUBHFunc *cb;
3373 void *opaque;
3374 int scheduled;
3375 int idle;
3376 int deleted;
3377 QEMUBH *next;
3380 static QEMUBH *first_bh = NULL;
3382 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3384 QEMUBH *bh;
3385 bh = qemu_mallocz(sizeof(QEMUBH));
3386 bh->cb = cb;
3387 bh->opaque = opaque;
3388 bh->next = first_bh;
3389 first_bh = bh;
3390 return bh;
3393 int qemu_bh_poll(void)
3395 QEMUBH *bh, **bhp;
3396 int ret;
3398 ret = 0;
3399 for (bh = first_bh; bh; bh = bh->next) {
3400 if (!bh->deleted && bh->scheduled) {
3401 bh->scheduled = 0;
3402 if (!bh->idle)
3403 ret = 1;
3404 bh->idle = 0;
3405 bh->cb(bh->opaque);
3409 /* remove deleted bhs */
3410 bhp = &first_bh;
3411 while (*bhp) {
3412 bh = *bhp;
3413 if (bh->deleted) {
3414 *bhp = bh->next;
3415 qemu_free(bh);
3416 } else
3417 bhp = &bh->next;
3420 return ret;
3423 void qemu_bh_schedule_idle(QEMUBH *bh)
3425 if (bh->scheduled)
3426 return;
3427 bh->scheduled = 1;
3428 bh->idle = 1;
3431 void qemu_bh_schedule(QEMUBH *bh)
3433 if (bh->scheduled)
3434 return;
3435 bh->scheduled = 1;
3436 bh->idle = 0;
3437 /* stop the currently executing CPU to execute the BH ASAP */
3438 qemu_notify_event();
3441 void qemu_bh_cancel(QEMUBH *bh)
3443 bh->scheduled = 0;
3446 void qemu_bh_delete(QEMUBH *bh)
3448 bh->scheduled = 0;
3449 bh->deleted = 1;
3452 static void qemu_bh_update_timeout(int *timeout)
3454 QEMUBH *bh;
3456 for (bh = first_bh; bh; bh = bh->next) {
3457 if (!bh->deleted && bh->scheduled) {
3458 if (bh->idle) {
3459 /* idle bottom halves will be polled at least
3460 * every 10ms */
3461 *timeout = MIN(10, *timeout);
3462 } else {
3463 /* non-idle bottom halves will be executed
3464 * immediately */
3465 *timeout = 0;
3466 break;
3472 /***********************************************************/
3473 /* machine registration */
3475 static QEMUMachine *first_machine = NULL;
3476 QEMUMachine *current_machine = NULL;
3478 int qemu_register_machine(QEMUMachine *m)
3480 QEMUMachine **pm;
3481 pm = &first_machine;
3482 while (*pm != NULL)
3483 pm = &(*pm)->next;
3484 m->next = NULL;
3485 *pm = m;
3486 return 0;
3489 static QEMUMachine *find_machine(const char *name)
3491 QEMUMachine *m;
3493 for(m = first_machine; m != NULL; m = m->next) {
3494 if (!strcmp(m->name, name))
3495 return m;
3497 return NULL;
3500 static QEMUMachine *find_default_machine(void)
3502 QEMUMachine *m;
3504 for(m = first_machine; m != NULL; m = m->next) {
3505 if (m->is_default) {
3506 return m;
3509 return NULL;
3512 /***********************************************************/
3513 /* main execution loop */
3515 static void gui_update(void *opaque)
3517 uint64_t interval = GUI_REFRESH_INTERVAL;
3518 DisplayState *ds = opaque;
3519 DisplayChangeListener *dcl = ds->listeners;
3521 dpy_refresh(ds);
3523 while (dcl != NULL) {
3524 if (dcl->gui_timer_interval &&
3525 dcl->gui_timer_interval < interval)
3526 interval = dcl->gui_timer_interval;
3527 dcl = dcl->next;
3529 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3532 static void nographic_update(void *opaque)
3534 uint64_t interval = GUI_REFRESH_INTERVAL;
3536 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3539 struct vm_change_state_entry {
3540 VMChangeStateHandler *cb;
3541 void *opaque;
3542 LIST_ENTRY (vm_change_state_entry) entries;
3545 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3547 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3548 void *opaque)
3550 VMChangeStateEntry *e;
3552 e = qemu_mallocz(sizeof (*e));
3554 e->cb = cb;
3555 e->opaque = opaque;
3556 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3557 return e;
3560 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3562 LIST_REMOVE (e, entries);
3563 qemu_free (e);
3566 static void vm_state_notify(int running, int reason)
3568 VMChangeStateEntry *e;
3570 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3571 e->cb(e->opaque, running, reason);
3575 static void resume_all_vcpus(void);
3576 static void pause_all_vcpus(void);
3578 void vm_start(void)
3580 if (!vm_running) {
3581 cpu_enable_ticks();
3582 vm_running = 1;
3583 vm_state_notify(1, 0);
3584 qemu_rearm_alarm_timer(alarm_timer);
3585 resume_all_vcpus();
3589 /* reset/shutdown handler */
3591 typedef struct QEMUResetEntry {
3592 QEMUResetHandler *func;
3593 void *opaque;
3594 struct QEMUResetEntry *next;
3595 } QEMUResetEntry;
3597 static QEMUResetEntry *first_reset_entry;
3598 static int reset_requested;
3599 static int shutdown_requested;
3600 static int powerdown_requested;
3601 static int debug_requested;
3602 static int vmstop_requested;
3604 int qemu_shutdown_requested(void)
3606 int r = shutdown_requested;
3607 shutdown_requested = 0;
3608 return r;
3611 int qemu_reset_requested(void)
3613 int r = reset_requested;
3614 reset_requested = 0;
3615 return r;
3618 int qemu_powerdown_requested(void)
3620 int r = powerdown_requested;
3621 powerdown_requested = 0;
3622 return r;
3625 static int qemu_debug_requested(void)
3627 int r = debug_requested;
3628 debug_requested = 0;
3629 return r;
3632 static int qemu_vmstop_requested(void)
3634 int r = vmstop_requested;
3635 vmstop_requested = 0;
3636 return r;
3639 static void do_vm_stop(int reason)
3641 if (vm_running) {
3642 cpu_disable_ticks();
3643 vm_running = 0;
3644 pause_all_vcpus();
3645 vm_state_notify(0, reason);
3649 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3651 QEMUResetEntry **pre, *re;
3653 pre = &first_reset_entry;
3654 while (*pre != NULL)
3655 pre = &(*pre)->next;
3656 re = qemu_mallocz(sizeof(QEMUResetEntry));
3657 re->func = func;
3658 re->opaque = opaque;
3659 re->next = NULL;
3660 *pre = re;
3663 void qemu_system_reset(void)
3665 QEMUResetEntry *re;
3667 /* reset all devices */
3668 for(re = first_reset_entry; re != NULL; re = re->next) {
3669 re->func(re->opaque);
3671 if (kvm_enabled())
3672 kvm_sync_vcpus();
3675 void qemu_system_reset_request(void)
3677 if (no_reboot) {
3678 shutdown_requested = 1;
3679 } else {
3680 reset_requested = 1;
3682 qemu_notify_event();
3685 void qemu_system_shutdown_request(void)
3687 shutdown_requested = 1;
3688 qemu_notify_event();
3691 void qemu_system_powerdown_request(void)
3693 powerdown_requested = 1;
3694 qemu_notify_event();
3697 #ifdef CONFIG_IOTHREAD
3698 static void qemu_system_vmstop_request(int reason)
3700 vmstop_requested = reason;
3701 qemu_notify_event();
3703 #endif
3705 #ifndef _WIN32
3706 static int io_thread_fd = -1;
3708 static void qemu_event_increment(void)
3710 static const char byte = 0;
3712 if (io_thread_fd == -1)
3713 return;
3715 write(io_thread_fd, &byte, sizeof(byte));
3718 static void qemu_event_read(void *opaque)
3720 int fd = (unsigned long)opaque;
3721 ssize_t len;
3723 /* Drain the notify pipe */
3724 do {
3725 char buffer[512];
3726 len = read(fd, buffer, sizeof(buffer));
3727 } while ((len == -1 && errno == EINTR) || len > 0);
3730 static int qemu_event_init(void)
3732 int err;
3733 int fds[2];
3735 err = pipe(fds);
3736 if (err == -1)
3737 return -errno;
3739 err = fcntl_setfl(fds[0], O_NONBLOCK);
3740 if (err < 0)
3741 goto fail;
3743 err = fcntl_setfl(fds[1], O_NONBLOCK);
3744 if (err < 0)
3745 goto fail;
3747 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3748 (void *)(unsigned long)fds[0]);
3750 io_thread_fd = fds[1];
3751 return 0;
3753 fail:
3754 close(fds[0]);
3755 close(fds[1]);
3756 return err;
3758 #else
3759 HANDLE qemu_event_handle;
3761 static void dummy_event_handler(void *opaque)
3765 static int qemu_event_init(void)
3767 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3768 if (!qemu_event_handle) {
3769 perror("Failed CreateEvent");
3770 return -1;
3772 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3773 return 0;
3776 static void qemu_event_increment(void)
3778 SetEvent(qemu_event_handle);
3780 #endif
3782 static int cpu_can_run(CPUState *env)
3784 if (env->stop)
3785 return 0;
3786 if (env->stopped)
3787 return 0;
3788 return 1;
3791 #ifndef CONFIG_IOTHREAD
3792 static int qemu_init_main_loop(void)
3794 return qemu_event_init();
3797 void qemu_init_vcpu(void *_env)
3799 CPUState *env = _env;
3801 if (kvm_enabled())
3802 kvm_init_vcpu(env);
3803 return;
3806 int qemu_cpu_self(void *env)
3808 return 1;
3811 static void resume_all_vcpus(void)
3815 static void pause_all_vcpus(void)
3819 void qemu_cpu_kick(void *env)
3821 return;
3824 void qemu_notify_event(void)
3826 CPUState *env = cpu_single_env;
3828 if (env) {
3829 cpu_exit(env);
3830 #ifdef USE_KQEMU
3831 if (env->kqemu_enabled)
3832 kqemu_cpu_interrupt(env);
3833 #endif
3837 #define qemu_mutex_lock_iothread() do { } while (0)
3838 #define qemu_mutex_unlock_iothread() do { } while (0)
3840 void vm_stop(int reason)
3842 do_vm_stop(reason);
3845 #else /* CONFIG_IOTHREAD */
3847 #include "qemu-thread.h"
3849 QemuMutex qemu_global_mutex;
3850 static QemuMutex qemu_fair_mutex;
3852 static QemuThread io_thread;
3854 static QemuThread *tcg_cpu_thread;
3855 static QemuCond *tcg_halt_cond;
3857 static int qemu_system_ready;
3858 /* cpu creation */
3859 static QemuCond qemu_cpu_cond;
3860 /* system init */
3861 static QemuCond qemu_system_cond;
3862 static QemuCond qemu_pause_cond;
3864 static void block_io_signals(void);
3865 static void unblock_io_signals(void);
3866 static int tcg_has_work(void);
3868 static int qemu_init_main_loop(void)
3870 int ret;
3872 ret = qemu_event_init();
3873 if (ret)
3874 return ret;
3876 qemu_cond_init(&qemu_pause_cond);
3877 qemu_mutex_init(&qemu_fair_mutex);
3878 qemu_mutex_init(&qemu_global_mutex);
3879 qemu_mutex_lock(&qemu_global_mutex);
3881 unblock_io_signals();
3882 qemu_thread_self(&io_thread);
3884 return 0;
3887 static void qemu_wait_io_event(CPUState *env)
3889 while (!tcg_has_work())
3890 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3892 qemu_mutex_unlock(&qemu_global_mutex);
3895 * Users of qemu_global_mutex can be starved, having no chance
3896 * to acquire it since this path will get to it first.
