Fix vectored aio bounce handling immediate errors (Avi Kivity)
[qemu-kvm/fedora.git] / hw / mips_malta.c
blobaf1abb85ada90b8854162e745217ef72d9d29a5a
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "qemu-char.h"
36 #include "sysemu.h"
37 #include "audio/audio.h"
38 #include "boards.h"
39 #include "qemu-log.h"
41 //#define DEBUG_BOARD_INIT
43 #ifdef TARGET_WORDS_BIGENDIAN
44 #define BIOS_FILENAME "mips_bios.bin"
45 #else
46 #define BIOS_FILENAME "mipsel_bios.bin"
47 #endif
49 #ifdef TARGET_MIPS64
50 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
51 #else
52 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
53 #endif
55 #define ENVP_ADDR (int32_t)0x80002000
56 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
58 #define ENVP_NB_ENTRIES 16
59 #define ENVP_ENTRY_SIZE 256
61 #define MAX_IDE_BUS 2
63 typedef struct {
64 uint32_t leds;
65 uint32_t brk;
66 uint32_t gpout;
67 uint32_t i2cin;
68 uint32_t i2coe;
69 uint32_t i2cout;
70 uint32_t i2csel;
71 CharDriverState *display;
72 char display_text[9];
73 SerialState *uart;
74 } MaltaFPGAState;
76 static PITState *pit;
78 static struct _loaderparams {
79 int ram_size;
80 const char *kernel_filename;
81 const char *kernel_cmdline;
82 const char *initrd_filename;
83 } loaderparams;
85 /* Malta FPGA */
86 static void malta_fpga_update_display(void *opaque)
88 char leds_text[9];
89 int i;
90 MaltaFPGAState *s = opaque;
92 for (i = 7 ; i >= 0 ; i--) {
93 if (s->leds & (1 << i))
94 leds_text[i] = '#';
95 else
96 leds_text[i] = ' ';
98 leds_text[8] = '\0';
100 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
101 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
105 * EEPROM 24C01 / 24C02 emulation.
107 * Emulation for serial EEPROMs:
108 * 24C01 - 1024 bit (128 x 8)
109 * 24C02 - 2048 bit (256 x 8)
111 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
114 //~ #define DEBUG
116 #if defined(DEBUG)
117 # define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
118 #else
119 # define logout(fmt, args...) ((void)0)
120 #endif
122 struct _eeprom24c0x_t {
123 uint8_t tick;
124 uint8_t address;
125 uint8_t command;
126 uint8_t ack;
127 uint8_t scl;
128 uint8_t sda;
129 uint8_t data;
130 //~ uint16_t size;
131 uint8_t contents[256];
134 typedef struct _eeprom24c0x_t eeprom24c0x_t;
136 static eeprom24c0x_t eeprom = {
137 contents: {
138 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
139 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
140 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
141 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
142 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
143 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
146 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
153 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
157 static uint8_t eeprom24c0x_read(void)
159 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
160 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
161 return eeprom.sda;
164 static void eeprom24c0x_write(int scl, int sda)
166 if (eeprom.scl && scl && (eeprom.sda != sda)) {
167 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
168 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
169 if (!sda) {
170 eeprom.tick = 1;
171 eeprom.command = 0;
173 } else if (eeprom.tick == 0 && !eeprom.ack) {
174 /* Waiting for start. */
175 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
176 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
177 } else if (!eeprom.scl && scl) {
178 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
179 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
180 if (eeprom.ack) {
181 logout("\ti2c ack bit = 0\n");
182 sda = 0;
183 eeprom.ack = 0;
184 } else if (eeprom.sda == sda) {
185 uint8_t bit = (sda != 0);
186 logout("\ti2c bit = %d\n", bit);
187 if (eeprom.tick < 9) {
188 eeprom.command <<= 1;
