2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
22 #include "host-utils.h"
25 #include "helper_regs.h"
28 //#define DEBUG_EXCEPTIONS
29 //#define DEBUG_SOFTWARE_TLB
31 #ifdef DEBUG_SOFTWARE_TLB
32 # define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
34 # define LOG_SWTLB(...) do { } while (0)
38 /*****************************************************************************/
39 /* Exceptions processing helpers */
41 void helper_raise_exception_err (uint32_t exception
, uint32_t error_code
)
44 printf("Raise exception %3x code : %d\n", exception
, error_code
);
46 env
->exception_index
= exception
;
47 env
->error_code
= error_code
;
51 void helper_raise_exception (uint32_t exception
)
53 helper_raise_exception_err(exception
, 0);
56 /*****************************************************************************/
57 /* Registers load and stores */
58 target_ulong
helper_load_cr (void)
60 return (env
->crf
[0] << 28) |
70 void helper_store_cr (target_ulong val
, uint32_t mask
)
74 for (i
= 0, sh
= 7; i
< 8; i
++, sh
--) {
76 env
->crf
[i
] = (val
>> (sh
* 4)) & 0xFUL
;
80 /*****************************************************************************/
82 void helper_load_dump_spr (uint32_t sprn
)
84 qemu_log("Read SPR %d %03x => " ADDRX
"\n",
85 sprn
, sprn
, env
->spr
[sprn
]);
88 void helper_store_dump_spr (uint32_t sprn
)
90 qemu_log("Write SPR %d %03x <= " ADDRX
"\n",
91 sprn
, sprn
, env
->spr
[sprn
]);
94 target_ulong
helper_load_tbl (void)
96 return cpu_ppc_load_tbl(env
);
99 target_ulong
helper_load_tbu (void)
101 return cpu_ppc_load_tbu(env
);
104 target_ulong
helper_load_atbl (void)
106 return cpu_ppc_load_atbl(env
);
109 target_ulong
helper_load_atbu (void)
111 return cpu_ppc_load_atbu(env
);
114 target_ulong
helper_load_601_rtcl (void)
116 return cpu_ppc601_load_rtcl(env
);
119 target_ulong
helper_load_601_rtcu (void)
121 return cpu_ppc601_load_rtcu(env
);
124 #if !defined(CONFIG_USER_ONLY)
125 #if defined (TARGET_PPC64)
126 void helper_store_asr (target_ulong val
)
128 ppc_store_asr(env
, val
);
132 void helper_store_sdr1 (target_ulong val
)
134 ppc_store_sdr1(env
, val
);
137 void helper_store_tbl (target_ulong val
)
139 cpu_ppc_store_tbl(env
, val
);
142 void helper_store_tbu (target_ulong val
)
144 cpu_ppc_store_tbu(env
, val
);
147 void helper_store_atbl (target_ulong val
)
149 cpu_ppc_store_atbl(env
, val
);
152 void helper_store_atbu (target_ulong val
)
154 cpu_ppc_store_atbu(env
, val
);
157 void helper_store_601_rtcl (target_ulong val
)
159 cpu_ppc601_store_rtcl(env
, val
);
162 void helper_store_601_rtcu (target_ulong val
)
164 cpu_ppc601_store_rtcu(env
, val
);
167 target_ulong
helper_load_decr (void)
169 return cpu_ppc_load_decr(env
);
172 void helper_store_decr (target_ulong val
)
174 cpu_ppc_store_decr(env
, val
);
177 void helper_store_hid0_601 (target_ulong val
)
181 hid0
= env
->spr
[SPR_HID0
];
182 if ((val
^ hid0
) & 0x00000008) {
183 /* Change current endianness */
184 env
->hflags
&= ~(1 << MSR_LE
);
185 env
->hflags_nmsr
&= ~(1 << MSR_LE
);
186 env
->hflags_nmsr
|= (1 << MSR_LE
) & (((val
>> 3) & 1) << MSR_LE
);
187 env
->hflags
|= env
->hflags_nmsr
;
188 qemu_log("%s: set endianness to %c => " ADDRX
"\n",
189 __func__
, val
& 0x8 ? 'l' : 'b', env
->hflags
);
191 env
->spr
[SPR_HID0
] = (uint32_t)val
;
194 void helper_store_403_pbr (uint32_t num
, target_ulong value
)
196 if (likely(env
->pb
[num
] != value
)) {
197 env
->pb
[num
] = value
;
198 /* Should be optimized */
203 target_ulong
helper_load_40x_pit (void)
205 return load_40x_pit(env
);
208 void helper_store_40x_pit (target_ulong val
)
210 store_40x_pit(env
, val
);
213 void helper_store_40x_dbcr0 (target_ulong val
)
215 store_40x_dbcr0(env
, val
);
218 void helper_store_40x_sler (target_ulong val
)
220 store_40x_sler(env
, val
);
223 void helper_store_booke_tcr (target_ulong val
)
225 store_booke_tcr(env
, val
);
228 void helper_store_booke_tsr (target_ulong val
)
230 store_booke_tsr(env
, val
);
233 void helper_store_ibatu (uint32_t nr
, target_ulong val
)
235 ppc_store_ibatu(env
, nr
, val
);
238 void helper_store_ibatl (uint32_t nr
, target_ulong val
)
240 ppc_store_ibatl(env
, nr
, val
);
243 void helper_store_dbatu (uint32_t nr
, target_ulong val
)
245 ppc_store_dbatu(env
, nr
, val
);
248 void helper_store_dbatl (uint32_t nr
, target_ulong val
)
250 ppc_store_dbatl(env
, nr
, val
);
253 void helper_store_601_batl (uint32_t nr
, target_ulong val
)
255 ppc_store_ibatl_601(env
, nr
, val
);
258 void helper_store_601_batu (uint32_t nr
, target_ulong val
)
260 ppc_store_ibatu_601(env
, nr
, val
);
264 /*****************************************************************************/
265 /* Memory load and stores */
267 static always_inline target_ulong
addr_add(target_ulong addr
, target_long arg
)
269 #if defined(TARGET_PPC64)
271 return (uint32_t)(addr
+ arg
);
277 void helper_lmw (target_ulong addr
, uint32_t reg
)
279 for (; reg
< 32; reg
++) {
281 env
->gpr
[reg
] = bswap32(ldl(addr
));
283 env
->gpr
[reg
] = ldl(addr
);
284 addr
= addr_add(addr
, 4);
288 void helper_stmw (target_ulong addr
, uint32_t reg
)
290 for (; reg
< 32; reg
++) {
292 stl(addr
, bswap32((uint32_t)env
->gpr
[reg
]));
294 stl(addr
, (uint32_t)env
->gpr
[reg
]);
295 addr
= addr_add(addr
, 4);
299 void helper_lsw(target_ulong addr
, uint32_t nb
, uint32_t reg
)
302 for (; nb
> 3; nb
-= 4) {
303 env
->gpr
[reg
] = ldl(addr
);
304 reg
= (reg
+ 1) % 32;
305 addr
= addr_add(addr
, 4);
307 if (unlikely(nb
> 0)) {
309 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
310 env
->gpr
[reg
] |= ldub(addr
) << sh
;
311 addr
= addr_add(addr
, 1);
315 /* PPC32 specification says we must generate an exception if
316 * rA is in the range of registers to be loaded.
317 * In an other hand, IBM says this is valid, but rA won't be loaded.
318 * For now, I'll follow the spec...
320 void helper_lswx(target_ulong addr
, uint32_t reg
, uint32_t ra
, uint32_t rb
)
322 if (likely(xer_bc
!= 0)) {
323 if (unlikely((ra
!= 0 && reg
< ra
&& (reg
+ xer_bc
) > ra
) ||
324 (reg
< rb
&& (reg
+ xer_bc
) > rb
))) {
325 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
327 POWERPC_EXCP_INVAL_LSWX
);
329 helper_lsw(addr
, xer_bc
, reg
);
334 void helper_stsw(target_ulong addr
, uint32_t nb
, uint32_t reg
)
337 for (; nb
> 3; nb
-= 4) {
338 stl(addr
, env
->gpr
[reg
]);
339 reg
= (reg
+ 1) % 32;
340 addr
= addr_add(addr
, 4);
342 if (unlikely(nb
> 0)) {
343 for (sh
= 24; nb
> 0; nb
--, sh
-= 8) {
344 stb(addr
, (env
->gpr
[reg
] >> sh
) & 0xFF);
345 addr
= addr_add(addr
, 1);
350 static void do_dcbz(target_ulong addr
, int dcache_line_size
)
352 addr
&= ~(dcache_line_size
- 1);
354 for (i
= 0 ; i
< dcache_line_size
; i
+= 4) {
357 if (env
->reserve
== addr
)
358 env
->reserve
= (target_ulong
)-1ULL;
361 void helper_dcbz(target_ulong addr
)
363 do_dcbz(addr
, env
->dcache_line_size
);
366 void helper_dcbz_970(target_ulong addr
)
368 if (((env
->spr
[SPR_970_HID5
] >> 7) & 0x3) == 1)
371 do_dcbz(addr
, env
->dcache_line_size
);
374 void helper_icbi(target_ulong addr
)
378 addr
&= ~(env
->dcache_line_size
- 1);
379 /* Invalidate one cache line :
380 * PowerPC specification says this is to be treated like a load
381 * (not a fetch) by the MMU. To be sure it will be so,
382 * do the load "by hand".