3897 * So use another lock to provide fairness.
3899 qemu_mutex_lock(&qemu_fair_mutex);
3900 qemu_mutex_unlock(&qemu_fair_mutex);
3902 qemu_mutex_lock(&qemu_global_mutex);
3903 if (env->stop) {
3904 env->stop = 0;
3905 env->stopped = 1;
3906 qemu_cond_signal(&qemu_pause_cond);
3910 static int qemu_cpu_exec(CPUState *env);
3912 static void *kvm_cpu_thread_fn(void *arg)
3914 CPUState *env = arg;
3916 block_io_signals();
3917 qemu_thread_self(env->thread);
3919 /* signal CPU creation */
3920 qemu_mutex_lock(&qemu_global_mutex);
3921 env->created = 1;
3922 qemu_cond_signal(&qemu_cpu_cond);
3924 /* and wait for machine initialization */
3925 while (!qemu_system_ready)
3926 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3928 while (1) {
3929 if (cpu_can_run(env))
3930 qemu_cpu_exec(env);
3931 qemu_wait_io_event(env);
3934 return NULL;
3937 static void tcg_cpu_exec(void);
3939 static void *tcg_cpu_thread_fn(void *arg)
3941 CPUState *env = arg;
3943 block_io_signals();
3944 qemu_thread_self(env->thread);
3946 /* signal CPU creation */
3947 qemu_mutex_lock(&qemu_global_mutex);
3948 for (env = first_cpu; env != NULL; env = env->next_cpu)
3949 env->created = 1;
3950 qemu_cond_signal(&qemu_cpu_cond);
3952 /* and wait for machine initialization */
3953 while (!qemu_system_ready)
3954 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3956 while (1) {
3957 tcg_cpu_exec();
3958 qemu_wait_io_event(cur_cpu);
3961 return NULL;
3964 void qemu_cpu_kick(void *_env)
3966 CPUState *env = _env;
3967 qemu_cond_broadcast(env->halt_cond);
3968 if (kvm_enabled())
3969 qemu_thread_signal(env->thread, SIGUSR1);
3972 int qemu_cpu_self(void *env)
3974 return (cpu_single_env != NULL);
3977 static void cpu_signal(int sig)
3979 if (cpu_single_env)
3980 cpu_exit(cpu_single_env);
3983 static void block_io_signals(void)
3985 sigset_t set;
3986 struct sigaction sigact;
3988 sigemptyset(&set);
3989 sigaddset(&set, SIGUSR2);
3990 sigaddset(&set, SIGIO);
3991 sigaddset(&set, SIGALRM);
3992 pthread_sigmask(SIG_BLOCK, &set, NULL);
3994 sigemptyset(&set);
3995 sigaddset(&set, SIGUSR1);
3996 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3998 memset(&sigact, 0, sizeof(sigact));
3999 sigact.sa_handler = cpu_signal;
4000 sigaction(SIGUSR1, &sigact, NULL);
4003 static void unblock_io_signals(void)
4005 sigset_t set;
4007 sigemptyset(&set);
4008 sigaddset(&set, SIGUSR2);
4009 sigaddset(&set, SIGIO);
4010 sigaddset(&set, SIGALRM);
4011 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4013 sigemptyset(&set);
4014 sigaddset(&set, SIGUSR1);
4015 pthread_sigmask(SIG_BLOCK, &set, NULL);
4018 static void qemu_signal_lock(unsigned int msecs)
4020 qemu_mutex_lock(&qemu_fair_mutex);
4022 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4023 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4024 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4025 break;
4027 qemu_mutex_unlock(&qemu_fair_mutex);
4030 static void qemu_mutex_lock_iothread(void)
4032 if (kvm_enabled()) {
4033 qemu_mutex_lock(&qemu_fair_mutex);
4034 qemu_mutex_lock(&qemu_global_mutex);
4035 qemu_mutex_unlock(&qemu_fair_mutex);
4036 } else
4037 qemu_signal_lock(100);
4040 static void qemu_mutex_unlock_iothread(void)
4042 qemu_mutex_unlock(&qemu_global_mutex);
4045 static int all_vcpus_paused(void)
4047 CPUState *penv = first_cpu;
4049 while (penv) {
4050 if (!penv->stopped)
4051 return 0;
4052 penv = (CPUState *)penv->next_cpu;
4055 return 1;
4058 static void pause_all_vcpus(void)
4060 CPUState *penv = first_cpu;
4062 while (penv) {
4063 penv->stop = 1;
4064 qemu_thread_signal(penv->thread, SIGUSR1);
4065 qemu_cpu_kick(penv);
4066 penv = (CPUState *)penv->next_cpu;
4069 while (!all_vcpus_paused()) {
4070 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4071 penv = first_cpu;
4072 while (penv) {
4073 qemu_thread_signal(penv->thread, SIGUSR1);
4074 penv = (CPUState *)penv->next_cpu;
4079 static void resume_all_vcpus(void)
4081 CPUState *penv = first_cpu;
4083 while (penv) {
4084 penv->stop = 0;
4085 penv->stopped = 0;
4086 qemu_thread_signal(penv->thread, SIGUSR1);
4087 qemu_cpu_kick(penv);
4088 penv = (CPUState *)penv->next_cpu;
4092 static void tcg_init_vcpu(void *_env)
4094 CPUState *env = _env;
4095 /* share a single thread for all cpus with TCG */
4096 if (!tcg_cpu_thread) {
4097 env->thread = qemu_mallocz(sizeof(QemuThread));
4098 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4099 qemu_cond_init(env->halt_cond);
4100 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4101 while (env->created == 0)
4102 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4103 tcg_cpu_thread = env->thread;
4104 tcg_halt_cond = env->halt_cond;
4105 } else {
4106 env->thread = tcg_cpu_thread;
4107 env->halt_cond = tcg_halt_cond;
4111 static void kvm_start_vcpu(CPUState *env)
4113 kvm_init_vcpu(env);
4114 env->thread = qemu_mallocz(sizeof(QemuThread));
4115 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4116 qemu_cond_init(env->halt_cond);
4117 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4118 while (env->created == 0)
4119 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4122 void qemu_init_vcpu(void *_env)
4124 CPUState *env = _env;
4126 if (kvm_enabled())
4127 kvm_start_vcpu(env);
4128 else
4129 tcg_init_vcpu(env);
4132 void qemu_notify_event(void)
4134 qemu_event_increment();
4137 void vm_stop(int reason)
4139 QemuThread me;
4140 qemu_thread_self(&me);
4142 if (!qemu_thread_equal(&me, &io_thread)) {
4143 qemu_system_vmstop_request(reason);
4145 * FIXME: should not return to device code in case
4146 * vm_stop() has been requested.