189 eeprom.command += bit;
190 eeprom.tick++;
191 if (eeprom.tick == 9) {
192 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
193 eeprom.ack = 1;
195 } else if (eeprom.tick < 17) {
196 if (eeprom.command & 1) {
197 sda = ((eeprom.data & 0x80) != 0);
199 eeprom.address <<= 1;
200 eeprom.address += bit;
201 eeprom.tick++;
202 eeprom.data <<= 1;
203 if (eeprom.tick == 17) {
204 eeprom.data = eeprom.contents[eeprom.address];
205 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
206 eeprom.ack = 1;
207 eeprom.tick = 0;
209 } else if (eeprom.tick >= 17) {
210 sda = 0;
212 } else {
213 logout("\tsda changed with raising scl\n");
215 } else {
216 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
218 eeprom.scl = scl;
219 eeprom.sda = sda;
222 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
224 MaltaFPGAState *s = opaque;
225 uint32_t val = 0;
226 uint32_t saddr;
228 saddr = (addr & 0xfffff);
230 switch (saddr) {
232 /* SWITCH Register */
233 case 0x00200:
234 val = 0x00000000; /* All switches closed */
235 break;
237 /* STATUS Register */
238 case 0x00208:
239 #ifdef TARGET_WORDS_BIGENDIAN
240 val = 0x00000012;
241 #else
242 val = 0x00000010;
243 #endif
244 break;
246 /* JMPRS Register */
247 case 0x00210:
248 val = 0x00;
249 break;
251 /* LEDBAR Register */
252 case 0x00408:
253 val = s->leds;
254 break;
256 /* BRKRES Register */
257 case 0x00508:
258 val = s->brk;
259 break;
261 /* UART Registers are handled directly by the serial device */
263 /* GPOUT Register */
264 case 0x00a00:
265 val = s->gpout;
266 break;
268 /* XXX: implement a real I2C controller */
270 /* GPINP Register */
271 case 0x00a08:
272 /* IN = OUT until a real I2C control is implemented */
273 if (s->i2csel)
274 val = s->i2cout;
275 else
276 val = 0x00;
277 break;
279 /* I2CINP Register */
280 case 0x00b00:
281 val = ((s->i2cin & ~1) | eeprom24c0x_read());
282 break;
284 /* I2COE Register */
285 case 0x00b08:
286 val = s->i2coe;
287 break;
289 /* I2COUT Register */
290 case 0x00b10:
291 val = s->i2cout;
292 break;
294 /* I2CSEL Register */
295 case 0x00b18:
296 val = s->i2csel;
297 break;
299 default:
300 #if 0
301 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
302 addr);
303 #endif
304 break;
306 return val;
309 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
310 uint32_t val)
312 MaltaFPGAState *s = opaque;
313 uint32_t saddr;
315 saddr = (addr & 0xfffff);
317 switch (saddr) {
319 /* SWITCH Register */
320 case 0x00200:
321 break;
323 /* JMPRS Register */
324 case 0x00210:
325 break;
327 /* LEDBAR Register */
328 /* XXX: implement a 8-LED array */
329 case 0x00408:
330 s->leds = val & 0xff;
331 break;
333 /* ASCIIWORD Register */
334 case 0x00410:
335 snprintf(s->display_text, 9, "%08X", val);
336 malta_fpga_update_display(s);
337 break;
339 /* ASCIIPOS0 to ASCIIPOS7 Registers */
340 case 0x00418:
341 case 0x00420:
342 case 0x00428:
343 case 0x00430:
344 case 0x00438:
345 case 0x00440:
346 case 0x00448:
347 case 0x00450:
348 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
349 malta_fpga_update_display(s);
350 break;
352 /* SOFTRES Register */
353 case 0x00500:
354 if (val == 0x42)
355 qemu_system_reset_request ();
356 break;
358 /* BRKRES Register */
359 case 0x00508:
360 s->brk = val & 0xff;
361 break;
363 /* UART Registers are handled directly by the serial device */
365 /* GPOUT Register */
366 case 0x00a00:
367 s->gpout = val & 0xff;
368 break;
370 /* I2COE Register */
371 case 0x00b08:
372 s->i2coe = val & 0x03;
373 break;
375 /* I2COUT Register */
376 case 0x00b10:
377 eeprom24c0x_write(val & 0x02, val & 0x01);
378 s->i2cout = val;
379 break;
381 /* I2CSEL Register */
382 case 0x00b18:
383 s->i2csel = val & 0x01;
384 break;
386 default:
387 #if 0
388 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
389 addr);
390 #endif
391 break;
395 static CPUReadMemoryFunc *malta_fpga_read[] = {
396 malta_fpga_readl,