385 tb_invalidate_page_range(addr
, addr
+ env
->icache_line_size
);
389 target_ulong
helper_lscbx (target_ulong addr
, uint32_t reg
, uint32_t ra
, uint32_t rb
)
393 for (i
= 0; i
< xer_bc
; i
++) {
395 addr
= addr_add(addr
, 1);
396 /* ra (if not 0) and rb are never modified */
397 if (likely(reg
!= rb
&& (ra
== 0 || reg
!= ra
))) {
398 env
->gpr
[reg
] = (env
->gpr
[reg
] & ~(0xFF << d
)) | (c
<< d
);
400 if (unlikely(c
== xer_cmp
))
402 if (likely(d
!= 0)) {
413 /*****************************************************************************/
414 /* Fixed point operations helpers */
415 #if defined(TARGET_PPC64)
417 /* multiply high word */
418 uint64_t helper_mulhd (uint64_t arg1
, uint64_t arg2
)
422 muls64(&tl
, &th
, arg1
, arg2
);
426 /* multiply high word unsigned */
427 uint64_t helper_mulhdu (uint64_t arg1
, uint64_t arg2
)
431 mulu64(&tl
, &th
, arg1
, arg2
);
435 uint64_t helper_mulldo (uint64_t arg1
, uint64_t arg2
)
440 muls64(&tl
, (uint64_t *)&th
, arg1
, arg2
);
441 /* If th != 0 && th != -1, then we had an overflow */
442 if (likely((uint64_t)(th
+ 1) <= 1)) {
443 env
->xer
&= ~(1 << XER_OV
);
445 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
451 target_ulong
helper_cntlzw (target_ulong t
)
456 #if defined(TARGET_PPC64)
457 target_ulong
helper_cntlzd (target_ulong t
)
463 /* shift right arithmetic helper */
464 target_ulong
helper_sraw (target_ulong value
, target_ulong shift
)
468 if (likely(!(shift
& 0x20))) {
469 if (likely((uint32_t)shift
!= 0)) {
471 ret
= (int32_t)value
>> shift
;
472 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
473 env
->xer
&= ~(1 << XER_CA
);
475 env
->xer
|= (1 << XER_CA
);
478 ret
= (int32_t)value
;
479 env
->xer
&= ~(1 << XER_CA
);
482 ret
= (int32_t)value
>> 31;
484 env
->xer
|= (1 << XER_CA
);
486 env
->xer
&= ~(1 << XER_CA
);
489 return (target_long
)ret
;
492 #if defined(TARGET_PPC64)
493 target_ulong
helper_srad (target_ulong value
, target_ulong shift
)
497 if (likely(!(shift
& 0x40))) {
498 if (likely((uint64_t)shift
!= 0)) {
500 ret
= (int64_t)value
>> shift
;
501 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
502 env
->xer
&= ~(1 << XER_CA
);
504 env
->xer
|= (1 << XER_CA
);
507 ret
= (int64_t)value
;
508 env
->xer
&= ~(1 << XER_CA
);
511 ret
= (int64_t)value
>> 63;
513 env
->xer
|= (1 << XER_CA
);
515 env
->xer
&= ~(1 << XER_CA
);
522 target_ulong
helper_popcntb (target_ulong val
)
524 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
525 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
526 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
530 #if defined(TARGET_PPC64)
531 target_ulong
helper_popcntb_64 (target_ulong val
)
533 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) & 0x5555555555555555ULL
);
534 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) & 0x3333333333333333ULL
);
535 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) & 0x0f0f0f0f0f0f0f0fULL
);
540 /*****************************************************************************/
541 /* Floating point operations helpers */
542 uint64_t helper_float32_to_float64(uint32_t arg
)
547 d
.d
= float32_to_float64(f
.f
, &env
->fp_status
);
551 uint32_t helper_float64_to_float32(uint64_t arg
)
556 f
.f
= float64_to_float32(d
.d
, &env
->fp_status
);
560 static always_inline
int isden (float64 d
)
566 return ((u
.ll
>> 52) & 0x7FF) == 0;
569 uint32_t helper_compute_fprf (uint64_t arg
, uint32_t set_fprf
)
575 isneg
= float64_is_neg(farg
.d
);
576 if (unlikely(float64_is_nan(farg
.d
))) {
577 if (float64_is_signaling_nan(farg
.d
)) {
578 /* Signaling NaN: flags are undefined */
584 } else if (unlikely(float64_is_infinity(farg
.d
))) {
591 if (float64_is_zero(farg
.d
)) {
599 /* Denormalized numbers */
602 /* Normalized numbers */
613 /* We update FPSCR_FPRF */
614 env
->fpscr
&= ~(0x1F << FPSCR_FPRF
);
615 env
->fpscr
|= ret
<< FPSCR_FPRF
;
617 /* We just need fpcc to update Rc1 */
621 /* Floating-point invalid operations exception */
622 static always_inline
uint64_t fload_invalid_op_excp (int op
)
629 case POWERPC_EXCP_FP_VXSNAN
:
630 env
->fpscr
|= 1 << FPSCR_VXSNAN
;
632 case POWERPC_EXCP_FP_VXSOFT
:
633 env
->fpscr
|= 1 << FPSCR_VXSOFT
;
635 case POWERPC_EXCP_FP_VXISI
:
636 /* Magnitude subtraction of infinities */
637 env
->fpscr
|= 1 << FPSCR_VXISI
;
639 case POWERPC_EXCP_FP_VXIDI
:
640 /* Division of infinity by infinity */
641 env
->fpscr
|= 1 << FPSCR_VXIDI
;
643 case POWERPC_EXCP_FP_VXZDZ
:
644 /* Division of zero by zero */
645 env
->fpscr
|= 1 << FPSCR_VXZDZ
;
647 case POWERPC_EXCP_FP_VXIMZ
:
648 /* Multiplication of zero by infinity */
649 env
->fpscr
|= 1 << FPSCR_VXIMZ
;
651 case POWERPC_EXCP_FP_VXVC
:
652 /* Ordered comparison of NaN */
653 env
->fpscr
|= 1 << FPSCR_VXVC
;
654 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
655 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
656 /* We must update the target FPR before raising the exception */
658 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
659 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_VXVC
;
660 /* Update the floating-point enabled exception summary */
661 env
->fpscr
|= 1 << FPSCR_FEX
;
662 /* Exception is differed */
666 case POWERPC_EXCP_FP_VXSQRT
:
667 /* Square root of a negative number */
668 env
->fpscr
|= 1 << FPSCR_VXSQRT
;
670 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
672 /* Set the result to quiet NaN */
673 ret
= 0xFFF8000000000000ULL
;
674 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
675 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
678 case POWERPC_EXCP_FP_VXCVI
:
679 /* Invalid conversion */
680 env
->fpscr
|= 1 << FPSCR_VXCVI
;
681 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
683 /* Set the result to quiet NaN */
684 ret
= 0xFFF8000000000000ULL
;
685 env
->fpscr
&= ~(0xF << FPSCR_FPCC
);
686 env
->fpscr
|= 0x11 << FPSCR_FPCC
;
690 /* Update the floating-point invalid operation summary */
691 env
->fpscr
|= 1 << FPSCR_VX
;
692 /* Update the floating-point exception summary */
693 env
->fpscr
|= 1 << FPSCR_FX
;
695 /* Update the floating-point enabled exception summary */
696 env
->fpscr
|= 1 << FPSCR_FEX
;
697 if (msr_fe0
!= 0 || msr_fe1
!= 0)
698 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
, POWERPC_EXCP_FP
| op
);
703 static always_inline
void float_zero_divide_excp (void)
705 env
->fpscr
|= 1 << FPSCR_ZX
;
706 env
->fpscr
&= ~((1 << FPSCR_FR
) | (1 << FPSCR_FI
));
707 /* Update the floating-point exception summary */
708 env
->fpscr
|= 1 << FPSCR_FX
;
710 /* Update the floating-point enabled exception summary */
711 env
->fpscr
|= 1 << FPSCR_FEX
;
712 if (msr_fe0
!= 0 || msr_fe1
!= 0) {
713 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
714 POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
);
719 static always_inline
void float_overflow_excp (void)
721 env
->fpscr
|= 1 << FPSCR_OX
;
722 /* Update the floating-point exception summary */
723 env
->fpscr
|= 1 << FPSCR_FX
;
725 /* XXX: should adjust the result */
726 /* Update the floating-point enabled exception summary */
727 env
->fpscr
|= 1 << FPSCR_FEX
;
728 /* We must update the target FPR before raising the exception */
729 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
730 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
732 env
->fpscr
|= 1 << FPSCR_XX
;
733 env
->fpscr
|= 1 << FPSCR_FI
;
737 static always_inline
void float_underflow_excp (void)
739 env
->fpscr
|= 1 << FPSCR_UX
;
740 /* Update the floating-point exception summary */
741 env
->fpscr
|= 1 << FPSCR_FX
;
743 /* XXX: should adjust the result */
744 /* Update the floating-point enabled exception summary */
745 env
->fpscr
|= 1 << FPSCR_FEX
;
746 /* We must update the target FPR before raising the exception */
747 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
748 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
752 static always_inline
void float_inexact_excp (void)
754 env
->fpscr
|= 1 << FPSCR_XX
;
755 /* Update the floating-point exception summary */
756 env
->fpscr
|= 1 << FPSCR_FX
;
758 /* Update the floating-point enabled exception summary */
759 env
->fpscr
|= 1 << FPSCR_FEX
;
760 /* We must update the target FPR before raising the exception */
761 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
762 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
766 static always_inline
void fpscr_set_rounding_mode (void)
770 /* Set rounding mode */
773 /* Best approximation (round to nearest) */
774 rnd_type
= float_round_nearest_even
;
777 /* Smaller magnitude (round toward zero) */
778 rnd_type
= float_round_to_zero
;
781 /* Round toward +infinite */
782 rnd_type
= float_round_up
;
786 /* Round toward -infinite */
787 rnd_type
= float_round_down
;
790 set_float_rounding_mode(rnd_type
, &env
->fp_status
);
793 void helper_fpscr_clrbit (uint32_t bit
)
797 prev
= (env
->fpscr
>> bit
) & 1;
798 env
->fpscr
&= ~(1 << bit
);
803 fpscr_set_rounding_mode();
811 void helper_fpscr_setbit (uint32_t bit
)
815 prev
= (env
->fpscr
>> bit
) & 1;
816 env
->fpscr
|= 1 << bit
;
820 env
->fpscr
|= 1 << FPSCR_FX
;
824 env
->fpscr
|= 1 << FPSCR_FX
;
829 env
->fpscr
|= 1 << FPSCR_FX
;
834 env
->fpscr
|= 1 << FPSCR_FX
;
839 env
->fpscr
|= 1 << FPSCR_FX
;
852 env
->fpscr
|= 1 << FPSCR_VX
;
853 env
->fpscr
|= 1 << FPSCR_FX
;
860 env
->error_code
= POWERPC_EXCP_FP
;
862 env
->error_code
|= POWERPC_EXCP_FP_VXSNAN
;
864 env
->error_code
|= POWERPC_EXCP_FP_VXISI
;
866 env
->error_code
|= POWERPC_EXCP_FP_VXIDI
;
868 env
->error_code
|= POWERPC_EXCP_FP_VXZDZ
;
870 env
->error_code
|= POWERPC_EXCP_FP_VXIMZ
;
872 env
->error_code
|= POWERPC_EXCP_FP_VXVC
;
874 env
->error_code
|= POWERPC_EXCP_FP_VXSOFT
;
876 env
->error_code
|= POWERPC_EXCP_FP_VXSQRT
;
878 env
->error_code
|= POWERPC_EXCP_FP_VXCVI
;
885 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
892 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
899 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
;
906 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
912 fpscr_set_rounding_mode();
917 /* Update the floating-point enabled exception summary */
918 env
->fpscr
|= 1 << FPSCR_FEX
;
919 /* We have to update Rc1 before raising the exception */
920 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
926 void helper_store_fpscr (uint64_t arg
, uint32_t mask
)
929 * We use only the 32 LSB of the incoming fpr
937 new |= prev
& 0x60000000;
938 for (i
= 0; i
< 8; i
++) {
939 if (mask
& (1 << i
)) {
940 env
->fpscr
&= ~(0xF << (4 * i
));
941 env
->fpscr
|= new & (0xF << (4 * i
));
944 /* Update VX and FEX */
946 env
->fpscr
|= 1 << FPSCR_VX
;
948 env
->fpscr
&= ~(1 << FPSCR_VX
);
949 if ((fpscr_ex
& fpscr_eex
) != 0) {
950 env
->fpscr
|= 1 << FPSCR_FEX
;
951 env
->exception_index
= POWERPC_EXCP_PROGRAM
;
952 /* XXX: we should compute it properly */
953 env
->error_code
= POWERPC_EXCP_FP
;
956 env
->fpscr
&= ~(1 << FPSCR_FEX
);
957 fpscr_set_rounding_mode();
960 void helper_float_check_status (void)
962 #ifdef CONFIG_SOFTFLOAT
963 if (env
->exception_index
== POWERPC_EXCP_PROGRAM
&&
964 (env
->error_code
& POWERPC_EXCP_FP
)) {
965 /* Differred floating-point exception after target FPR update */
966 if (msr_fe0
!= 0 || msr_fe1
!= 0)
967 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
969 int status
= get_float_exception_flags(&env
->fp_status
);
970 if (status
& float_flag_divbyzero
) {
971 float_zero_divide_excp();
972 } else if (status
& float_flag_overflow
) {
973 float_overflow_excp();
974 } else if (status
& float_flag_underflow
) {
975 float_underflow_excp();
976 } else if (status
& float_flag_inexact
) {
977 float_inexact_excp();
981 if (env
->exception_index
== POWERPC_EXCP_PROGRAM
&&
982 (env
->error_code
& POWERPC_EXCP_FP
)) {
983 /* Differred floating-point exception after target FPR update */
984 if (msr_fe0
!= 0 || msr_fe1
!= 0)
985 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
990 #ifdef CONFIG_SOFTFLOAT
991 void helper_reset_fpstatus (void)
993 set_float_exception_flags(0, &env
->fp_status
);
998 uint64_t helper_fadd (uint64_t arg1
, uint64_t arg2
)
1000 CPU_DoubleU farg1
, farg2
;
1004 #if USE_PRECISE_EMULATION
1005 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1006 float64_is_signaling_nan(farg2
.d
))) {
1008 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1009 } else if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
) &&
1010 float64_is_neg(farg1
.d
) != float64_is_neg(farg2
.d
))) {
1011 /* Magnitude subtraction of infinities */
1012 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1014 farg1
.d
= float64_add(farg1
.d
, farg2
.d
, &env
->fp_status
);
1017 farg1
.d
= float64_add(farg1
.d
, farg2
.d
, &env
->fp_status
);
1023 uint64_t helper_fsub (uint64_t arg1
, uint64_t arg2
)
1025 CPU_DoubleU farg1
, farg2
;
1029 #if USE_PRECISE_EMULATION
1031 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1032 float64_is_signaling_nan(farg2
.d
))) {
1033 /* sNaN subtraction */
1034 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1035 } else if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
) &&
1036 float64_is_neg(farg1
.d
) == float64_is_neg(farg2
.d
))) {
1037 /* Magnitude subtraction of infinities */
1038 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1040 farg1
.d
= float64_sub(farg1
.d
, farg2
.d
, &env
->fp_status
);
1044 farg1
.d
= float64_sub(farg1
.d
, farg2
.d
, &env
->fp_status
);
1050 uint64_t helper_fmul (uint64_t arg1
, uint64_t arg2
)
1052 CPU_DoubleU farg1
, farg2
;
1056 #if USE_PRECISE_EMULATION
1057 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1058 float64_is_signaling_nan(farg2
.d
))) {
1059 /* sNaN multiplication */
1060 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1061 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1062 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1063 /* Multiplication of zero by infinity */
1064 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1066 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1069 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1075 uint64_t helper_fdiv (uint64_t arg1
, uint64_t arg2
)
1077 CPU_DoubleU farg1
, farg2
;
1081 #if USE_PRECISE_EMULATION
1082 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1083 float64_is_signaling_nan(farg2
.d
))) {
1085 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1086 } else if (unlikely(float64_is_infinity(farg1
.d
) && float64_is_infinity(farg2
.d
))) {
1087 /* Division of infinity by infinity */
1088 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI
);
1089 } else if (unlikely(float64_is_zero(farg1
.d
) && float64_is_zero(farg2
.d
))) {
1090 /* Division of zero by zero */
1091 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ
);
1093 farg1
.d
= float64_div(farg1
.d
, farg2
.d
, &env
->fp_status
);
1096 farg1
.d
= float64_div(farg1
.d
, farg2
.d
, &env
->fp_status
);
1102 uint64_t helper_fabs (uint64_t arg
)
1107 farg
.d
= float64_abs(farg
.d
);
1112 uint64_t helper_fnabs (uint64_t arg
)
1117 farg
.d
= float64_abs(farg
.d
);
1118 farg
.d
= float64_chs(farg
.d
);
1123 uint64_t helper_fneg (uint64_t arg
)
1128 farg
.d
= float64_chs(farg
.d
);
1132 /* fctiw - fctiw. */
1133 uint64_t helper_fctiw (uint64_t arg
)
1138 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1139 /* sNaN conversion */
1140 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1141 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1142 /* qNan / infinity conversion */
1143 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1145 farg
.ll
= float64_to_int32(farg
.d
, &env
->fp_status
);
1146 #if USE_PRECISE_EMULATION
1147 /* XXX: higher bits are not supposed to be significant.