4148 if (cpu_single_env) {
4149 cpu_exit(cpu_single_env);
4150 cpu_single_env->stop = 1;
4152 return;
4154 do_vm_stop(reason);
4157 #endif
4160 #ifdef _WIN32
4161 static void host_main_loop_wait(int *timeout)
4163 int ret, ret2, i;
4164 PollingEntry *pe;
4167 /* XXX: need to suppress polling by better using win32 events */
4168 ret = 0;
4169 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4170 ret |= pe->func(pe->opaque);
4172 if (ret == 0) {
4173 int err;
4174 WaitObjects *w = &wait_objects;
4176 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4177 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4178 if (w->func[ret - WAIT_OBJECT_0])
4179 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4181 /* Check for additional signaled events */
4182 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4184 /* Check if event is signaled */
4185 ret2 = WaitForSingleObject(w->events[i], 0);
4186 if(ret2 == WAIT_OBJECT_0) {
4187 if (w->func[i])
4188 w->func[i](w->opaque[i]);
4189 } else if (ret2 == WAIT_TIMEOUT) {
4190 } else {
4191 err = GetLastError();
4192 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4195 } else if (ret == WAIT_TIMEOUT) {
4196 } else {
4197 err = GetLastError();
4198 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4202 *timeout = 0;
4204 #else
4205 static void host_main_loop_wait(int *timeout)
4208 #endif
4210 void main_loop_wait(int timeout)
4212 IOHandlerRecord *ioh;
4213 fd_set rfds, wfds, xfds;
4214 int ret, nfds;
4215 struct timeval tv;
4217 qemu_bh_update_timeout(&timeout);
4219 host_main_loop_wait(&timeout);
4221 /* poll any events */
4222 /* XXX: separate device handlers from system ones */
4223 nfds = -1;
4224 FD_ZERO(&rfds);
4225 FD_ZERO(&wfds);
4226 FD_ZERO(&xfds);
4227 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4228 if (ioh->deleted)
4229 continue;
4230 if (ioh->fd_read &&
4231 (!ioh->fd_read_poll ||
4232 ioh->fd_read_poll(ioh->opaque) != 0)) {
4233 FD_SET(ioh->fd, &rfds);
4234 if (ioh->fd > nfds)
4235 nfds = ioh->fd;
4237 if (ioh->fd_write) {
4238 FD_SET(ioh->fd, &wfds);
4239 if (ioh->fd > nfds)
4240 nfds = ioh->fd;
4244 tv.tv_sec = timeout / 1000;
4245 tv.tv_usec = (timeout % 1000) * 1000;
4247 #if defined(CONFIG_SLIRP)
4248 if (slirp_is_inited()) {
4249 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4251 #endif
4252 qemu_mutex_unlock_iothread();
4253 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4254 qemu_mutex_lock_iothread();
4255 if (ret > 0) {
4256 IOHandlerRecord **pioh;
4258 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4259 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4260 ioh->fd_read(ioh->opaque);
4262 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4263 ioh->fd_write(ioh->opaque);
4267 /* remove deleted IO handlers */
4268 pioh = &first_io_handler;
4269 while (*pioh) {
4270 ioh = *pioh;
4271 if (ioh->deleted) {
4272 *pioh = ioh->next;
4273 qemu_free(ioh);
4274 } else
4275 pioh = &ioh->next;
4278 #if defined(CONFIG_SLIRP)
4279 if (slirp_is_inited()) {
4280 if (ret < 0) {
4281 FD_ZERO(&rfds);
4282 FD_ZERO(&wfds);
4283 FD_ZERO(&xfds);
4285 slirp_select_poll(&rfds, &wfds, &xfds);
4287 #endif
4289 /* rearm timer, if not periodic */
4290 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4291 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4292 qemu_rearm_alarm_timer(alarm_timer);
4295 /* vm time timers */
4296 if (vm_running) {
4297 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4298 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4299 qemu_get_clock(vm_clock));
4302 /* real time timers */
4303 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4304 qemu_get_clock(rt_clock));
4306 /* Check bottom-halves last in case any of the earlier events triggered
4307 them. */
4308 qemu_bh_poll();
4312 static int qemu_cpu_exec(CPUState *env)
4314 int ret;
4315 #ifdef CONFIG_PROFILER
4316 int64_t ti;
4317 #endif
4319 #ifdef CONFIG_PROFILER
4320 ti = profile_getclock();
4321 #endif
4322 if (use_icount) {
4323 int64_t count;
4324 int decr;
4325 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4326 env->icount_decr.u16.low = 0;
4327 env->icount_extra = 0;
4328 count = qemu_next_deadline();
4329 count = (count + (1 << icount_time_shift) - 1)
4330 >> icount_time_shift;
4331 qemu_icount += count;
4332 decr = (count > 0xffff) ? 0xffff : count;
4333 count -= decr;
4334 env->icount_decr.u16.low = decr;
4335 env->icount_extra = count;
4337 ret = cpu_exec(env);
4338 #ifdef CONFIG_PROFILER
4339 qemu_time += profile_getclock() - ti;
4340 #endif
4341 if (use_icount) {
4342 /* Fold pending instructions back into the
4343 instruction counter, and clear the interrupt flag. */
4344 qemu_icount -= (env->icount_decr.u16.low
4345 + env->icount_extra);
4346 env->icount_decr.u32 = 0;
4347 env->icount_extra = 0;
4349 return ret;
4352 static void tcg_cpu_exec(void)
4354 int ret = 0;
4356 if (next_cpu == NULL)
4357 next_cpu = first_cpu;
4358 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4359 CPUState *env = cur_cpu = next_cpu;
4361 if (!vm_running)
4362 break;
4363 if (timer_alarm_pending) {
4364 timer_alarm_pending = 0;
4365 break;
4367 if (cpu_can_run(env))
4368 ret = qemu_cpu_exec(env);
4369 if (ret == EXCP_DEBUG) {
4370 gdb_set_stop_cpu(env);
4371 debug_requested = 1;
4372 break;
4377 static int cpu_has_work(CPUState *env)
4379 if (env->stop)
4380 return 1;
4381 if (env->stopped)
4382 return 0;
4383 if (!env->halted)
4384 return 1;
4385 if (qemu_cpu_has_work(env))
4386 return 1;
4387 return 0;
4390 static int tcg_has_work(void)
4392 CPUState *env;
4394 for (env = first_cpu; env != NULL; env = env->next_cpu)
4395 if (cpu_has_work(env))
4396 return 1;
4397 return 0;
4400 static int qemu_calculate_timeout(void)
4402 int timeout;
4404 if (!vm_running)
4405 timeout = 5000;
4406 else if (tcg_has_work())
4407 timeout = 0;
4408 else if (!use_icount)
4409 timeout = 5000;
4410 else {
4411 /* XXX: use timeout computed from timers */
4412 int64_t add;
4413 int64_t delta;
4414 /* Advance virtual time to the next event. */
4415 if (use_icount == 1) {
4416 /* When not using an adaptive execution frequency
4417 we tend to get badly out of sync with real time,
4418 so just delay for a reasonable amount of time. */
4419 delta = 0;
4420 } else {
4421 delta = cpu_get_icount() - cpu_get_clock();
4423 if (delta > 0) {
4424 /* If virtual time is ahead of real time then just
4425 wait for IO. */
4426 timeout = (delta / 1000000) + 1;
4427 } else {
4428 /* Wait for either IO to occur or the next
4429 timer event. */
4430 add = qemu_next_deadline();
4431 /* We advance the timer before checking for IO.