1148 * to make tests easier, return the same as a real PowerPC 750
1150 farg
.ll
|= 0xFFF80000ULL
<< 32;
1156 /* fctiwz - fctiwz. */
1157 uint64_t helper_fctiwz (uint64_t arg
)
1162 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1163 /* sNaN conversion */
1164 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1165 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1166 /* qNan / infinity conversion */
1167 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1169 farg
.ll
= float64_to_int32_round_to_zero(farg
.d
, &env
->fp_status
);
1170 #if USE_PRECISE_EMULATION
1171 /* XXX: higher bits are not supposed to be significant.
1172 * to make tests easier, return the same as a real PowerPC 750
1174 farg
.ll
|= 0xFFF80000ULL
<< 32;
1180 #if defined(TARGET_PPC64)
1181 /* fcfid - fcfid. */
1182 uint64_t helper_fcfid (uint64_t arg
)
1185 farg
.d
= int64_to_float64(arg
, &env
->fp_status
);
1189 /* fctid - fctid. */
1190 uint64_t helper_fctid (uint64_t arg
)
1195 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1196 /* sNaN conversion */
1197 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1198 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1199 /* qNan / infinity conversion */
1200 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1202 farg
.ll
= float64_to_int64(farg
.d
, &env
->fp_status
);
1207 /* fctidz - fctidz. */
1208 uint64_t helper_fctidz (uint64_t arg
)
1213 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1214 /* sNaN conversion */
1215 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1216 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1217 /* qNan / infinity conversion */
1218 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1220 farg
.ll
= float64_to_int64_round_to_zero(farg
.d
, &env
->fp_status
);
1227 static always_inline
uint64_t do_fri (uint64_t arg
, int rounding_mode
)
1232 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1234 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
| POWERPC_EXCP_FP_VXCVI
);
1235 } else if (unlikely(float64_is_nan(farg
.d
) || float64_is_infinity(farg
.d
))) {
1236 /* qNan / infinity round */
1237 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI
);
1239 set_float_rounding_mode(rounding_mode
, &env
->fp_status
);
1240 farg
.ll
= float64_round_to_int(farg
.d
, &env
->fp_status
);
1241 /* Restore rounding mode from FPSCR */
1242 fpscr_set_rounding_mode();
1247 uint64_t helper_frin (uint64_t arg
)
1249 return do_fri(arg
, float_round_nearest_even
);
1252 uint64_t helper_friz (uint64_t arg
)
1254 return do_fri(arg
, float_round_to_zero
);
1257 uint64_t helper_frip (uint64_t arg
)
1259 return do_fri(arg
, float_round_up
);
1262 uint64_t helper_frim (uint64_t arg
)
1264 return do_fri(arg
, float_round_down
);
1267 /* fmadd - fmadd. */
1268 uint64_t helper_fmadd (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1270 CPU_DoubleU farg1
, farg2
, farg3
;
1275 #if USE_PRECISE_EMULATION
1276 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1277 float64_is_signaling_nan(farg2
.d
) ||
1278 float64_is_signaling_nan(farg3
.d
))) {
1279 /* sNaN operation */
1280 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1281 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1282 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1283 /* Multiplication of zero by infinity */
1284 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1287 /* This is the way the PowerPC specification defines it */
1288 float128 ft0_128
, ft1_128
;
1290 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1291 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1292 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1293 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1294 float128_is_neg(ft0_128
) != float64_is_neg(farg3
.d
))) {
1295 /* Magnitude subtraction of infinities */
1296 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1298 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1299 ft0_128
= float128_add(ft0_128
, ft1_128
, &env
->fp_status
);
1300 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1303 /* This is OK on x86 hosts */
1304 farg1
.d
= (farg1
.d
* farg2
.d
) + farg3
.d
;
1308 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1309 farg1
.d
= float64_add(farg1
.d
, farg3
.d
, &env
->fp_status
);
1314 /* fmsub - fmsub. */
1315 uint64_t helper_fmsub (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1317 CPU_DoubleU farg1
, farg2
, farg3
;
1322 #if USE_PRECISE_EMULATION
1323 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1324 float64_is_signaling_nan(farg2
.d
) ||
1325 float64_is_signaling_nan(farg3
.d
))) {
1326 /* sNaN operation */
1327 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1328 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1329 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1330 /* Multiplication of zero by infinity */
1331 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1334 /* This is the way the PowerPC specification defines it */
1335 float128 ft0_128
, ft1_128
;
1337 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1338 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1339 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1340 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1341 float128_is_neg(ft0_128
) == float64_is_neg(farg3
.d
))) {
1342 /* Magnitude subtraction of infinities */
1343 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1345 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1346 ft0_128
= float128_sub(ft0_128
, ft1_128
, &env
->fp_status
);
1347 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1350 /* This is OK on x86 hosts */
1351 farg1
.d
= (farg1
.d
* farg2
.d
) - farg3
.d
;
1355 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1356 farg1
.d
= float64_sub(farg1
.d
, farg3
.d
, &env
->fp_status
);
1361 /* fnmadd - fnmadd. */
1362 uint64_t helper_fnmadd (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1364 CPU_DoubleU farg1
, farg2
, farg3
;
1370 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1371 float64_is_signaling_nan(farg2
.d
) ||
1372 float64_is_signaling_nan(farg3
.d
))) {
1373 /* sNaN operation */
1374 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1375 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1376 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1377 /* Multiplication of zero by infinity */
1378 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1380 #if USE_PRECISE_EMULATION
1382 /* This is the way the PowerPC specification defines it */
1383 float128 ft0_128
, ft1_128
;
1385 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1386 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1387 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1388 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1389 float128_is_neg(ft0_128
) != float64_is_neg(farg3
.d
))) {
1390 /* Magnitude subtraction of infinities */
1391 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1393 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1394 ft0_128
= float128_add(ft0_128
, ft1_128
, &env
->fp_status
);
1395 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1398 /* This is OK on x86 hosts */
1399 farg1
.d
= (farg1
.d
* farg2
.d
) + farg3
.d
;
1402 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1403 farg1
.d
= float64_add(farg1
.d
, farg3
.d
, &env
->fp_status
);
1405 if (likely(!float64_is_nan(farg1
.d
)))
1406 farg1
.d
= float64_chs(farg1
.d
);
1411 /* fnmsub - fnmsub. */
1412 uint64_t helper_fnmsub (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1414 CPU_DoubleU farg1
, farg2
, farg3
;
1420 if (unlikely(float64_is_signaling_nan(farg1
.d
) ||
1421 float64_is_signaling_nan(farg2
.d
) ||
1422 float64_is_signaling_nan(farg3
.d
))) {
1423 /* sNaN operation */
1424 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1425 } else if (unlikely((float64_is_infinity(farg1
.d
) && float64_is_zero(farg2
.d
)) ||
1426 (float64_is_zero(farg1
.d
) && float64_is_infinity(farg2
.d
)))) {
1427 /* Multiplication of zero by infinity */
1428 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ
);
1430 #if USE_PRECISE_EMULATION
1432 /* This is the way the PowerPC specification defines it */
1433 float128 ft0_128
, ft1_128
;
1435 ft0_128
= float64_to_float128(farg1
.d
, &env
->fp_status
);
1436 ft1_128
= float64_to_float128(farg2
.d
, &env
->fp_status
);
1437 ft0_128
= float128_mul(ft0_128
, ft1_128
, &env
->fp_status
);
1438 if (unlikely(float128_is_infinity(ft0_128
) && float64_is_infinity(farg3
.d
) &&
1439 float128_is_neg(ft0_128
) == float64_is_neg(farg3
.d
))) {
1440 /* Magnitude subtraction of infinities */
1441 farg1
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI
);
1443 ft1_128
= float64_to_float128(farg3
.d
, &env
->fp_status
);
1444 ft0_128
= float128_sub(ft0_128
, ft1_128
, &env
->fp_status
);
1445 farg1
.d
= float128_to_float64(ft0_128
, &env
->fp_status
);
1448 /* This is OK on x86 hosts */
1449 farg1
.d
= (farg1
.d
* farg2
.d
) - farg3
.d
;
1452 farg1
.d
= float64_mul(farg1
.d
, farg2
.d
, &env
->fp_status
);
1453 farg1
.d
= float64_sub(farg1
.d
, farg3
.d
, &env
->fp_status
);
1455 if (likely(!float64_is_nan(farg1
.d
)))
1456 farg1
.d
= float64_chs(farg1
.d
);
1462 uint64_t helper_frsp (uint64_t arg
)
1468 #if USE_PRECISE_EMULATION
1469 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1470 /* sNaN square root */
1471 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1473 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1474 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1477 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1478 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1483 /* fsqrt - fsqrt. */
1484 uint64_t helper_fsqrt (uint64_t arg
)
1489 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1490 /* sNaN square root */
1491 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1492 } else if (unlikely(float64_is_neg(farg
.d
) && !float64_is_zero(farg
.d
))) {
1493 /* Square root of a negative nonzero number */
1494 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT
);
1496 farg
.d
= float64_sqrt(farg
.d
, &env
->fp_status
);
1502 uint64_t helper_fre (uint64_t arg
)
1507 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1508 /* sNaN reciprocal */
1509 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1511 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1517 uint64_t helper_fres (uint64_t arg
)
1523 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1524 /* sNaN reciprocal */
1525 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1527 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1528 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1529 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1534 /* frsqrte - frsqrte. */
1535 uint64_t helper_frsqrte (uint64_t arg
)
1541 if (unlikely(float64_is_signaling_nan(farg
.d
))) {
1542 /* sNaN reciprocal square root */
1543 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1544 } else if (unlikely(float64_is_neg(farg
.d
) && !float64_is_zero(farg
.d
))) {
1545 /* Reciprocal square root of a negative nonzero number */
1546 farg
.ll
= fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT
);
1548 farg
.d
= float64_sqrt(farg
.d
, &env
->fp_status
);
1549 farg
.d
= float64_div(float64_one
, farg
.d
, &env
->fp_status
);
1550 f32
= float64_to_float32(farg
.d
, &env
->fp_status
);
1551 farg
.d
= float32_to_float64(f32
, &env
->fp_status
);
1557 uint64_t helper_fsel (uint64_t arg1
, uint64_t arg2
, uint64_t arg3
)
1563 if ((!float64_is_neg(farg1
.d
) || float64_is_zero(farg1
.d
)) && !float64_is_nan(farg1
.d
))
1569 void helper_fcmpu (uint64_t arg1
, uint64_t arg2
, uint32_t crfD
)
1571 CPU_DoubleU farg1
, farg2
;
1576 if (unlikely(float64_is_nan(farg1
.d
) ||
1577 float64_is_nan(farg2
.d
))) {
1579 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1581 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1587 env
->fpscr
&= ~(0x0F << FPSCR_FPRF
);
1588 env
->fpscr
|= ret
<< FPSCR_FPRF
;
1589 env
->crf
[crfD
] = ret
;
1590 if (unlikely(ret
== 0x01UL
1591 && (float64_is_signaling_nan(farg1
.d
) ||
1592 float64_is_signaling_nan(farg2
.d
)))) {
1593 /* sNaN comparison */
1594 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
);
1598 void helper_fcmpo (uint64_t arg1
, uint64_t arg2
, uint32_t crfD
)
1600 CPU_DoubleU farg1
, farg2
;
1605 if (unlikely(float64_is_nan(farg1
.d
) ||
1606 float64_is_nan(farg2
.d
))) {
1608 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1610 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
1616 env
->fpscr
&= ~(0x0F << FPSCR_FPRF
);
1617 env
->fpscr
|= ret
<< FPSCR_FPRF
;
1618 env
->crf
[crfD
] = ret
;
1619 if (unlikely (ret
== 0x01UL
)) {
1620 if (float64_is_signaling_nan(farg1
.d
) ||
1621 float64_is_signaling_nan(farg2
.d
)) {
1622 /* sNaN comparison */
1623 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN
|
1624 POWERPC_EXCP_FP_VXVC
);
1626 /* qNaN comparison */
1627 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC
);
1632 #if !defined (CONFIG_USER_ONLY)
1633 void helper_store_msr (target_ulong val
)
1635 val
= hreg_store_msr(env
, val
, 0);
1637 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
1638 helper_raise_exception(val
);
1642 static always_inline
void do_rfi (target_ulong nip
, target_ulong msr
,
1643 target_ulong msrm
, int keep_msrh
)
1645 #if defined(TARGET_PPC64)
1646 if (msr
& (1ULL << MSR_SF
)) {
1647 nip
= (uint64_t)nip
;
1648 msr
&= (uint64_t)msrm
;
1650 nip
= (uint32_t)nip
;
1651 msr
= (uint32_t)(msr
& msrm
);
1653 msr
|= env
->msr
& ~((uint64_t)0xFFFFFFFF);
1656 nip
= (uint32_t)nip
;
1657 msr
&= (uint32_t)msrm
;
1659 /* XXX: beware: this is false if VLE is supported */
1660 env
->nip
= nip
& ~((target_ulong
)0x00000003);
1661 hreg_store_msr(env
, msr
, 1);
1662 #if defined (DEBUG_OP)
1663 cpu_dump_rfi(env
->nip
, env
->msr
);
1665 /* No need to raise an exception here,
1666 * as rfi is always the last insn of a TB
1668 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
1671 void helper_rfi (void)
1673 do_rfi(env
->spr
[SPR_SRR0
], env
->spr
[SPR_SRR1
],
1674 ~((target_ulong
)0xFFFF0000), 1);
1677 #if defined(TARGET_PPC64)
1678 void helper_rfid (void)
1680 do_rfi(env
->spr
[SPR_SRR0
], env
->spr
[SPR_SRR1
],
1681 ~((target_ulong
)0xFFFF0000), 0);
1684 void helper_hrfid (void)
1686 do_rfi(env
->spr
[SPR_HSRR0
], env
->spr
[SPR_HSRR1
],
1687 ~((target_ulong
)0xFFFF0000), 0);
1692 void helper_tw (target_ulong arg1
, target_ulong arg2
, uint32_t flags
)
1694 if (!likely(!(((int32_t)arg1
< (int32_t)arg2
&& (flags
& 0x10)) ||
1695 ((int32_t)arg1
> (int32_t)arg2
&& (flags
& 0x08)) ||
1696 ((int32_t)arg1
== (int32_t)arg2
&& (flags
& 0x04)) ||
1697 ((uint32_t)arg1
< (uint32_t)arg2
&& (flags
& 0x02)) ||
1698 ((uint32_t)arg1
> (uint32_t)arg2
&& (flags
& 0x01))))) {
1699 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
, POWERPC_EXCP_TRAP
);
1703 #if defined(TARGET_PPC64)
1704 void helper_td (target_ulong arg1
, target_ulong arg2
, uint32_t flags
)
1706 if (!likely(!(((int64_t)arg1
< (int64_t)arg2
&& (flags
& 0x10)) ||
1707 ((int64_t)arg1
> (int64_t)arg2
&& (flags
& 0x08)) ||
1708 ((int64_t)arg1
== (int64_t)arg2
&& (flags
& 0x04)) ||
1709 ((uint64_t)arg1
< (uint64_t)arg2
&& (flags
& 0x02)) ||
1710 ((uint64_t)arg1
> (uint64_t)arg2
&& (flags
& 0x01)))))
1711 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
, POWERPC_EXCP_TRAP
);
1715 /*****************************************************************************/
1716 /* PowerPC 601 specific instructions (POWER bridge) */
1718 target_ulong
helper_clcs (uint32_t arg
)
1722 /* Instruction cache line size */
1723 return env
->icache_line_size
;
1726 /* Data cache line size */
1727 return env
->dcache_line_size
;
1730 /* Minimum cache line size */
1731 return (env
->icache_line_size
< env
->dcache_line_size
) ?
1732 env
->icache_line_size
: env
->dcache_line_size
;
1735 /* Maximum cache line size */
1736 return (env
->icache_line_size
> env
->dcache_line_size
) ?
1737 env
->icache_line_size
: env
->dcache_line_size
;
1746 target_ulong
helper_div (target_ulong arg1
, target_ulong arg2
)
1748 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
1750 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1751 (int32_t)arg2
== 0) {
1752 env
->spr
[SPR_MQ
] = 0;
1755 env
->spr
[SPR_MQ
] = tmp
% arg2
;
1756 return tmp
/ (int32_t)arg2
;
1760 target_ulong
helper_divo (target_ulong arg1
, target_ulong arg2
)
1762 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
1764 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1765 (int32_t)arg2
== 0) {
1766 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
1767 env
->spr
[SPR_MQ
] = 0;
1770 env
->spr
[SPR_MQ
] = tmp
% arg2
;
1771 tmp
/= (int32_t)arg2
;
1772 if ((int32_t)tmp
!= tmp
) {
1773 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
1775 env
->xer
&= ~(1 << XER_OV
);
1781 target_ulong
helper_divs (target_ulong arg1
, target_ulong arg2
)
1783 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1784 (int32_t)arg2
== 0) {
1785 env
->spr
[SPR_MQ
] = 0;
1788 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
1789 return (int32_t)arg1
/ (int32_t)arg2
;
1793 target_ulong
helper_divso (target_ulong arg1
, target_ulong arg2
)
1795 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
1796 (int32_t)arg2
== 0) {
1797 env
->xer
|= (1 << XER_OV
) | (1 << XER_SO
);
1798 env
->spr
[SPR_MQ
] = 0;
1801 env
->xer
&= ~(1 << XER_OV
);
1802 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
1803 return (int32_t)arg1
/ (int32_t)arg2
;
1807 #if !defined (CONFIG_USER_ONLY)
1808 target_ulong
helper_rac (target_ulong addr
)
1812 target_ulong ret
= 0;
1814 /* We don't have to generate many instances of this instruction,
1815 * as rac is supervisor only.
1817 /* XXX: FIX THIS: Pretend we have no BAT */
1818 nb_BATs
= env
->nb_BATs
;
1820 if (get_physical_address(env
, &ctx
, addr
, 0, ACCESS_INT
) == 0)
1822 env
->nb_BATs
= nb_BATs
;
1826 void helper_rfsvc (void)
1828 do_rfi(env
->lr
, env
->ctr
, 0x0000FFFF, 0);
1832 /*****************************************************************************/
1833 /* 602 specific instructions */
1834 /* mfrom is the most crazy instruction ever seen, imho ! */
1835 /* Real implementation uses a ROM table. Do the same */
1836 /* Extremly decomposed:
1838 * return 256 * log10(10 + 1.0) + 0.5
1840 #if !defined (CONFIG_USER_ONLY)
1841 target_ulong
helper_602_mfrom (target_ulong arg
)
1843 if (likely(arg
< 602)) {
1844 #include "mfrom_table.c"
1845 return mfrom_ROM_table
[arg
];
1852 /*****************************************************************************/
1853 /* Embedded PowerPC specific helpers */
1855 /* XXX: to be improved to check access rights when in user-mode */
1856 target_ulong
helper_load_dcr (target_ulong dcrn
)
1858 target_ulong val
= 0;
1860 if (unlikely(env
->dcr_env
== NULL
)) {
1861 qemu_log("No DCR environment\n");
1862 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1863 POWERPC_EXCP_INVAL
| POWERPC_EXCP_INVAL_INVAL
);
1864 } else if (unlikely(ppc_dcr_read(env
->dcr_env
, dcrn
, &val
) != 0)) {
1865 qemu_log("DCR read error %d %03x\n", (int)dcrn
, (int)dcrn
);
1866 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1867 POWERPC_EXCP_INVAL
| POWERPC_EXCP_PRIV_REG
);
1872 void helper_store_dcr (target_ulong dcrn
, target_ulong val
)
1874 if (unlikely(env
->dcr_env
== NULL
)) {
1875 qemu_log("No DCR environment\n");
1876 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1877 POWERPC_EXCP_INVAL
| POWERPC_EXCP_INVAL_INVAL
);
1878 } else if (unlikely(ppc_dcr_write(env
->dcr_env
, dcrn
, val
) != 0)) {
1879 qemu_log("DCR write error %d %03x\n", (int)dcrn
, (int)dcrn
);
1880 helper_raise_exception_err(POWERPC_EXCP_PROGRAM
,
1881 POWERPC_EXCP_INVAL
| POWERPC_EXCP_PRIV_REG
);
1885 #if !defined(CONFIG_USER_ONLY)
1886 void helper_40x_rfci (void)
1888 do_rfi(env
->spr
[SPR_40x_SRR2
], env
->spr
[SPR_40x_SRR3
],
1889 ~((target_ulong
)0xFFFF0000), 0);
1892 void helper_rfci (void)
1894 do_rfi(env
->spr
[SPR_BOOKE_CSRR0
], SPR_BOOKE_CSRR1
,
1895 ~((target_ulong
)0x3FFF0000), 0);
1898 void helper_rfdi (void)
1900 do_rfi(env
->spr
[SPR_BOOKE_DSRR0
], SPR_BOOKE_DSRR1
,
1901 ~((target_ulong
)0x3FFF0000), 0);
1904 void helper_rfmci (void)
1906 do_rfi(env
->spr
[SPR_BOOKE_MCSRR0
], SPR_BOOKE_MCSRR1
,
1907 ~((target_ulong
)0x3FFF0000), 0);
1912 target_ulong
helper_dlmzb (target_ulong high
, target_ulong low
, uint32_t update_Rc
)
1918 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
1919 if ((high
& mask
) == 0) {
1927 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
1928 if ((low
& mask
) == 0) {
1940 env
->xer
= (env
->xer
& ~0x7F) | i
;
1942 env
->crf
[0] |= xer_so
;
1947 /*****************************************************************************/
1948 /* Altivec extension helpers */
1949 #if defined(WORDS_BIGENDIAN)
1957 #if defined(WORDS_BIGENDIAN)
1958 #define VECTOR_FOR_INORDER_I(index, element) \
1959 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1961 #define VECTOR_FOR_INORDER_I(index, element) \
1962 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1965 /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
1966 * execute the following block. */
1967 #define DO_HANDLE_NAN(result, x) \
1968 if (float32_is_nan(x) || float32_is_signaling_nan(x)) { \
1971 __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
1975 #define HANDLE_NAN1(result, x) \
1976 DO_HANDLE_NAN(result, x)
1977 #define HANDLE_NAN2(result, x, y) \
1978 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
1979 #define HANDLE_NAN3(result, x, y, z) \
1980 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
1982 /* Saturating arithmetic helpers. */
1983 #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
1984 static always_inline to_type cvt##from##to (from_type x, int *sat) \
1987 if (use_min && x < min) { \
1990 } else if (use_max && x > max) { \
1998 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
, 1, 1)
1999 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
, 1, 1)
2000 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
, 1, 1)
2001 SATCVT(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
, 0, 1)
2002 SATCVT(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
, 0, 1)
2003 SATCVT(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
, 0, 1)
2004 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
, 1, 1)
2005 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
, 1, 1)
2006 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