4432 Limit the amount we advance so that early IO
4433 activity won't get the guest too far ahead. */
4434 if (add > 10000000)
4435 add = 10000000;
4436 delta += add;
4437 add = (add + (1 << icount_time_shift) - 1)
4438 >> icount_time_shift;
4439 qemu_icount += add;
4440 timeout = delta / 1000000;
4441 if (timeout < 0)
4442 timeout = 0;
4446 return timeout;
4449 static int vm_can_run(void)
4451 if (powerdown_requested)
4452 return 0;
4453 if (reset_requested)
4454 return 0;
4455 if (shutdown_requested)
4456 return 0;
4457 if (debug_requested)
4458 return 0;
4459 return 1;
4462 static void main_loop(void)
4464 int r;
4466 #ifdef CONFIG_IOTHREAD
4467 qemu_system_ready = 1;
4468 qemu_cond_broadcast(&qemu_system_cond);
4469 #endif
4471 for (;;) {
4472 do {
4473 #ifdef CONFIG_PROFILER
4474 int64_t ti;
4475 #endif
4476 #ifndef CONFIG_IOTHREAD
4477 tcg_cpu_exec();
4478 #endif
4479 #ifdef CONFIG_PROFILER
4480 ti = profile_getclock();
4481 #endif
4482 #ifdef CONFIG_IOTHREAD
4483 main_loop_wait(1000);
4484 #else
4485 main_loop_wait(qemu_calculate_timeout());
4486 #endif
4487 #ifdef CONFIG_PROFILER
4488 dev_time += profile_getclock() - ti;
4489 #endif
4490 } while (vm_can_run());
4492 if (qemu_debug_requested())
4493 vm_stop(EXCP_DEBUG);
4494 if (qemu_shutdown_requested()) {
4495 if (no_shutdown) {
4496 vm_stop(0);
4497 no_shutdown = 0;
4498 } else
4499 break;
4501 if (qemu_reset_requested()) {
4502 pause_all_vcpus();
4503 qemu_system_reset();
4504 resume_all_vcpus();
4506 if (qemu_powerdown_requested())
4507 qemu_system_powerdown();
4508 if ((r = qemu_vmstop_requested()))
4509 vm_stop(r);
4511 pause_all_vcpus();
4514 static void version(void)
4516 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4519 static void help(int exitcode)
4521 version();
4522 printf("usage: %s [options] [disk_image]\n"
4523 "\n"
4524 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4525 "\n"
4526 #define DEF(option, opt_arg, opt_enum, opt_help) \
4527 opt_help
4528 #define DEFHEADING(text) stringify(text) "\n"
4529 #include "qemu-options.h"
4530 #undef DEF
4531 #undef DEFHEADING
4532 #undef GEN_DOCS
4533 "\n"
4534 "During emulation, the following keys are useful:\n"
4535 "ctrl-alt-f toggle full screen\n"
4536 "ctrl-alt-n switch to virtual console 'n'\n"
4537 "ctrl-alt toggle mouse and keyboard grab\n"
4538 "\n"
4539 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4541 "qemu",
4542 DEFAULT_RAM_SIZE,
4543 #ifndef _WIN32
4544 DEFAULT_NETWORK_SCRIPT,
4545 DEFAULT_NETWORK_DOWN_SCRIPT,
4546 #endif
4547 DEFAULT_GDBSTUB_PORT,
4548 "/tmp/qemu.log");
4549 exit(exitcode);
4552 #define HAS_ARG 0x0001
4554 enum {
4555 #define DEF(option, opt_arg, opt_enum, opt_help) \
4556 opt_enum,
4557 #define DEFHEADING(text)
4558 #include "qemu-options.h"
4559 #undef DEF
4560 #undef DEFHEADING
4561 #undef GEN_DOCS
4564 typedef struct QEMUOption {
4565 const char *name;
4566 int flags;
4567 int index;
4568 } QEMUOption;
4570 static const QEMUOption qemu_options[] = {
4571 { "h", 0, QEMU_OPTION_h },
4572 #define DEF(option, opt_arg, opt_enum, opt_help) \
4573 { option, opt_arg, opt_enum },
4574 #define DEFHEADING(text)
4575 #include "qemu-options.h"
4576 #undef DEF
4577 #undef DEFHEADING
4578 #undef GEN_DOCS
4579 { NULL },
4582 #ifdef HAS_AUDIO
4583 struct soundhw soundhw[] = {
4584 #ifdef HAS_AUDIO_CHOICE
4585 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4587 "pcspk",
4588 "PC speaker",
4591 { .init_isa = pcspk_audio_init }
4593 #endif
4595 #ifdef CONFIG_SB16
4597 "sb16",
4598 "Creative Sound Blaster 16",
4601 { .init_isa = SB16_init }
4603 #endif
4605 #ifdef CONFIG_CS4231A
4607 "cs4231a",
4608 "CS4231A",
4611 { .init_isa = cs4231a_init }
4613 #endif
4615 #ifdef CONFIG_ADLIB
4617 "adlib",
4618 #ifdef HAS_YMF262
4619 "Yamaha YMF262 (OPL3)",
4620 #else
4621 "Yamaha YM3812 (OPL2)",
4622 #endif
4625 { .init_isa = Adlib_init }
4627 #endif
4629 #ifdef CONFIG_GUS
4631 "gus",
4632 "Gravis Ultrasound GF1",
4635 { .init_isa = GUS_init }
4637 #endif
4639 #ifdef CONFIG_AC97
4641 "ac97",
4642 "Intel 82801AA AC97 Audio",
4645 { .init_pci = ac97_init }
4647 #endif
4649 #ifdef CONFIG_ES1370
4651 "es1370",
4652 "ENSONIQ AudioPCI ES1370",
4655 { .init_pci = es1370_init }
4657 #endif
4659 #endif /* HAS_AUDIO_CHOICE */
4661 { NULL, NULL, 0, 0, { NULL } }
4664 static void select_soundhw (const char *optarg)
4666 struct soundhw *c;
4668 if (*optarg == '?') {
4669 show_valid_cards:
4671 printf ("Valid sound card names (comma separated):\n");
4672 for (c = soundhw; c->name; ++c) {
4673 printf ("%-11s %s\n", c->name, c->descr);
4675 printf ("\n-soundhw all will enable all of the above\n");
4676 exit (*optarg != '?');
4678 else {
4679 size_t l;
4680 const char *p;
4681 char *e;
4682 int bad_card = 0;
4684 if (!strcmp (optarg, "all")) {
4685 for (c = soundhw; c->name; ++c) {
4686 c->enabled = 1;
4688 return;
4691 p = optarg;
4692 while (*p) {
4693 e = strchr (p, ',');
4694 l = !e ? strlen (p) : (size_t) (e - p);
4696 for (c = soundhw; c->name; ++c) {
4697 if (!strncmp (c->name, p, l)) {
4698 c->enabled = 1;
4699 break;
4703 if (!c->name) {
4704 if (l > 80) {
4705 fprintf (stderr,
4706 "Unknown sound card name (too big to show)\n");
4708 else {
4709 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4710 (int) l, p);
4712 bad_card = 1;
4714 p += l + (e != NULL);
4717 if (bad_card)
4718 goto show_valid_cards;
4721 #endif
4723 static void select_vgahw (const char *p)
4725 const char *opts;
4727 cirrus_vga_enabled = 0;
4728 std_vga_enabled = 0;
4729 vmsvga_enabled = 0;
4730 xenfb_enabled = 0;
4731 if (strstart(p, "std", &opts)) {
4732 std_vga_enabled = 1;
4733 } else if (strstart(p, "cirrus", &opts)) {
4734 cirrus_vga_enabled = 1;
4735 } else if (strstart(p, "vmware", &opts)) {
4736 vmsvga_enabled = 1;
4737 } else if (strstart(p, "xenfb", &opts)) {
4738 xenfb_enabled = 1;
4739 } else if (!strstart(p, "none", &opts)) {
4740 invalid_vga:
4741 fprintf(stderr, "Unknown vga type: %s\n", p);
4742 exit(1);
4744 while (*opts) {
4745 const char *nextopt;
4747 if (strstart(opts, ",retrace=", &nextopt)) {
4748 opts = nextopt;
4749 if (strstart(opts, "dumb", &nextopt))
4750 vga_retrace_method = VGA_RETRACE_DUMB;
4751 else if (strstart(opts, "precise", &nextopt))
4752 vga_retrace_method = VGA_RETRACE_PRECISE;
4753 else goto invalid_vga;
4754 } else goto invalid_vga;
4755 opts = nextopt;
4759 #ifdef _WIN32
4760 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4762 exit(STATUS_CONTROL_C_EXIT);
4763 return TRUE;
4765 #endif
4767 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4769 int ret;
4771 if(strlen(str) != 36)
4772 return -1;
4774 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4775 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4776 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4778 if(ret != 16)
4779 return -1;
4781 #ifdef TARGET_I386
4782 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4783 #endif
4785 return 0;
4788 #define MAX_NET_CLIENTS 32
4790 #ifndef _WIN32
4792 static void termsig_handler(int signal)
4794 qemu_system_shutdown_request();
4797 static void termsig_setup(void)
4799 struct sigaction act;
4801 memset(&act, 0, sizeof(act));
4802 act.sa_handler = termsig_handler;
4803 sigaction(SIGINT, &act, NULL);
4804 sigaction(SIGHUP, &act, NULL);
4805 sigaction(SIGTERM, &act, NULL);
4808 #endif
4810 int main(int argc, char **argv, char **envp)
4812 const char *gdbstub_dev = NULL;
4813 uint32_t boot_devices_bitmap = 0;
4814 int i;
4815 int snapshot, linux_boot, net_boot;
4816 const char *initrd_filename;
4817 const char *kernel_filename, *kernel_cmdline;
4818 const char *boot_devices = "";
4819 DisplayState *ds;
4820 DisplayChangeListener *dcl;
4821 int cyls, heads, secs, translation;
4822 const char *net_clients[MAX_NET_CLIENTS];
4823 int nb_net_clients;
4824 const char *bt_opts[MAX_BT_CMDLINE];
4825 int nb_bt_opts;
4826 int hda_index;
4827 int optind;
4828 const char *r, *optarg;
4829 CharDriverState *monitor_hd = NULL;
4830 const char *monitor_device;
4831 const char *serial_devices[MAX_SERIAL_PORTS];
4832 int serial_device_index;
4833 const char *parallel_devices[MAX_PARALLEL_PORTS];
4834 int parallel_device_index;
4835 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4836 int virtio_console_index;
4837 const char *loadvm = NULL;
4838 QEMUMachine *machine;
4839 const char *cpu_model;
4840 const char *usb_devices[MAX_USB_CMDLINE];
4841 int usb_devices_index;
4842 #ifndef _WIN32
4843 int fds[2];
4844 #endif
4845 int tb_size;
4846 const char *pid_file = NULL;
4847 const char *incoming = NULL;
4848 #ifndef _WIN32
4849 int fd = 0;
4850 struct passwd *pwd = NULL;
4851 const char *chroot_dir = NULL;
4852 const char *run_as = NULL;
4853 #endif
4854 CPUState *env;
4855 int show_vnc_port = 0;
4857 qemu_cache_utils_init(envp);
4859 LIST_INIT (&vm_change_state_head);
4860 #ifndef _WIN32
4862 struct sigaction act;
4863 sigfillset(&act.sa_mask);
4864 act.sa_flags = 0;
4865 act.sa_handler = SIG_IGN;
4866 sigaction(SIGPIPE, &act, NULL);
4868 #else
4869 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4870 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4871 QEMU to run on a single CPU */
4873 HANDLE h;
4874 DWORD mask, smask;
4875 int i;
4876 h = GetCurrentProcess();
4877 if (GetProcessAffinityMask(h, &mask, &smask)) {
4878 for(i = 0; i < 32; i++) {
4879 if (mask & (1 << i))
4880 break;
4882 if (i != 32) {
4883 mask = 1 << i;
4884 SetProcessAffinityMask(h, mask);
4888 #endif
4890 module_call_init(MODULE_INIT_MACHINE);
4891 machine = find_default_machine();
4892 cpu_model = NULL;
4893 initrd_filename = NULL;
4894 ram_size = 0;
4895 snapshot = 0;
4896 kernel_filename = NULL;
4897 kernel_cmdline = "";
4898 cyls = heads = secs = 0;
4899 translation = BIOS_ATA_TRANSLATION_AUTO;
4900 monitor_device = "vc:80Cx24C";
4902 serial_devices[0] = "vc:80Cx24C";
4903 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4904 serial_devices[i] = NULL;
4905 serial_device_index = 0;
4907 parallel_devices[0] = "vc:80Cx24C";
4908 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4909 parallel_devices[i] = NULL;
4910 parallel_device_index = 0;
4912 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4913 virtio_consoles[i] = NULL;
4914 virtio_console_index = 0;
4916 for (i = 0; i < MAX_NODES; i++) {
4917 node_mem[i] = 0;
4918 node_cpumask[i] = 0;
4921 usb_devices_index = 0;
4923 nb_net_clients = 0;
4924 nb_bt_opts = 0;
4925 nb_drives = 0;
4926 nb_drives_opt = 0;
4927 nb_numa_nodes = 0;
4928 hda_index = -1;
4930 nb_nics = 0;
4932 tb_size = 0;
4933 autostart= 1;
4935 register_watchdogs();
4937 optind = 1;
4938 for(;;) {
4939 if (optind >= argc)
4940 break;
4941 r = argv[optind];
4942 if (r[0] != '-') {
4943 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4944 } else {
4945 const QEMUOption *popt;
4947 optind++;
4948 /* Treat --foo the same as -foo. */
4949 if (r[1] == '-')
4950 r++;
4951 popt = qemu_options;
4952 for(;;) {
4953 if (!popt->name) {
4954 fprintf(stderr, "%s: invalid option -- '%s'\n",
4955 argv[0], r);
4956 exit(1);
4958 if (!strcmp(popt->name, r + 1))
4959 break;
4960 popt++;
4962 if (popt->flags & HAS_ARG) {
4963 if (optind >= argc) {
4964 fprintf(stderr, "%s: option '%s' requires an argument\n",
4965 argv[0], r);
4966 exit(1);
4968 optarg = argv[optind++];
4969 } else {
4970 optarg = NULL;
4973 switch(popt->index) {
4974 case QEMU_OPTION_M:
4975 machine = find_machine(optarg);
4976 if (!machine) {
4977 QEMUMachine *m;
4978 printf("Supported machines are:\n");
4979 for(m = first_machine; m != NULL; m = m->next) {
4980 printf("%-10s %s%s\n",
4981 m->name, m->desc,
4982 m->is_default ? " (default)" : "");
4984 exit(*optarg != '?');
4986 break;
4987 case QEMU_OPTION_cpu:
4988 /* hw initialization will check this */
4989 if (*optarg == '?') {
4990 /* XXX: implement xxx_cpu_list for targets that still miss it */
4991 #if defined(cpu_list)
4992 cpu_list(stdout, &fprintf);
4993 #endif
4994 exit(0);
4995 } else {
4996 cpu_model = optarg;
4998 break;
4999 case QEMU_OPTION_initrd:
5000 initrd_filename = optarg;
5001 break;
5002 case QEMU_OPTION_hda:
5003 if (cyls == 0)
5004 hda_index = drive_add(optarg, HD_ALIAS, 0);
5005 else
5006 hda_index = drive_add(optarg, HD_ALIAS
5007 ",cyls=%d,heads=%d,secs=%d%s",
5008 0, cyls, heads, secs,
5009 translation == BIOS_ATA_TRANSLATION_LBA ?
5010 ",trans=lba" :
5011 translation == BIOS_ATA_TRANSLATION_NONE ?
5012 ",trans=none" : "");
5013 break;
5014 case QEMU_OPTION_hdb:
5015 case QEMU_OPTION_hdc:
5016 case QEMU_OPTION_hdd:
5017 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5018 break;
5019 case QEMU_OPTION_drive:
5020 drive_add(NULL, "%s", optarg);
5021 break;
5022 case QEMU_OPTION_mtdblock:
5023 drive_add(optarg, MTD_ALIAS);
5024 break;
5025 case QEMU_OPTION_sd:
5026 drive_add(optarg, SD_ALIAS);
5027 break;
5028 case QEMU_OPTION_pflash:
5029 drive_add(optarg, PFLASH_ALIAS);
5030 break;
5031 case QEMU_OPTION_snapshot:
5032 snapshot = 1;
5033 break;
5034 case QEMU_OPTION_hdachs:
5036 const char *p;
5037 p = optarg;
5038 cyls = strtol(p, (char **)&p, 0);
5039 if (cyls < 1 || cyls > 16383)
5040 goto chs_fail;
5041 if (*p != ',')
5042 goto chs_fail;
5043 p++;
5044 heads = strtol(p, (char **)&p, 0);
5045 if (heads < 1 || heads > 16)
5046 goto chs_fail;
5047 if (*p != ',')
5048 goto chs_fail;
5049 p++;
5050 secs = strtol(p, (char **)&p, 0);
5051 if (secs < 1 || secs > 63)
5052 goto chs_fail;
5053 if (*p == ',') {
5054 p++;
5055 if (!strcmp(p, "none"))
5056 translation = BIOS_ATA_TRANSLATION_NONE;
5057 else if (!strcmp(p, "lba"))
5058 translation = BIOS_ATA_TRANSLATION_LBA;
5059 else if (!strcmp(p, "auto"))
5060 translation = BIOS_ATA_TRANSLATION_AUTO;
5061 else
5062 goto chs_fail;
5063 } else if (*p != '\0') {
5064 chs_fail:
5065 fprintf(stderr, "qemu: invalid physical CHS format\n");
5066 exit(1);
5068 if (hda_index != -1)
5069 snprintf(drives_opt[hda_index].opt,
5070 sizeof(drives_opt[hda_index].opt),
5071 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5072 0, cyls, heads, secs,
5073 translation == BIOS_ATA_TRANSLATION_LBA ?
5074 ",trans=lba" :
5075 translation == BIOS_ATA_TRANSLATION_NONE ?
5076 ",trans=none" : "");
5078 break;
5079 case QEMU_OPTION_numa:
5080 if (nb_numa_nodes >= MAX_NODES) {
5081 fprintf(stderr, "qemu: too many NUMA nodes\n");
5082 exit(1);
5084 numa_add(optarg);
5085 break;
5086 case QEMU_OPTION_nographic:
5087 display_type = DT_NOGRAPHIC;
5088 break;
5089 #ifdef CONFIG_CURSES
5090 case QEMU_OPTION_curses:
5091 display_type = DT_CURSES;
5092 break;
5093 #endif
5094 case QEMU_OPTION_portrait:
5095 graphic_rotate = 1;
5096 break;
5097 case QEMU_OPTION_kernel:
5098 kernel_filename = optarg;
5099 break;
5100 case QEMU_OPTION_append:
5101 kernel_cmdline = optarg;
5102 break;
5103 case QEMU_OPTION_cdrom:
5104 drive_add(optarg, CDROM_ALIAS);
5105 break;
5106 case QEMU_OPTION_boot:
5107 boot_devices = optarg;
5108 /* We just do some generic consistency checks */
5110 /* Could easily be extended to 64 devices if needed */
5111 const char *p;
5113 boot_devices_bitmap = 0;
5114 for (p = boot_devices; *p != '\0'; p++) {
5115 /* Allowed boot devices are:
5116 * a b : floppy disk drives
5117 * c ... f : IDE disk drives
5118 * g ... m : machine implementation dependant drives
5119 * n ... p : network devices
5120 * It's up to each machine implementation to check
5121 * if the given boot devices match the actual hardware
5122 * implementation and firmware features.