, 1, 1)
2009 #define LVE(name, access, swap, element) \
2010 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2012 size_t n_elems = ARRAY_SIZE(r->element); \
2013 int adjust = HI_IDX*(n_elems-1); \
2014 int sh = sizeof(r->element[0]) >> 1; \
2015 int index = (addr & 0xf) >> sh; \
2017 r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2019 r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2023 LVE(lvebx
, ldub
, I
, u8
)
2024 LVE(lvehx
, lduw
, bswap16
, u16
)
2025 LVE(lvewx
, ldl
, bswap32
, u32
)
2029 void helper_lvsl (ppc_avr_t
*r
, target_ulong sh
)
2031 int i
, j
= (sh
& 0xf);
2033 VECTOR_FOR_INORDER_I (i
, u8
) {
2038 void helper_lvsr (ppc_avr_t
*r
, target_ulong sh
)
2040 int i
, j
= 0x10 - (sh
& 0xf);
2042 VECTOR_FOR_INORDER_I (i
, u8
) {
2047 #define STVE(name, access, swap, element) \
2048 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2050 size_t n_elems = ARRAY_SIZE(r->element); \
2051 int adjust = HI_IDX*(n_elems-1); \
2052 int sh = sizeof(r->element[0]) >> 1; \
2053 int index = (addr & 0xf) >> sh; \
2055 access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2057 access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2061 STVE(stvebx
, stb
, I
, u8
)
2062 STVE(stvehx
, stw
, bswap16
, u16
)
2063 STVE(stvewx
, stl
, bswap32
, u32
)
2067 void helper_mtvscr (ppc_avr_t
*r
)
2069 #if defined(WORDS_BIGENDIAN)
2070 env
->vscr
= r
->u32
[3];
2072 env
->vscr
= r
->u32
[0];
2074 set_flush_to_zero(vscr_nj
, &env
->vec_status
);
2077 void helper_vaddcuw (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2080 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2081 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
2085 #define VARITH_DO(name, op, element) \
2086 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2089 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2090 r->element[i] = a->element[i] op b->element[i]; \
2093 #define VARITH(suffix, element) \
2094 VARITH_DO(add##suffix, +, element) \
2095 VARITH_DO(sub##suffix, -, element)
2102 #define VARITHFP(suffix, func) \
2103 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2106 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2107 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2108 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
2112 VARITHFP(addfp
, float32_add
)
2113 VARITHFP(subfp
, float32_sub
)
2116 #define VARITHSAT_CASE(type, op, cvt, element) \
2118 type result = (type)a->element[i] op (type)b->element[i]; \
2119 r->element[i] = cvt(result, &sat); \
2122 #define VARITHSAT_DO(name, op, optype, cvt, element) \
2123 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2127 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2128 switch (sizeof(r->element[0])) { \
2129 case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \
2130 case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \
2131 case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \
2135 env->vscr |= (1 << VSCR_SAT); \
2138 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
2139 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
2140 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
2141 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
2142 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
2143 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
2144 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
2145 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
2146 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
2147 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
2148 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
2149 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
2150 #undef VARITHSAT_CASE
2152 #undef VARITHSAT_SIGNED
2153 #undef VARITHSAT_UNSIGNED
2155 #define VAVG_DO(name, element, etype) \
2156 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2159 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2160 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
2161 r->element[i] = x >> 1; \
2165 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2166 VAVG_DO(avgs##type, signed_element, signed_type) \
2167 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2168 VAVG(b
, s8
, int16_t, u8
, uint16_t)
2169 VAVG(h
, s16
, int32_t, u16
, uint32_t)
2170 VAVG(w
, s32
, int64_t, u32
, uint64_t)
2174 #define VCF(suffix, cvt, element) \
2175 void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2178 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2179 float32 t = cvt(b->element[i], &env->vec_status); \
2180 r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \
2183 VCF(ux
, uint32_to_float32
, u32
)
2184 VCF(sx
, int32_to_float32
, s32
)
2187 #define VCMP_DO(suffix, compare, element, record) \
2188 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2190 uint32_t ones = (uint32_t)-1; \
2191 uint32_t all = ones; \
2192 uint32_t none = 0; \
2194 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2195 uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2196 switch (sizeof (a->element[0])) { \
2197 case 4: r->u32[i] = result; break; \
2198 case 2: r->u16[i] = result; break; \
2199 case 1: r->u8[i] = result; break; \
2205 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2208 #define VCMP(suffix, compare, element) \
2209 VCMP_DO(suffix, compare, element, 0) \
2210 VCMP_DO(suffix##_dot, compare, element, 1)
2223 #define VCMPFP_DO(suffix, compare, order, record) \
2224 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2226 uint32_t ones = (uint32_t)-1; \
2227 uint32_t all = ones; \
2228 uint32_t none = 0; \
2230 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2232 int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \
2233 if (rel == float_relation_unordered) { \
2235 } else if (rel compare order) { \
2240 r->u32[i] = result; \
2245 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2248 #define VCMPFP(suffix, compare, order) \
2249 VCMPFP_DO(suffix, compare, order, 0) \
2250 VCMPFP_DO(suffix##_dot, compare, order, 1)
2251 VCMPFP(eqfp
, ==, float_relation_equal
)
2252 VCMPFP(gefp
, !=, float_relation_less
)
2253 VCMPFP(gtfp
, ==, float_relation_greater
)
2257 static always_inline
void vcmpbfp_internal (ppc_avr_t
*r
, ppc_avr_t
*a
,
2258 ppc_avr_t
*b
, int record
)
2262 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2263 int le_rel
= float32_compare_quiet(a
->f
[i
], b
->f
[i
], &env
->vec_status
);
2264 if (le_rel
== float_relation_unordered
) {
2265 r
->u32
[i
] = 0xc0000000;
2266 /* ALL_IN does not need to be updated here. */
2268 float32 bneg
= float32_chs(b
->f
[i
]);
2269 int ge_rel
= float32_compare_quiet(a
->f
[i
], bneg
, &env
->vec_status
);
2270 int le
= le_rel
!= float_relation_greater
;
2271 int ge
= ge_rel
!= float_relation_less
;
2272 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
2273 all_in
|= (!le
| !ge
);
2277 env
->crf
[6] = (all_in
== 0) << 1;
2281 void helper_vcmpbfp (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2283 vcmpbfp_internal(r
, a
, b
, 0);
2286 void helper_vcmpbfp_dot (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2288 vcmpbfp_internal(r
, a
, b
, 1);
2291 #define VCT(suffix, satcvt, element) \
2292 void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2296 float_status s = env->vec_status; \
2297 set_float_rounding_mode(float_round_to_zero, &s); \
2298 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2299 if (float32_is_nan(b->f[i]) || \
2300 float32_is_signaling_nan(b->f[i])) { \
2301 r->element[i] = 0; \
2303 float64 t = float32_to_float64(b->f[i], &s); \
2305 t = float64_scalbn(t, uim, &s); \
2306 j = float64_to_int64(t, &s); \
2307 r->element[i] = satcvt(j, &sat); \
2311 env->vscr |= (1 << VSCR_SAT); \
2314 VCT(uxs
, cvtsduw
, u32
)
2315 VCT(sxs
, cvtsdsw
, s32
)
2318 void helper_vmaddfp (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2321 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2322 HANDLE_NAN3(r
->f
[i
], a
->f
[i
], b
->f
[i
], c
->f
[i
]) {
2323 /* Need to do the computation in higher precision and round
2324 * once at the end. */
2325 float64 af
, bf
, cf
, t
;
2326 af
= float32_to_float64(a
->f
[i
], &env
->vec_status
);
2327 bf
= float32_to_float64(b
->f
[i
], &env
->vec_status
);
2328 cf
= float32_to_float64(c
->f
[i
], &env
->vec_status
);
2329 t
= float64_mul(af
, cf
, &env
->vec_status
);
2330 t
= float64_add(t
, bf
, &env
->vec_status
);
2331 r
->f
[i
] = float64_to_float32(t
, &env
->vec_status
);
2336 void helper_vmhaddshs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2341 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2342 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
2343 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
2344 r
->s16
[i
] = cvtswsh (t
, &sat
);
2348 env
->vscr
|= (1 << VSCR_SAT
);
2352 void helper_vmhraddshs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2357 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2358 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
2359 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
2360 r
->s16
[i
] = cvtswsh (t
, &sat
);
2364 env
->vscr
|= (1 << VSCR_SAT
);
2368 #define VMINMAX_DO(name, compare, element) \
2369 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2372 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2373 if (a->element[i] compare b->element[i]) { \
2374 r->element[i] = b->element[i]; \
2376 r->element[i] = a->element[i]; \
2380 #define VMINMAX(suffix, element) \
2381 VMINMAX_DO(min##suffix, >, element) \
2382 VMINMAX_DO(max##suffix, <, element)
2392 #define VMINMAXFP(suffix, rT, rF) \
2393 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2396 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2397 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2398 if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
2399 r->f[i] = rT->f[i]; \
2401 r->f[i] = rF->f[i]; \
2406 VMINMAXFP(minfp
, a
, b
)
2407 VMINMAXFP(maxfp
, b
, a
)
2410 void helper_vmladduhm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2413 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2414 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
2415 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
2419 #define VMRG_DO(name, element, highp) \
2420 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2424 size_t n_elems = ARRAY_SIZE(r->element); \
2425 for (i = 0; i < n_elems/2; i++) { \
2427 result.element[i*2+HI_IDX] = a->element[i]; \
2428 result.element[i*2+LO_IDX] = b->element[i]; \
2430 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2431 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2436 #if defined(WORDS_BIGENDIAN)
2443 #define VMRG(suffix, element) \
2444 VMRG_DO(mrgl##suffix, element, MRGHI) \
2445 VMRG_DO(mrgh##suffix, element, MRGLO)
2454 void helper_vmsummbm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2459 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
2460 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
2463 VECTOR_FOR_INORDER_I(i
, s32
) {
2464 r
->s32
[i
] = c
->s32
[i
] + prod
[4*i
] + prod
[4*i
+1] + prod
[4*i
+2] + prod
[4*i
+3];
2468 void helper_vmsumshm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2473 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2474 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
2477 VECTOR_FOR_INORDER_I(i
, s32
) {
2478 r
->s32
[i
] = c
->s32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2482 void helper_vmsumshs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2488 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
2489 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
2492 VECTOR_FOR_INORDER_I (i
, s32
) {
2493 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2494 r
->u32
[i
] = cvtsdsw(t
, &sat
);
2498 env
->vscr
|= (1 << VSCR_SAT
);
2502 void helper_vmsumubm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2507 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2508 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
2511 VECTOR_FOR_INORDER_I(i
, u32
) {
2512 r
->u32
[i
] = c
->u32
[i
] + prod
[4*i
] + prod
[4*i
+1] + prod
[4*i
+2] + prod
[4*i
+3];
2516 void helper_vmsumuhm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2521 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
2522 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
2525 VECTOR_FOR_INORDER_I(i
, u32
) {
2526 r
->u32
[i
] = c
->u32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2530 void helper_vmsumuhs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2536 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
2537 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
2540 VECTOR_FOR_INORDER_I (i
, s32
) {
2541 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2*i
] + prod
[2*i
+1];
2542 r
->u32
[i
] = cvtuduw(t
, &sat
);
2546 env
->vscr
|= (1 << VSCR_SAT
);
2550 #define VMUL_DO(name, mul_element, prod_element, evenp) \
2551 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2554 VECTOR_FOR_INORDER_I(i, prod_element) { \
2556 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2558 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2562 #define VMUL(suffix, mul_element, prod_element) \
2563 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2564 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2572 void helper_vnmsubfp (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2575 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2576 HANDLE_NAN3(r
->f
[i
], a
->f
[i
], b
->f
[i
], c
->f
[i
]) {
2577 /* Need to do the computation is higher precision and round
2578 * once at the end. */
2579 float64 af
, bf
, cf
, t
;
2580 af
= float32_to_float64(a
->f
[i
], &env
->vec_status
);
2581 bf
= float32_to_float64(b
->f
[i
], &env
->vec_status
);
2582 cf
= float32_to_float64(c
->f
[i
], &env
->vec_status
);
2583 t
= float64_mul(af
, cf
, &env
->vec_status
);
2584 t
= float64_sub(t
, bf
, &env
->vec_status
);
2586 r
->f
[i
] = float64_to_float32(t
, &env
->vec_status
);
2591 void helper_vperm (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2595 VECTOR_FOR_INORDER_I (i
, u8
) {
2596 int s
= c
->u8
[i
] & 0x1f;
2597 #if defined(WORDS_BIGENDIAN)
2598 int index
= s
& 0xf;
2600 int index
= 15 - (s
& 0xf);
2603 result
.u8
[i
] = b
->u8
[index
];
2605 result
.u8
[i
] = a
->u8
[index
];
2611 #if defined(WORDS_BIGENDIAN)
2616 void helper_vpkpx (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2620 #if defined(WORDS_BIGENDIAN)
2621 const ppc_avr_t
*x
[2] = { a
, b
};
2623 const ppc_avr_t
*x
[2] = { b
, a
};
2626 VECTOR_FOR_INORDER_I (i
, u64
) {
2627 VECTOR_FOR_INORDER_I (j
, u32
){
2628 uint32_t e
= x
[i
]->u32
[j
];
2629 result
.u16
[4*i
+j
] = (((e
>> 9) & 0xfc00) |
2630 ((e
>> 6) & 0x3e0) |
2637 #define VPK(suffix, from, to, cvt, dosat) \
2638 void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2643 ppc_avr_t *a0 = PKBIG ? a : b; \
2644 ppc_avr_t *a1 = PKBIG ? b : a; \
2645 VECTOR_FOR_INORDER_I (i, from) { \
2646 result.to[i] = cvt(a0->from[i], &sat); \
2647 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
2650 if (dosat && sat) { \
2651 env->vscr |= (1 << VSCR_SAT); \
2655 VPK(shss
, s16
, s8
, cvtshsb
, 1)
2656 VPK(shus
, s16
, u8
, cvtshub
, 1)
2657 VPK(swss
, s32
, s16
, cvtswsh
, 1)
2658 VPK(swus
, s32
, u16
, cvtswuh
, 1)
2659 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
2660 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
2661 VPK(uhum
, u16
, u8
, I
, 0)
2662 VPK(uwum
, u32
, u16
, I
, 0)
2667 void helper_vrefp (ppc_avr_t
*r
, ppc_avr_t
*b
)
2670 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2671 HANDLE_NAN1(r
->f
[i
], b
->f
[i
]) {
2672 r
->f
[i
] = float32_div(float32_one
, b
->f
[i
], &env
->vec_status
);
2677 #define VRFI(suffix, rounding) \
2678 void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2681 float_status s = env->vec_status; \
2682 set_float_rounding_mode(rounding, &s); \
2683 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2684 HANDLE_NAN1(r->f[i], b->f[i]) { \
2685 r->f[i] = float32_round_to_int (b->f[i], &s); \
2689 VRFI(n
, float_round_nearest_even
)
2690 VRFI(m
, float_round_down
)
2691 VRFI(p
, float_round_up
)
2692 VRFI(z
, float_round_to_zero
)
2695 #define VROTATE(suffix, element) \
2696 void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2699 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2700 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2701 unsigned int shift = b->element[i] & mask; \
2702 r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2710 void helper_vrsqrtefp (ppc_avr_t
*r
, ppc_avr_t
*b
)
2713 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2714 HANDLE_NAN1(r
->f
[i
], b
->f
[i
]) {
2715 float32 t
= float32_sqrt(b
->f
[i
], &env
->vec_status
);
2716 r
->f
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
2721 void helper_vsel (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2723 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
2724 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
2727 void helper_vlogefp (ppc_avr_t
*r
, ppc_avr_t
*b
)
2730 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
2731 HANDLE_NAN1(r
->f
[i
], b
->f
[i
]) {
2732 r
->f
[i
] = float32_log2(b
->f
[i
], &env
->vec_status
);
2737 #if defined(WORDS_BIGENDIAN)
2744 /* The specification says that the results are undefined if all of the
2745 * shift counts are not identical. We check to make sure that they are
2746 * to conform to what real hardware appears to do. */
2747 #define VSHIFT(suffix, leftp) \
2748 void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2750 int shift = b->u8[LO_IDX*0x15] & 0x7; \
2753 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
2754 doit = doit && ((b->u8[i] & 0x7) == shift); \
2759 } else if (leftp) { \
2760 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
2761 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
2762 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
2764 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
2765 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
2766 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
2776 #define VSL(suffix, element) \
2777 void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2780 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2781 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2782 unsigned int shift = b->element[i] & mask; \
2783 r->element[i] = a->element[i] << shift; \
2791 void helper_vsldoi (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
2793 int sh
= shift
& 0xf;
2797 #if defined(WORDS_BIGENDIAN)
2798 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2801 result
.u8
[i
] = b
->u8
[index
-0x10];
2803 result
.u8
[i
] = a
->u8
[index
];
2807 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2808 int index
= (16 - sh
) + i
;
2810 result
.u8
[i
] = a
->u8
[index
-0x10];
2812 result
.u8
[i
] = b
->u8
[index
];
2819 void helper_vslo (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2821 int sh
= (b
->u8
[LO_IDX
*0xf] >> 3) & 0xf;
2823 #if defined (WORDS_BIGENDIAN)
2824 memmove (&r
->u8
[0], &a
->u8
[sh
], 16-sh
);
2825 memset (&r
->u8
[16-sh
], 0, sh
);
2827 memmove (&r
->u8
[sh
], &a
->u8
[0], 16-sh
);
2828 memset (&r
->u8
[0], 0, sh
);
2832 /* Experimental testing shows that hardware masks the immediate. */
2833 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2834 #if defined(WORDS_BIGENDIAN)
2835 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2837 #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2839 #define VSPLT(suffix, element) \
2840 void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2842 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
2844 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2845 r->element[i] = s; \
2852 #undef SPLAT_ELEMENT
2853 #undef _SPLAT_MASKED
2855 #define VSPLTI(suffix, element, splat_type) \
2856 void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \
2858 splat_type x = (int8_t)(splat << 3) >> 3; \
2860 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2861 r->element[i] = x; \
2864 VSPLTI(b
, s8
, int8_t)
2865 VSPLTI(h
, s16
, int16_t)
2866 VSPLTI(w
, s32
, int32_t)
2869 #define VSR(suffix, element) \
2870 void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2873 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2874 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2875 unsigned int shift = b->element[i] & mask; \
2876 r->element[i] = a->element[i] >> shift; \
2887 void helper_vsro (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2889 int sh
= (b
->u8
[LO_IDX
*0xf] >> 3) & 0xf;
2891 #if defined (WORDS_BIGENDIAN)
2892 memmove (&r
->u8
[sh
], &a
->u8
[0], 16-sh
);
2893 memset (&r
->u8
[0], 0, sh
);
2895 memmove (&r
->u8
[0], &a
->u8
[sh
], 16-sh
);
2896 memset (&r
->u8
[16-sh
], 0, sh
);
2900 void helper_vsubcuw (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2903 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2904 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
2908 void helper_vsumsws (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2915 #if defined(WORDS_BIGENDIAN)
2916 upper
= ARRAY_SIZE(r
->s32
)-1;
2920 t
= (int64_t)b
->s32
[upper
];
2921 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2925 result
.s32
[upper
] = cvtsdsw(t
, &sat
);
2929 env
->vscr
|= (1 << VSCR_SAT
);
2933 void helper_vsum2sws (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2939 #if defined(WORDS_BIGENDIAN)
2944 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
2945 int64_t t
= (int64_t)b
->s32
[upper
+i
*2];
2947 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
2950 result
.s32
[upper
+i
*2] = cvtsdsw(t
, &sat
);
2955 env
->vscr
|= (1 << VSCR_SAT
);
2959 void helper_vsum4sbs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2964 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2965 int64_t t
= (int64_t)b
->s32
[i
];
2966 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
2969 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2973 env
->vscr
|= (1 << VSCR_SAT
);
2977 void helper_vsum4shs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2982 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2983 int64_t t
= (int64_t)b
->s32
[i
];
2984 t
+= a
->s16
[2*i
] + a
->s16
[2*i
+1];
2985 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2989 env
->vscr
|= (1 << VSCR_SAT
);
2993 void helper_vsum4ubs (ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2998 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2999 uint64_t t
= (uint64_t)b
->u32
[i
];