5124 if (*p < 'a' || *p > 'q') {
5125 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5126 exit(1);
5128 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5129 fprintf(stderr,
5130 "Boot device '%c' was given twice\n",*p);
5131 exit(1);
5133 boot_devices_bitmap |= 1 << (*p - 'a');
5136 break;
5137 case QEMU_OPTION_fda:
5138 case QEMU_OPTION_fdb:
5139 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5140 break;
5141 #ifdef TARGET_I386
5142 case QEMU_OPTION_no_fd_bootchk:
5143 fd_bootchk = 0;
5144 break;
5145 #endif
5146 case QEMU_OPTION_net:
5147 if (nb_net_clients >= MAX_NET_CLIENTS) {
5148 fprintf(stderr, "qemu: too many network clients\n");
5149 exit(1);
5151 net_clients[nb_net_clients] = optarg;
5152 nb_net_clients++;
5153 break;
5154 #ifdef CONFIG_SLIRP
5155 case QEMU_OPTION_tftp:
5156 tftp_prefix = optarg;
5157 break;
5158 case QEMU_OPTION_bootp:
5159 bootp_filename = optarg;
5160 break;
5161 #ifndef _WIN32
5162 case QEMU_OPTION_smb:
5163 net_slirp_smb(optarg);
5164 break;
5165 #endif
5166 case QEMU_OPTION_redir:
5167 net_slirp_redir(NULL, optarg);
5168 break;
5169 #endif
5170 case QEMU_OPTION_bt:
5171 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5172 fprintf(stderr, "qemu: too many bluetooth options\n");
5173 exit(1);
5175 bt_opts[nb_bt_opts++] = optarg;
5176 break;
5177 #ifdef HAS_AUDIO
5178 case QEMU_OPTION_audio_help:
5179 AUD_help ();
5180 exit (0);
5181 break;
5182 case QEMU_OPTION_soundhw:
5183 select_soundhw (optarg);
5184 break;
5185 #endif
5186 case QEMU_OPTION_h:
5187 help(0);
5188 break;
5189 case QEMU_OPTION_version:
5190 version();
5191 exit(0);
5192 break;
5193 case QEMU_OPTION_m: {
5194 uint64_t value;
5195 char *ptr;
5197 value = strtoul(optarg, &ptr, 10);
5198 switch (*ptr) {
5199 case 0: case 'M': case 'm':
5200 value <<= 20;
5201 break;
5202 case 'G': case 'g':
5203 value <<= 30;
5204 break;
5205 default:
5206 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5207 exit(1);
5210 /* On 32-bit hosts, QEMU is limited by virtual address space */
5211 if (value > (2047 << 20)
5212 #ifndef CONFIG_KQEMU
5213 && HOST_LONG_BITS == 32
5214 #endif
5216 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5217 exit(1);
5219 if (value != (uint64_t)(ram_addr_t)value) {
5220 fprintf(stderr, "qemu: ram size too large\n");
5221 exit(1);
5223 ram_size = value;
5224 break;
5226 case QEMU_OPTION_d:
5228 int mask;
5229 const CPULogItem *item;
5231 mask = cpu_str_to_log_mask(optarg);
5232 if (!mask) {
5233 printf("Log items (comma separated):\n");
5234 for(item = cpu_log_items; item->mask != 0; item++) {
5235 printf("%-10s %s\n", item->name, item->help);
5237 exit(1);
5239 cpu_set_log(mask);
5241 break;
5242 case QEMU_OPTION_s:
5243 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5244 break;
5245 case QEMU_OPTION_gdb:
5246 gdbstub_dev = optarg;
5247 break;
5248 case QEMU_OPTION_L:
5249 bios_dir = optarg;
5250 break;
5251 case QEMU_OPTION_bios:
5252 bios_name = optarg;
5253 break;
5254 case QEMU_OPTION_singlestep:
5255 singlestep = 1;
5256 break;
5257 case QEMU_OPTION_S:
5258 autostart = 0;
5259 break;
5260 #ifndef _WIN32
5261 case QEMU_OPTION_k:
5262 keyboard_layout = optarg;
5263 break;
5264 #endif
5265 case QEMU_OPTION_localtime:
5266 rtc_utc = 0;
5267 break;
5268 case QEMU_OPTION_vga:
5269 select_vgahw (optarg);
5270 break;
5271 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5272 case QEMU_OPTION_g:
5274 const char *p;
5275 int w, h, depth;
5276 p = optarg;
5277 w = strtol(p, (char **)&p, 10);
5278 if (w <= 0) {
5279 graphic_error:
5280 fprintf(stderr, "qemu: invalid resolution or depth\n");
5281 exit(1);
5283 if (*p != 'x')
5284 goto graphic_error;
5285 p++;
5286 h = strtol(p, (char **)&p, 10);
5287 if (h <= 0)
5288 goto graphic_error;
5289 if (*p == 'x') {
5290 p++;
5291 depth = strtol(p, (char **)&p, 10);
5292 if (depth != 8 && depth != 15 && depth != 16 &&
5293 depth != 24 && depth != 32)
5294 goto graphic_error;
5295 } else if (*p == '\0') {
5296 depth = graphic_depth;
5297 } else {
5298 goto graphic_error;
5301 graphic_width = w;
5302 graphic_height = h;
5303 graphic_depth = depth;
5305 break;
5306 #endif
5307 case QEMU_OPTION_echr:
5309 char *r;
5310 term_escape_char = strtol(optarg, &r, 0);
5311 if (r == optarg)
5312 printf("Bad argument to echr\n");
5313 break;
5315 case QEMU_OPTION_monitor:
5316 monitor_device = optarg;
5317 break;
5318 case QEMU_OPTION_serial:
5319 if (serial_device_index >= MAX_SERIAL_PORTS) {
5320 fprintf(stderr, "qemu: too many serial ports\n");
5321 exit(1);
5323 serial_devices[serial_device_index] = optarg;
5324 serial_device_index++;
5325 break;
5326 case QEMU_OPTION_watchdog:
5327 i = select_watchdog(optarg);
5328 if (i > 0)
5329 exit (i == 1 ? 1 : 0);
5330 break;
5331 case QEMU_OPTION_watchdog_action:
5332 if (select_watchdog_action(optarg) == -1) {
5333 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5334 exit(1);
5336 break;
5337 case QEMU_OPTION_virtiocon:
5338 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5339 fprintf(stderr, "qemu: too many virtio consoles\n");
5340 exit(1);
5342 virtio_consoles[virtio_console_index] = optarg;
5343 virtio_console_index++;
5344 break;
5345 case QEMU_OPTION_parallel:
5346 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5347 fprintf(stderr, "qemu: too many parallel ports\n");
5348 exit(1);
5350 parallel_devices[parallel_device_index] = optarg;
5351 parallel_device_index++;
5352 break;
5353 case QEMU_OPTION_loadvm:
5354 loadvm = optarg;
5355 break;
5356 case QEMU_OPTION_full_screen:
5357 full_screen = 1;
5358 break;
5359 #ifdef CONFIG_SDL
5360 case QEMU_OPTION_no_frame:
5361 no_frame = 1;
5362 break;
5363 case QEMU_OPTION_alt_grab:
5364 alt_grab = 1;
5365 break;
5366 case QEMU_OPTION_no_quit:
5367 no_quit = 1;
5368 break;
5369 case QEMU_OPTION_sdl:
5370 display_type = DT_SDL;
5371 break;
5372 #endif
5373 case QEMU_OPTION_pidfile:
5374 pid_file = optarg;
5375 break;
5376 #ifdef TARGET_I386
5377 case QEMU_OPTION_win2k_hack:
5378 win2k_install_hack = 1;
5379 break;
5380 case QEMU_OPTION_rtc_td_hack:
5381 rtc_td_hack = 1;
5382 break;
5383 case QEMU_OPTION_acpitable:
5384 if(acpi_table_add(optarg) < 0) {
5385 fprintf(stderr, "Wrong acpi table provided\n");
5386 exit(1);
5388 break;
5389 case QEMU_OPTION_smbios:
5390 if(smbios_entry_add(optarg) < 0) {
5391 fprintf(stderr, "Wrong smbios provided\n");
5392 exit(1);
5394 break;
5395 #endif
5396 #ifdef CONFIG_KQEMU
5397 case QEMU_OPTION_no_kqemu:
5398 kqemu_allowed = 0;
5399 break;
5400 case QEMU_OPTION_kernel_kqemu:
5401 kqemu_allowed = 2;
5402 break;
5403 #endif
5404 #ifdef CONFIG_KVM
5405 case QEMU_OPTION_enable_kvm:
5406 kvm_allowed = 1;
5407 #ifdef CONFIG_KQEMU
5408 kqemu_allowed = 0;
5409 #endif
5410 break;
5411 #endif
5412 case QEMU_OPTION_usb:
5413 usb_enabled = 1;
5414 break;
5415 case QEMU_OPTION_usbdevice:
5416 usb_enabled = 1;
5417 if (usb_devices_index >= MAX_USB_CMDLINE) {
5418 fprintf(stderr, "Too many USB devices\n");
5419 exit(1);
5421 usb_devices[usb_devices_index] = optarg;
5422 usb_devices_index++;
5423 break;
5424 case QEMU_OPTION_smp:
5425 smp_cpus = atoi(optarg);
5426 if (smp_cpus < 1) {
5427 fprintf(stderr, "Invalid number of CPUs\n");
5428 exit(1);
5430 break;
5431 case QEMU_OPTION_vnc:
5432 display_type = DT_VNC;
5433 vnc_display = optarg;
5434 break;
5435 #ifdef TARGET_I386
5436 case QEMU_OPTION_no_acpi:
5437 acpi_enabled = 0;
5438 break;
5439 case QEMU_OPTION_no_hpet:
5440 no_hpet = 1;
5441 break;
5442 #endif
5443 case QEMU_OPTION_no_reboot:
5444 no_reboot = 1;
5445 break;
5446 case QEMU_OPTION_no_shutdown:
5447 no_shutdown = 1;
5448 break;
5449 case QEMU_OPTION_show_cursor:
5450 cursor_hide = 0;
5451 break;
5452 case QEMU_OPTION_uuid:
5453 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5454 fprintf(stderr, "Fail to parse UUID string."