3000 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
3003 r
->u32
[i
] = cvtuduw(t
, &sat
);
3007 env
->vscr
|= (1 << VSCR_SAT
);
3011 #if defined(WORDS_BIGENDIAN)
3018 #define VUPKPX(suffix, hi) \
3019 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
3023 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
3024 uint16_t e = b->u16[hi ? i : i+4]; \
3025 uint8_t a = (e >> 15) ? 0xff : 0; \
3026 uint8_t r = (e >> 10) & 0x1f; \
3027 uint8_t g = (e >> 5) & 0x1f; \
3028 uint8_t b = e & 0x1f; \
3029 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
3037 #define VUPK(suffix, unpacked, packee, hi) \
3038 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
3043 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
3044 result.unpacked[i] = b->packee[i]; \
3047 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
3048 result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
3053 VUPK(hsb
, s16
, s8
, UPKHI
)
3054 VUPK(hsh
, s32
, s16
, UPKHI
)
3055 VUPK(lsb
, s16
, s8
, UPKLO
)
3056 VUPK(lsh
, s32
, s16
, UPKLO
)
3061 #undef DO_HANDLE_NAN
3065 #undef VECTOR_FOR_INORDER_I
3069 /*****************************************************************************/
3070 /* SPE extension helpers */
3071 /* Use a table to make this quicker */
3072 static uint8_t hbrev
[16] = {
3073 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3074 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3077 static always_inline
uint8_t byte_reverse (uint8_t val
)
3079 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
3082 static always_inline
uint32_t word_reverse (uint32_t val
)
3084 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
3085 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
3088 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
3089 target_ulong
helper_brinc (target_ulong arg1
, target_ulong arg2
)
3091 uint32_t a
, b
, d
, mask
;
3093 mask
= UINT32_MAX
>> (32 - MASKBITS
);
3096 d
= word_reverse(1 + word_reverse(a
| ~b
));
3097 return (arg1
& ~mask
) | (d
& b
);
3100 uint32_t helper_cntlsw32 (uint32_t val
)
3102 if (val
& 0x80000000)
3108 uint32_t helper_cntlzw32 (uint32_t val
)
3113 /* Single-precision floating-point conversions */
3114 static always_inline
uint32_t efscfsi (uint32_t val
)
3118 u
.f
= int32_to_float32(val
, &env
->vec_status
);
3123 static always_inline
uint32_t efscfui (uint32_t val
)
3127 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
3132 static always_inline
int32_t efsctsi (uint32_t val
)
3137 /* NaN are not treated the same way IEEE 754 does */
3138 if (unlikely(float32_is_nan(u
.f
)))
3141 return float32_to_int32(u
.f
, &env
->vec_status
);
3144 static always_inline
uint32_t efsctui (uint32_t val
)
3149 /* NaN are not treated the same way IEEE 754 does */
3150 if (unlikely(float32_is_nan(u
.f
)))
3153 return float32_to_uint32(u
.f
, &env
->vec_status
);
3156 static always_inline
uint32_t efsctsiz (uint32_t val
)
3161 /* NaN are not treated the same way IEEE 754 does */
3162 if (unlikely(float32_is_nan(u
.f
)))
3165 return float32_to_int32_round_to_zero(u
.f
, &env
->vec_status
);
3168 static always_inline
uint32_t efsctuiz (uint32_t val
)
3173 /* NaN are not treated the same way IEEE 754 does */
3174 if (unlikely(float32_is_nan(u
.f
)))
3177 return float32_to_uint32_round_to_zero(u
.f
, &env
->vec_status
);
3180 static always_inline
uint32_t efscfsf (uint32_t val
)
3185 u
.f
= int32_to_float32(val
, &env
->vec_status
);
3186 tmp
= int64_to_float32(1ULL << 32, &env
->vec_status
);
3187 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
3192 static always_inline
uint32_t efscfuf (uint32_t val
)
3197 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
3198 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
3199 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
3204 static always_inline
uint32_t efsctsf (uint32_t val
)
3210 /* NaN are not treated the same way IEEE 754 does */
3211 if (unlikely(float32_is_nan(u
.f
)))
3213 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
3214 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
3216 return float32_to_int32(u
.f
, &env
->vec_status
);
3219 static always_inline
uint32_t efsctuf (uint32_t val
)
3225 /* NaN are not treated the same way IEEE 754 does */
3226 if (unlikely(float32_is_nan(u
.f
)))
3228 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
3229 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
3231 return float32_to_uint32(u
.f
, &env
->vec_status
);
3234 #define HELPER_SPE_SINGLE_CONV(name) \
3235 uint32_t helper_e##name (uint32_t val) \
3237 return e##name(val); \
3240 HELPER_SPE_SINGLE_CONV(fscfsi
);
3242 HELPER_SPE_SINGLE_CONV(fscfui
);
3244 HELPER_SPE_SINGLE_CONV(fscfuf
);
3246 HELPER_SPE_SINGLE_CONV(fscfsf
);
3248 HELPER_SPE_SINGLE_CONV(fsctsi
);
3250 HELPER_SPE_SINGLE_CONV(fsctui
);
3252 HELPER_SPE_SINGLE_CONV(fsctsiz
);
3254 HELPER_SPE_SINGLE_CONV(fsctuiz
);
3256 HELPER_SPE_SINGLE_CONV(fsctsf
);
3258 HELPER_SPE_SINGLE_CONV(fsctuf
);
3260 #define HELPER_SPE_VECTOR_CONV(name) \
3261 uint64_t helper_ev##name (uint64_t val) \
3263 return ((uint64_t)e##name(val >> 32) << 32) | \
3264 (uint64_t)e##name(val); \
3267 HELPER_SPE_VECTOR_CONV(fscfsi
);
3269 HELPER_SPE_VECTOR_CONV(fscfui
);
3271 HELPER_SPE_VECTOR_CONV(fscfuf
);
3273 HELPER_SPE_VECTOR_CONV(fscfsf
);
3275 HELPER_SPE_VECTOR_CONV(fsctsi
);
3277 HELPER_SPE_VECTOR_CONV(fsctui
);
3279 HELPER_SPE_VECTOR_CONV(fsctsiz
);
3281 HELPER_SPE_VECTOR_CONV(fsctuiz
);
3283 HELPER_SPE_VECTOR_CONV(fsctsf
);
3285 HELPER_SPE_VECTOR_CONV(fsctuf
);
3287 /* Single-precision floating-point arithmetic */
3288 static always_inline
uint32_t efsadd (uint32_t op1
, uint32_t op2
)
3293 u1
.f
= float32_add(u1
.f
, u2
.f
, &env
->vec_status
);
3297 static always_inline
uint32_t efssub (uint32_t op1
, uint32_t op2
)
3302 u1
.f
= float32_sub(u1
.f
, u2
.f
, &env
->vec_status
);
3306 static always_inline
uint32_t efsmul (uint32_t op1
, uint32_t op2
)
3311 u1
.f
= float32_mul(u1
.f
, u2
.f
, &env
->vec_status
);
3315 static always_inline
uint32_t efsdiv (uint32_t op1
, uint32_t op2
)
3320 u1
.f
= float32_div(u1
.f
, u2
.f
, &env
->vec_status
);
3324 #define HELPER_SPE_SINGLE_ARITH(name) \
3325 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3327 return e##name(op1, op2); \
3330 HELPER_SPE_SINGLE_ARITH(fsadd
);
3332 HELPER_SPE_SINGLE_ARITH(fssub
);
3334 HELPER_SPE_SINGLE_ARITH(fsmul
);
3336 HELPER_SPE_SINGLE_ARITH(fsdiv
);
3338 #define HELPER_SPE_VECTOR_ARITH(name) \
3339 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
3341 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
3342 (uint64_t)e##name(op1, op2); \
3345 HELPER_SPE_VECTOR_ARITH(fsadd
);
3347 HELPER_SPE_VECTOR_ARITH(fssub
);
3349 HELPER_SPE_VECTOR_ARITH(fsmul
);
3351 HELPER_SPE_VECTOR_ARITH(fsdiv
);
3353 /* Single-precision floating-point comparisons */
3354 static always_inline
uint32_t efststlt (uint32_t op1
, uint32_t op2
)
3359 return float32_lt(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
3362 static always_inline
uint32_t efststgt (uint32_t op1
, uint32_t op2
)
3367 return float32_le(u1
.f
, u2
.f
, &env
->vec_status
) ? 0 : 4;
3370 static always_inline
uint32_t efststeq (uint32_t op1
, uint32_t op2
)
3375 return float32_eq(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
3378 static always_inline
uint32_t efscmplt (uint32_t op1
, uint32_t op2
)
3380 /* XXX: TODO: test special values (NaN, infinites, ...) */
3381 return efststlt(op1
, op2
);
3384 static always_inline
uint32_t efscmpgt (uint32_t op1
, uint32_t op2
)
3386 /* XXX: TODO: test special values (NaN, infinites, ...) */
3387 return efststgt(op1
, op2
);
3390 static always_inline
uint32_t efscmpeq (uint32_t op1
, uint32_t op2
)
3392 /* XXX: TODO: test special values (NaN, infinites, ...) */
3393 return efststeq(op1
, op2
);
3396 #define HELPER_SINGLE_SPE_CMP(name) \
3397 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3399 return e##name(op1, op2) << 2; \
3402 HELPER_SINGLE_SPE_CMP(fststlt
);
3404 HELPER_SINGLE_SPE_CMP(fststgt
);
3406 HELPER_SINGLE_SPE_CMP(fststeq
);
3408 HELPER_SINGLE_SPE_CMP(fscmplt
);
3410 HELPER_SINGLE_SPE_CMP(fscmpgt
);
3412 HELPER_SINGLE_SPE_CMP(fscmpeq
);
3414 static always_inline
uint32_t evcmp_merge (int t0
, int t1
)
3416 return (t0
<< 3) | (t1
<< 2) | ((t0
| t1
) << 1) | (t0
& t1
);
3419 #define HELPER_VECTOR_SPE_CMP(name) \
3420 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
3422 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
3425 HELPER_VECTOR_SPE_CMP(fststlt
);
3427 HELPER_VECTOR_SPE_CMP(fststgt
);
3429 HELPER_VECTOR_SPE_CMP(fststeq
);
3431 HELPER_VECTOR_SPE_CMP(fscmplt
);
3433 HELPER_VECTOR_SPE_CMP(fscmpgt
);
3435 HELPER_VECTOR_SPE_CMP(fscmpeq
);
3437 /* Double-precision floating-point conversion */
3438 uint64_t helper_efdcfsi (uint32_t val
)
3442 u
.d
= int32_to_float64(val
, &env
->vec_status
);
3447 uint64_t helper_efdcfsid (uint64_t val
)
3451 u
.d
= int64_to_float64(val
, &env
->vec_status
);
3456 uint64_t helper_efdcfui (uint32_t val
)
3460 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
3465 uint64_t helper_efdcfuid (uint64_t val
)
3469 u
.d
= uint64_to_float64(val
, &env
->vec_status
);
3474 uint32_t helper_efdctsi (uint64_t val
)
3479 /* NaN are not treated the same way IEEE 754 does */
3480 if (unlikely(float64_is_nan(u
.d
)))
3483 return float64_to_int32(u
.d
, &env
->vec_status
);
3486 uint32_t helper_efdctui (uint64_t val
)
3491 /* NaN are not treated the same way IEEE 754 does */
3492 if (unlikely(float64_is_nan(u
.d
)))
3495 return float64_to_uint32(u
.d
, &env
->vec_status
);
3498 uint32_t helper_efdctsiz (uint64_t val
)
3503 /* NaN are not treated the same way IEEE 754 does */
3504 if (unlikely(float64_is_nan(u
.d
)))
3507 return float64_to_int32_round_to_zero(u
.d
, &env
->vec_status
);
3510 uint64_t helper_efdctsidz (uint64_t val
)
3515 /* NaN are not treated the same way IEEE 754 does */
3516 if (unlikely(float64_is_nan(u
.d
)))
3519 return float64_to_int64_round_to_zero(u
.d
, &env
->vec_status
);
3522 uint32_t helper_efdctuiz (uint64_t val
)
3527 /* NaN are not treated the same way IEEE 754 does */
3528 if (unlikely(float64_is_nan(u
.d
)))
3531 return float64_to_uint32_round_to_zero(u
.d
, &env
->vec_status
);
3534 uint64_t helper_efdctuidz (uint64_t val
)
3539 /* NaN are not treated the same way IEEE 754 does */
3540 if (unlikely(float64_is_nan(u
.d
)))
3543 return float64_to_uint64_round_to_zero(u
.d
, &env
->vec_status
);
3546 uint64_t helper_efdcfsf (uint32_t val
)
3551 u
.d
= int32_to_float64(val
, &env
->vec_status
);
3552 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
3553 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
3558 uint64_t helper_efdcfuf (uint32_t val
)
3563 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
3564 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
3565 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
3570 uint32_t helper_efdctsf (uint64_t val
)
3576 /* NaN are not treated the same way IEEE 754 does */
3577 if (unlikely(float64_is_nan(u
.d
)))
3579 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
3580 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
3582 return float64_to_int32(u
.d
, &env
->vec_status
);
3585 uint32_t helper_efdctuf (uint64_t val
)