5455 " Wrong format.\n");
5456 exit(1);
5458 break;
5459 #ifndef _WIN32
5460 case QEMU_OPTION_daemonize:
5461 daemonize = 1;
5462 break;
5463 #endif
5464 case QEMU_OPTION_option_rom:
5465 if (nb_option_roms >= MAX_OPTION_ROMS) {
5466 fprintf(stderr, "Too many option ROMs\n");
5467 exit(1);
5469 option_rom[nb_option_roms] = optarg;
5470 nb_option_roms++;
5471 break;
5472 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5473 case QEMU_OPTION_semihosting:
5474 semihosting_enabled = 1;
5475 break;
5476 #endif
5477 case QEMU_OPTION_name:
5478 qemu_name = optarg;
5479 break;
5480 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5481 case QEMU_OPTION_prom_env:
5482 if (nb_prom_envs >= MAX_PROM_ENVS) {
5483 fprintf(stderr, "Too many prom variables\n");
5484 exit(1);
5486 prom_envs[nb_prom_envs] = optarg;
5487 nb_prom_envs++;
5488 break;
5489 #endif
5490 #ifdef TARGET_ARM
5491 case QEMU_OPTION_old_param:
5492 old_param = 1;
5493 break;
5494 #endif
5495 case QEMU_OPTION_clock:
5496 configure_alarms(optarg);
5497 break;
5498 case QEMU_OPTION_startdate:
5500 struct tm tm;
5501 time_t rtc_start_date;
5502 if (!strcmp(optarg, "now")) {
5503 rtc_date_offset = -1;
5504 } else {
5505 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5506 &tm.tm_year,
5507 &tm.tm_mon,
5508 &tm.tm_mday,
5509 &tm.tm_hour,
5510 &tm.tm_min,
5511 &tm.tm_sec) == 6) {
5512 /* OK */
5513 } else if (sscanf(optarg, "%d-%d-%d",
5514 &tm.tm_year,
5515 &tm.tm_mon,
5516 &tm.tm_mday) == 3) {
5517 tm.tm_hour = 0;
5518 tm.tm_min = 0;
5519 tm.tm_sec = 0;
5520 } else {
5521 goto date_fail;
5523 tm.tm_year -= 1900;
5524 tm.tm_mon--;
5525 rtc_start_date = mktimegm(&tm);
5526 if (rtc_start_date == -1) {
5527 date_fail:
5528 fprintf(stderr, "Invalid date format. Valid format are:\n"
5529 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5530 exit(1);
5532 rtc_date_offset = time(NULL) - rtc_start_date;
5535 break;
5536 case QEMU_OPTION_tb_size:
5537 tb_size = strtol(optarg, NULL, 0);
5538 if (tb_size < 0)
5539 tb_size = 0;
5540 break;
5541 case QEMU_OPTION_icount:
5542 use_icount = 1;
5543 if (strcmp(optarg, "auto") == 0) {
5544 icount_time_shift = -1;
5545 } else {
5546 icount_time_shift = strtol(optarg, NULL, 0);
5548 break;
5549 case QEMU_OPTION_incoming:
5550 incoming = optarg;
5551 break;
5552 #ifndef _WIN32
5553 case QEMU_OPTION_chroot:
5554 chroot_dir = optarg;
5555 break;
5556 case QEMU_OPTION_runas:
5557 run_as = optarg;
5558 break;
5559 #endif
5560 #ifdef CONFIG_XEN
5561 case QEMU_OPTION_xen_domid:
5562 xen_domid = atoi(optarg);
5563 break;
5564 case QEMU_OPTION_xen_create:
5565 xen_mode = XEN_CREATE;
5566 break;
5567 case QEMU_OPTION_xen_attach:
5568 xen_mode = XEN_ATTACH;
5569 break;
5570 #endif
5575 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5576 if (kvm_allowed && kqemu_allowed) {
5577 fprintf(stderr,
5578 "You can not enable both KVM and kqemu at the same time\n");
5579 exit(1);
5581 #endif
5583 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5584 if (smp_cpus > machine->max_cpus) {
5585 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5586 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5587 machine->max_cpus);
5588 exit(1);
5591 if (display_type == DT_NOGRAPHIC) {
5592 if (serial_device_index == 0)
5593 serial_devices[0] = "stdio";
5594 if (parallel_device_index == 0)
5595 parallel_devices[0] = "null";
5596 if (strncmp(monitor_device, "vc", 2) == 0)
5597 monitor_device = "stdio";
5600 #ifndef _WIN32
5601 if (daemonize) {
5602 pid_t pid;
5604 if (pipe(fds) == -1)
5605 exit(1);
5607 pid = fork();
5608 if (pid > 0) {
5609 uint8_t status;
5610 ssize_t len;
5612 close(fds[1]);
5614 again:
5615 len = read(fds[0], &status, 1);
5616 if (len == -1 && (errno == EINTR))
5617 goto again;
5619 if (len != 1)
5620 exit(1);
5621 else if (status == 1) {
5622 fprintf(stderr, "Could not acquire pidfile\n");
5623 exit(1);
5624 } else
5625 exit(0);
5626 } else if (pid < 0)
5627 exit(1);
5629 setsid();
5631 pid = fork();
5632 if (pid > 0)
5633 exit(0);
5634 else if (pid < 0)
5635 exit(1);
5637 umask(027);
5639 signal(SIGTSTP, SIG_IGN);
5640 signal(SIGTTOU, SIG_IGN);
5641 signal(SIGTTIN, SIG_IGN);
5644 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5645 if (daemonize) {
5646 uint8_t status = 1;
5647 write(fds[1], &status, 1);
5648 } else
5649 fprintf(stderr, "Could not acquire pid file\n");
5650 exit(1);
5652 #endif
5654 #ifdef CONFIG_KQEMU
5655 if (smp_cpus > 1)
5656 kqemu_allowed = 0;
5657 #endif
5658 if (qemu_init_main_loop()) {
5659 fprintf(stderr, "qemu_init_main_loop failed\n");
5660 exit(1);
5662 linux_boot = (kernel_filename != NULL);
5663 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5665 if (!linux_boot && *kernel_cmdline != '\0') {
5666 fprintf(stderr, "-append only allowed with -kernel option\n");
5667 exit(1);
5670 if (!linux_boot && initrd_filename != NULL) {
5671 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5672 exit(1);
5675 /* boot to floppy or the default cd if no hard disk defined yet */
5676 if (!boot_devices[0]) {
5677 boot_devices = "cad";
5679 setvbuf(stdout, NULL, _IOLBF, 0);
5681 init_timers();
5682 if (init_timer_alarm() < 0) {
5683 fprintf(stderr, "could not initialize alarm timer\n");
5684 exit(1);
5686 if (use_icount && icount_time_shift < 0) {
5687 use_icount = 2;
5688 /* 125MIPS seems a reasonable initial guess at the guest speed.