3591 /* NaN are not treated the same way IEEE 754 does */
3592 if (unlikely(float64_is_nan(u
.d
)))
3594 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
3595 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
3597 return float64_to_uint32(u
.d
, &env
->vec_status
);
3600 uint32_t helper_efscfd (uint64_t val
)
3606 u2
.f
= float64_to_float32(u1
.d
, &env
->vec_status
);
3611 uint64_t helper_efdcfs (uint32_t val
)
3617 u2
.d
= float32_to_float64(u1
.f
, &env
->vec_status
);
3622 /* Double precision fixed-point arithmetic */
3623 uint64_t helper_efdadd (uint64_t op1
, uint64_t op2
)
3628 u1
.d
= float64_add(u1
.d
, u2
.d
, &env
->vec_status
);
3632 uint64_t helper_efdsub (uint64_t op1
, uint64_t op2
)
3637 u1
.d
= float64_sub(u1
.d
, u2
.d
, &env
->vec_status
);
3641 uint64_t helper_efdmul (uint64_t op1
, uint64_t op2
)
3646 u1
.d
= float64_mul(u1
.d
, u2
.d
, &env
->vec_status
);
3650 uint64_t helper_efddiv (uint64_t op1
, uint64_t op2
)
3655 u1
.d
= float64_div(u1
.d
, u2
.d
, &env
->vec_status
);
3659 /* Double precision floating point helpers */
3660 uint32_t helper_efdtstlt (uint64_t op1
, uint64_t op2
)
3665 return float64_lt(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
3668 uint32_t helper_efdtstgt (uint64_t op1
, uint64_t op2
)
3673 return float64_le(u1
.d
, u2
.d
, &env
->vec_status
) ? 0 : 4;
3676 uint32_t helper_efdtsteq (uint64_t op1
, uint64_t op2
)
3681 return float64_eq(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
3684 uint32_t helper_efdcmplt (uint64_t op1
, uint64_t op2
)
3686 /* XXX: TODO: test special values (NaN, infinites, ...) */
3687 return helper_efdtstlt(op1
, op2
);
3690 uint32_t helper_efdcmpgt (uint64_t op1
, uint64_t op2
)
3692 /* XXX: TODO: test special values (NaN, infinites, ...) */
3693 return helper_efdtstgt(op1
, op2
);
3696 uint32_t helper_efdcmpeq (uint64_t op1
, uint64_t op2
)
3698 /* XXX: TODO: test special values (NaN, infinites, ...) */
3699 return helper_efdtsteq(op1
, op2
);
3702 /*****************************************************************************/
3703 /* Softmmu support */
3704 #if !defined (CONFIG_USER_ONLY)
3706 #define MMUSUFFIX _mmu
3709 #include "softmmu_template.h"
3712 #include "softmmu_template.h"
3715 #include "softmmu_template.h"
3718 #include "softmmu_template.h"
3720 /* try to fill the TLB and return an exception if error. If retaddr is
3721 NULL, it means that the function was called in C code (i.e. not
3722 from generated code or from helper.c) */
3723 /* XXX: fix it to restore all registers */
3724 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
3726 TranslationBlock
*tb
;
3727 CPUState
*saved_env
;
3731 /* XXX: hack to restore env in all cases, even if not called from
3734 env
= cpu_single_env
;
3735 ret
= cpu_ppc_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
3736 if (unlikely(ret
!= 0)) {
3737 if (likely(retaddr
)) {
3738 /* now we have a real cpu fault */
3739 pc
= (unsigned long)retaddr
;
3740 tb
= tb_find_pc(pc
);
3742 /* the PC is inside the translated code. It means that we have
3743 a virtual CPU fault */
3744 cpu_restore_state(tb
, env
, pc
, NULL
);
3747 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
3752 /* Segment registers load and store */
3753 target_ulong
helper_load_sr (target_ulong sr_num
)
3755 return env
->sr
[sr_num
];
3758 void helper_store_sr (target_ulong sr_num
, target_ulong val
)
3760 ppc_store_sr(env
, sr_num
, val
);
3763 /* SLB management */
3764 #if defined(TARGET_PPC64)
3765 target_ulong
helper_load_slb (target_ulong slb_nr
)
3767 return ppc_load_slb(env
, slb_nr
);
3770 void helper_store_slb (target_ulong slb_nr
, target_ulong rs
)
3772 ppc_store_slb(env
, slb_nr
, rs
);
3775 void helper_slbia (void)
3777 ppc_slb_invalidate_all(env
);
3780 void helper_slbie (target_ulong addr
)
3782 ppc_slb_invalidate_one(env
, addr
);
3785 #endif /* defined(TARGET_PPC64) */
3787 /* TLB management */
3788 void helper_tlbia (void)
3790 ppc_tlb_invalidate_all(env
);
3793 void helper_tlbie (target_ulong addr
)
3795 ppc_tlb_invalidate_one(env
, addr
);
3798 /* Software driven TLBs management */
3799 /* PowerPC 602/603 software TLB load instructions helpers */
3800 static void do_6xx_tlb (target_ulong new_EPN
, int is_code
)
3802 target_ulong RPN
, CMP
, EPN
;
3805 RPN
= env
->spr
[SPR_RPA
];
3807 CMP
= env
->spr
[SPR_ICMP
];
3808 EPN
= env
->spr
[SPR_IMISS
];
3810 CMP
= env
->spr
[SPR_DCMP
];
3811 EPN
= env
->spr
[SPR_DMISS
];
3813 way
= (env
->spr
[SPR_SRR1
] >> 17) & 1;
3814 LOG_SWTLB("%s: EPN " ADDRX
" " ADDRX
" PTE0 " ADDRX
3815 " PTE1 " ADDRX
" way %d\n",
3816 __func__
, new_EPN
, EPN
, CMP
, RPN
, way
);
3817 /* Store this TLB */
3818 ppc6xx_tlb_store(env
, (uint32_t)(new_EPN
& TARGET_PAGE_MASK
),
3819 way
, is_code
, CMP
, RPN
);
3822 void helper_6xx_tlbd (target_ulong EPN
)
3827 void helper_6xx_tlbi (target_ulong EPN
)
3832 /* PowerPC 74xx software TLB load instructions helpers */
3833 static void do_74xx_tlb (target_ulong new_EPN
, int is_code
)
3835 target_ulong RPN
, CMP
, EPN
;
3838 RPN
= env
->spr
[SPR_PTELO
];
3839 CMP
= env
->spr
[SPR_PTEHI
];
3840 EPN
= env
->spr
[SPR_TLBMISS
] & ~0x3;
3841 way
= env
->spr
[SPR_TLBMISS
] & 0x3;
3842 LOG_SWTLB("%s: EPN " ADDRX
" " ADDRX
" PTE0 " ADDRX
3843 " PTE1 " ADDRX
" way %d\n",
3844 __func__
, new_EPN
, EPN
, CMP
, RPN
, way
);
3845 /* Store this TLB */
3846 ppc6xx_tlb_store(env
, (uint32_t)(new_EPN
& TARGET_PAGE_MASK
),
3847 way
, is_code
, CMP
, RPN
);
3850 void helper_74xx_tlbd (target_ulong EPN
)
3852 do_74xx_tlb(EPN
, 0);
3855 void helper_74xx_tlbi (target_ulong EPN
)
3857 do_74xx_tlb(EPN
, 1);
3860 static always_inline target_ulong
booke_tlb_to_page_size (int size
)
3862 return 1024 << (2 * size
);
3865 static always_inline
int booke_page_size_to_tlb (target_ulong page_size
)
3869 switch (page_size
) {
3903 #if defined (TARGET_PPC64)
3904 case 0x000100000000ULL
:
3907 case 0x000400000000ULL
:
3910 case 0x001000000000ULL
:
3913 case 0x004000000000ULL
:
3916 case 0x010000000000ULL
:
3928 /* Helpers for 4xx TLB management */
3929 target_ulong
helper_4xx_tlbre_lo (target_ulong entry
)
3936 tlb
= &env
->tlb
[entry
].tlbe
;
3938 if (tlb
->prot
& PAGE_VALID
)
3940 size
= booke_page_size_to_tlb(tlb
->size
);
3941 if (size
< 0 || size
> 0x7)
3944 env
->spr
[SPR_40x_PID
] = tlb
->PID
;
3948 target_ulong
helper_4xx_tlbre_hi (target_ulong entry
)
3954 tlb
= &env
->tlb
[entry
].tlbe
;
3956 if (tlb
->prot
& PAGE_EXEC
)
3958 if (tlb
->prot
& PAGE_WRITE
)
3963 void helper_4xx_tlbwe_hi (target_ulong entry
, target_ulong val
)
3966 target_ulong page
, end
;
3968 LOG_SWTLB("%s entry %d val " ADDRX
"\n", __func__
, (int)entry
, val
);
3970 tlb
= &env
->tlb
[entry
].tlbe
;
3971 /* Invalidate previous TLB (if it's valid) */
3972 if (tlb
->prot
& PAGE_VALID
) {
3973 end
= tlb
->EPN
+ tlb
->size
;
3974 LOG_SWTLB("%s: invalidate old TLB %d start " ADDRX
3975 " end " ADDRX
"\n", __func__
, (int)entry
, tlb
->EPN
, end
);
3976 for (page
= tlb
->EPN
; page
< end
; page
+= TARGET_PAGE_SIZE
)
3977 tlb_flush_page(env
, page
);
3979 tlb
->size
= booke_tlb_to_page_size((val
>> 7) & 0x7);
3980 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3981 * If this ever occurs, one should use the ppcemb target instead
3982 * of the ppc or ppc64 one
3984 if ((val
& 0x40) && tlb
->size
< TARGET_PAGE_SIZE
) {
3985 cpu_abort(env
, "TLB size " TARGET_FMT_lu
" < %u "
3986 "are not supported (%d)\n",
3987 tlb
->size
, TARGET_PAGE_SIZE
, (int)((val
>> 7) & 0x7));
3989 tlb
->EPN
= val
& ~(tlb
->size
- 1);
3991 tlb
->prot
|= PAGE_VALID
;
3993 tlb
->prot
&= ~PAGE_VALID
;
3995 /* XXX: TO BE FIXED */
3996 cpu_abort(env
, "Little-endian TLB entries are not supported by now\n");
3998 tlb
->PID
= env
->spr
[SPR_40x_PID
]; /* PID */
3999 tlb
->attr
= val
& 0xFF;
4000 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX
" EPN " ADDRX
4001 " size " ADDRX
" prot %c%c%c%c PID %d\n", __func__
,
4002 (int)entry
, tlb
->RPN
, tlb
->EPN
, tlb
->size
,
4003 tlb
->prot
& PAGE_READ
? 'r' : '-',
4004 tlb
->prot
& PAGE_WRITE
? 'w' : '-',
4005 tlb
->prot
& PAGE_EXEC
? 'x' : '-',
4006 tlb
->prot
& PAGE_VALID
? 'v' : '-', (int)tlb
->PID
);
4007 /* Invalidate new TLB (if valid) */
4008 if (tlb
->prot
& PAGE_VALID
) {
4009 end
= tlb
->EPN
+ tlb
->size
;
4010 LOG_SWTLB("%s: invalidate TLB %d start " ADDRX
4011 " end " ADDRX
"\n", __func__
, (int)entry
, tlb
->EPN
, end
);
4012 for (page
= tlb
->EPN
; page
< end
; page
+= TARGET_PAGE_SIZE
)
4013 tlb_flush_page(env
, page
);
4017 void helper_4xx_tlbwe_lo (target_ulong entry
, target_ulong val
)
4021 LOG_SWTLB("%s entry %i val " ADDRX
"\n", __func__
, (int)entry
, val
);
4023 tlb
= &env
->tlb
[entry
].tlbe
;
4024 tlb
->RPN
= val
& 0xFFFFFC00;
4025 tlb
->prot
= PAGE_READ
;
4027 tlb
->prot
|= PAGE_EXEC
;
4029 tlb
->prot
|= PAGE_WRITE
;
4030 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX
" EPN " ADDRX
4031 " size " ADDRX
" prot %c%c%c%c PID %d\n", __func__
,
4032 (int)entry
, tlb
->RPN
, tlb
->EPN
, tlb
->size
,
4033 tlb
->prot
& PAGE_READ
? 'r' : '-',
4034 tlb
->prot
& PAGE_WRITE
? 'w' : '-',
4035 tlb
->prot
& PAGE_EXEC
? 'x' : '-',
4036 tlb
->prot
& PAGE_VALID
? 'v' : '-', (int)tlb
->PID
);
4039 target_ulong
helper_4xx_tlbsx (target_ulong address
)
4041 return ppcemb_tlb_search(env
, address
, env
->spr
[SPR_40x_PID
]);
4044 /* PowerPC 440 TLB management */
4045 void helper_440_tlbwe (uint32_t word
, target_ulong entry
, target_ulong value
)
4048 target_ulong EPN
, RPN
, size
;
4051 LOG_SWTLB("%s word %d entry %d value " ADDRX
"\n",
4052 __func__
, word
, (int)entry
, value
);
4055 tlb
= &env
->tlb
[entry
].tlbe
;
4058 /* Just here to please gcc */
4060 EPN
= value
& 0xFFFFFC00;
4061 if ((tlb
->prot
& PAGE_VALID
) && EPN
!= tlb
->EPN
)
4064 size
= booke_tlb_to_page_size((value
>> 4) & 0xF);
4065 if ((tlb
->prot
& PAGE_VALID
) && tlb
->size
< size
)
4069 tlb
->attr
|= (value
>> 8) & 1;
4070 if (value
& 0x200) {
4071 tlb
->prot
|= PAGE_VALID
;
4073 if (tlb
->prot
& PAGE_VALID
) {
4074 tlb
->prot
&= ~PAGE_VALID
;
4078 tlb
->PID
= env
->spr
[SPR_440_MMUCR
] & 0x000000FF;
4083 RPN
= value
& 0xFFFFFC0F;
4084 if ((tlb
->prot
& PAGE_VALID
) && tlb
->RPN
!= RPN
)
4089 tlb
->attr
= (tlb
->attr
& 0x1) | (value
& 0x0000FF00);
4090 tlb
->prot
= tlb
->prot
& PAGE_VALID
;
4092 tlb
->prot
|= PAGE_READ
<< 4;
4094 tlb
->prot
|= PAGE_WRITE
<< 4;
4096 tlb
->prot
|= PAGE_EXEC
<< 4;
4098 tlb
->prot
|= PAGE_READ
;
4100 tlb
->prot
|= PAGE_WRITE
;
4102 tlb
->prot
|= PAGE_EXEC
;
4107 target_ulong
helper_440_tlbre (uint32_t word
, target_ulong entry
)
4114 tlb
= &env
->tlb
[entry
].tlbe
;
4117 /* Just here to please gcc */
4120 size
= booke_page_size_to_tlb(tlb
->size
);
4121 if (size
< 0 || size
> 0xF)
4124 if (tlb
->attr
& 0x1)
4126 if (tlb
->prot
& PAGE_VALID
)
4128 env
->spr
[SPR_440_MMUCR
] &= ~0x000000FF;
4129 env
->spr
[SPR_440_MMUCR
] |= tlb
->PID
;
4135 ret
= tlb
->attr
& ~0x1;
4136 if (tlb
->prot
& (PAGE_READ
<< 4))
4138 if (tlb
->prot
& (PAGE_WRITE
<< 4))
4140 if (tlb
->prot
& (PAGE_EXEC
<< 4))
4142 if (tlb
->prot
& PAGE_READ
)
4144 if (tlb
->prot
& PAGE_WRITE
)
4146 if (tlb
->prot
& PAGE_EXEC
)
4153 target_ulong
helper_440_tlbsx (target_ulong address
)
4155 return ppcemb_tlb_search(env
, address
, env
->spr
[SPR_440_MMUCR
] & 0xFF);
4158 #endif /* !CONFIG_USER_ONLY */