5689 It will be corrected fairly quickly anyway. */
5690 icount_time_shift = 3;
5691 init_icount_adjust();
5694 #ifdef _WIN32
5695 socket_init();
5696 #endif
5698 /* init network clients */
5699 if (nb_net_clients == 0) {
5700 /* if no clients, we use a default config */
5701 net_clients[nb_net_clients++] = "nic";
5702 #ifdef CONFIG_SLIRP
5703 net_clients[nb_net_clients++] = "user";
5704 #endif
5707 for(i = 0;i < nb_net_clients; i++) {
5708 if (net_client_parse(net_clients[i]) < 0)
5709 exit(1);
5711 net_client_check();
5713 #ifdef TARGET_I386
5714 /* XXX: this should be moved in the PC machine instantiation code */
5715 if (net_boot != 0) {
5716 int netroms = 0;
5717 for (i = 0; i < nb_nics && i < 4; i++) {
5718 const char *model = nd_table[i].model;
5719 char buf[1024];
5720 if (net_boot & (1 << i)) {
5721 if (model == NULL)
5722 model = "ne2k_pci";
5723 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5724 if (get_image_size(buf) > 0) {
5725 if (nb_option_roms >= MAX_OPTION_ROMS) {
5726 fprintf(stderr, "Too many option ROMs\n");
5727 exit(1);
5729 option_rom[nb_option_roms] = strdup(buf);
5730 nb_option_roms++;
5731 netroms++;
5735 if (netroms == 0) {
5736 fprintf(stderr, "No valid PXE rom found for network device\n");
5737 exit(1);
5740 #endif
5742 /* init the bluetooth world */
5743 for (i = 0; i < nb_bt_opts; i++)
5744 if (bt_parse(bt_opts[i]))
5745 exit(1);
5747 /* init the memory */
5748 if (ram_size == 0)
5749 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5751 #ifdef CONFIG_KQEMU
5752 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5753 guest ram allocation. It needs to go away. */
5754 if (kqemu_allowed) {
5755 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5756 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5757 if (!kqemu_phys_ram_base) {
5758 fprintf(stderr, "Could not allocate physical memory\n");
5759 exit(1);
5762 #endif
5764 /* init the dynamic translator */
5765 cpu_exec_init_all(tb_size * 1024 * 1024);
5767 bdrv_init();
5768 dma_helper_init();
5770 /* we always create the cdrom drive, even if no disk is there */
5772 if (nb_drives_opt < MAX_DRIVES)
5773 drive_add(NULL, CDROM_ALIAS);
5775 /* we always create at least one floppy */
5777 if (nb_drives_opt < MAX_DRIVES)
5778 drive_add(NULL, FD_ALIAS, 0);
5780 /* we always create one sd slot, even if no card is in it */
5782 if (nb_drives_opt < MAX_DRIVES)
5783 drive_add(NULL, SD_ALIAS);
5785 /* open the virtual block devices */
5787 for(i = 0; i < nb_drives_opt; i++)
5788 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5789 exit(1);
5791 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5792 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5794 #ifndef _WIN32
5795 /* must be after terminal init, SDL library changes signal handlers */
5796 termsig_setup();
5797 #endif
5799 /* Maintain compatibility with multiple stdio monitors */
5800 if (!strcmp(monitor_device,"stdio")) {
5801 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5802 const char *devname = serial_devices[i];
5803 if (devname && !strcmp(devname,"mon:stdio")) {
5804 monitor_device = NULL;
5805 break;
5806 } else if (devname && !strcmp(devname,"stdio")) {
5807 monitor_device = NULL;
5808 serial_devices[i] = "mon:stdio";
5809 break;
5814 if (nb_numa_nodes > 0) {
5815 int i;
5817 if (nb_numa_nodes > smp_cpus) {
5818 nb_numa_nodes = smp_cpus;
5821 /* If no memory size if given for any node, assume the default case
5822 * and distribute the available memory equally across all nodes
5824 for (i = 0; i < nb_numa_nodes; i++) {
5825 if (node_mem[i] != 0)
5826 break;
5828 if (i == nb_numa_nodes) {
5829 uint64_t usedmem = 0;
5831 /* On Linux, the each node's border has to be 8MB aligned,
5832 * the final node gets the rest.
5834 for (i = 0; i < nb_numa_nodes - 1; i++) {
5835 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5836 usedmem += node_mem[i];
5838 node_mem[i] = ram_size - usedmem;
5841 for (i = 0; i < nb_numa_nodes; i++) {
5842 if (node_cpumask[i] != 0)
5843 break;
5845 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5846 * must cope with this anyway, because there are BIOSes out there in
5847 * real machines which also use this scheme.
5849 if (i == nb_numa_nodes) {
5850 for (i = 0; i < smp_cpus; i++) {
5851 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5856 if (kvm_enabled()) {
5857 int ret;
5859 ret = kvm_init(smp_cpus);
5860 if (ret < 0) {
5861 fprintf(stderr, "failed to initialize KVM\n");
5862 exit(1);
5866 if (monitor_device) {
5867 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5868 if (!monitor_hd) {
5869 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5870 exit(1);
5874 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5875 const char *devname = serial_devices[i];
5876 if (devname && strcmp(devname, "none")) {
5877 char label[32];
5878 snprintf(label, sizeof(label), "serial%d", i);
5879 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5880 if (!serial_hds[i]) {
5881 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5882 devname);
5883 exit(1);
5888 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5889 const char *devname = parallel_devices[i];
5890 if (devname && strcmp(devname, "none")) {
5891 char label[32];
5892 snprintf(label, sizeof(label), "parallel%d", i);
5893 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5894 if (!parallel_hds[i]) {
5895 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5896 devname);
5897 exit(1);
5902 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5903 const char *devname = virtio_consoles[i];
5904 if (devname && strcmp(devname, "none")) {
5905 char label[32];
5906 snprintf(label, sizeof(label), "virtcon%d", i);
5907 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5908 if (!virtcon_hds[i]) {
5909 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5910 devname);
5911 exit(1);
5916 module_call_init(MODULE_INIT_DEVICE);
5918 machine->init(ram_size, boot_devices,
5919 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5922 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5923 for (i = 0; i < nb_numa_nodes; i++) {
5924 if (node_cpumask[i] & (1 << env->cpu_index)) {
5925 env->numa_node = i;
5930 current_machine = machine;
5932 /* Set KVM's vcpu state to qemu's initial CPUState. */
5933 if (kvm_enabled()) {
5934 int ret;
5936 ret = kvm_sync_vcpus();
5937 if (ret < 0) {
5938 fprintf(stderr, "failed to initialize vcpus\n");
5939 exit(1);
5943 /* init USB devices */
5944 if (usb_enabled) {
5945 for(i = 0; i < usb_devices_index; i++) {
5946 if (usb_device_add(usb_devices[i], 0) < 0) {
5947 fprintf(stderr, "Warning: could not add USB device %s\n",
5948 usb_devices[i]);
5953 if (!display_state)
5954 dumb_display_init();
5955 /* just use the first displaystate for the moment */
5956 ds = display_state;
5958 if (display_type == DT_DEFAULT) {
5959 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5960 display_type = DT_SDL;
5961 #else
5962 display_type = DT_VNC;
5963 vnc_display = "localhost:0,to=99";
5964 show_vnc_port = 1;
5965 #endif
5969 switch (display_type) {
5970 case DT_NOGRAPHIC:
5971 break;
5972 #if defined(CONFIG_CURSES)
5973 case DT_CURSES:
5974 curses_display_init(ds, full_screen);
5975 break;
5976 #endif
5977 #if defined(CONFIG_SDL)
5978 case DT_SDL:
5979 sdl_display_init(ds, full_screen, no_frame);
5980 break;
5981 #elif defined(CONFIG_COCOA)
5982 case DT_SDL:
5983 cocoa_display_init(ds, full_screen);
5984 break;
5985 #endif
5986 case DT_VNC:
5987 vnc_display_init(ds);
5988 if (vnc_display_open(ds, vnc_display) < 0)
5989 exit(1);
5991 if (show_vnc_port) {
5992 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5994 break;
5995 default:
5996 break;
5998 dpy_resize(ds);
6000 dcl = ds->listeners;
6001 while (dcl != NULL) {
6002 if (dcl->dpy_refresh != NULL) {
6003 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6004 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6006 dcl = dcl->next;
6009 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6010 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6011 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6014 text_consoles_set_display(display_state);
6015 qemu_chr_initial_reset();
6017 if (monitor_device && monitor_hd)
6018 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6020 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6021 const char *devname = serial_devices[i];
6022 if (devname && strcmp(devname, "none")) {
6023 char label[32];
6024 snprintf(label, sizeof(label), "serial%d", i);
6025 if (strstart(devname, "vc", 0))
6026 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6030 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6031 const char *devname = parallel_devices[i];
6032 if (devname && strcmp(devname, "none")) {
6033 char label[32];
6034 snprintf(label, sizeof(label), "parallel%d", i);
6035 if (strstart(devname, "vc", 0))
6036 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6040 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6041 const char *devname = virtio_consoles[i];
6042 if (virtcon_hds[i] && devname) {
6043 char label[32];
6044 snprintf(label, sizeof(label), "virtcon%d", i);
6045 if (strstart(devname, "vc", 0))
6046 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6050 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6051 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6052 gdbstub_dev);
6053 exit(1);
6056 if (loadvm)
6057 do_loadvm(cur_mon, loadvm);
6059 if (incoming) {
6060 autostart = 0; /* fixme how to deal with -daemonize */
6061 qemu_start_incoming_migration(incoming);
6064 if (autostart)
6065 vm_start();
6067 #ifndef _WIN32
6068 if (daemonize) {
6069 uint8_t status = 0;
6070 ssize_t len;
6072 again1:
6073 len = write(fds[1], &status, 1);
6074 if (len == -1 && (errno == EINTR))
6075 goto again1;
6077 if (len != 1)
6078 exit(1);
6080 chdir("/");
6081 TFR(fd = open("/dev/null", O_RDWR));
6082 if (fd == -1)
6083 exit(1);
6086 if (run_as) {
6087 pwd = getpwnam(run_as);
6088 if (!pwd) {
6089 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6090 exit(1);
6094 if (chroot_dir) {
6095 if (chroot(chroot_dir) < 0) {
6096 fprintf(stderr, "chroot failed\n");
6097 exit(1);
6099 chdir("/");
6102 if (run_as) {
6103 if (setgid(pwd->pw_gid) < 0) {
6104 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6105 exit(1);
6107 if (setuid(pwd->pw_uid) < 0) {
6108 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6109 exit(1);
6111 if (setuid(0) != -1) {
6112 fprintf(stderr, "Dropping privileges failed\n");
6113 exit(1);
6117 if (daemonize) {
6118 dup2(fd, 0);
6119 dup2(fd, 1);
6120 dup2(fd, 2);
6122 close(fd);
6124 #endif
6126 main_loop();
6127 quit_timers();
6128 net_cleanup();
6130 return 0;