397 malta_fpga_readl,
398 malta_fpga_readl
401 static CPUWriteMemoryFunc *malta_fpga_write[] = {
402 malta_fpga_writel,
403 malta_fpga_writel,
404 malta_fpga_writel
407 static void malta_fpga_reset(void *opaque)
409 MaltaFPGAState *s = opaque;
411 s->leds = 0x00;
412 s->brk = 0x0a;
413 s->gpout = 0x00;
414 s->i2cin = 0x3;
415 s->i2coe = 0x0;
416 s->i2cout = 0x3;
417 s->i2csel = 0x1;
419 s->display_text[8] = '\0';
420 snprintf(s->display_text, 9, " ");
423 static void malta_fpga_led_init(CharDriverState *chr)
425 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
427 qemu_chr_printf(chr, "+ +\r\n");
428 qemu_chr_printf(chr, "+--------+\r\n");
429 qemu_chr_printf(chr, "\n");
430 qemu_chr_printf(chr, "Malta ASCII\r\n");
431 qemu_chr_printf(chr, "+--------+\r\n");
432 qemu_chr_printf(chr, "+ +\r\n");
433 qemu_chr_printf(chr, "+--------+\r\n");
436 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
438 MaltaFPGAState *s;
439 int malta;
441 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
443 malta = cpu_register_io_memory(0, malta_fpga_read,
444 malta_fpga_write, s);
446 cpu_register_physical_memory(base, 0x900, malta);
447 /* 0xa00 is less than a page, so will still get the right offsets. */
448 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
450 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
452 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
454 malta_fpga_reset(s);
455 qemu_register_reset(malta_fpga_reset, s);
457 return s;
460 /* Audio support */
461 #ifdef HAS_AUDIO
462 static void audio_init (PCIBus *pci_bus)
464 struct soundhw *c;
465 int audio_enabled = 0;
467 for (c = soundhw; !audio_enabled && c->name; ++c) {
468 audio_enabled = c->enabled;
471 if (audio_enabled) {
472 AudioState *s;
474 s = AUD_init ();
475 if (s) {
476 for (c = soundhw; c->name; ++c) {
477 if (c->enabled)
478 c->init.init_pci (pci_bus, s);
483 #endif
485 /* Network support */
486 static void network_init (PCIBus *pci_bus)
488 int i;
490 for(i = 0; i < nb_nics; i++) {
491 NICInfo *nd = &nd_table[i];
492 int devfn = -1;
494 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
495 /* The malta board has a PCNet card using PCI SLOT 11 */
496 devfn = 88;
498 pci_nic_init(pci_bus, nd, devfn, "pcnet");
502 /* ROM and pseudo bootloader
504 The following code implements a very very simple bootloader. It first
505 loads the registers a0 to a3 to the values expected by the OS, and
506 then jump at the kernel address.
508 The bootloader should pass the locations of the kernel arguments and
509 environment variables tables. Those tables contain the 32-bit address
510 of NULL terminated strings. The environment variables table should be
511 terminated by a NULL address.
513 For a simpler implementation, the number of kernel arguments is fixed
514 to two (the name of the kernel and the command line), and the two
515 tables are actually the same one.
517 The registers a0 to a3 should contain the following values:
518 a0 - number of kernel arguments
519 a1 - 32-bit address of the kernel arguments table
520 a2 - 32-bit address of the environment variables table
521 a3 - RAM size in bytes
524 static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
526 uint32_t *p;
528 /* Small bootloader */
529 p = (uint32_t *) (phys_ram_base + bios_offset);
530 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
531 stl_raw(p++, 0x00000000); /* nop */
533 /* YAMON service vector */
534 stl_raw(phys_ram_base + bios_offset + 0x500, 0xbfc00580); /* start: */
535 stl_raw(phys_ram_base + bios_offset + 0x504, 0xbfc0083c); /* print_count: */
536 stl_raw(phys_ram_base + bios_offset + 0x520, 0xbfc00580); /* start: */
537 stl_raw(phys_ram_base + bios_offset + 0x52c, 0xbfc00800); /* flush_cache: */
538 stl_raw(phys_ram_base + bios_offset + 0x534, 0xbfc00808); /* print: */
539 stl_raw(phys_ram_base + bios_offset + 0x538, 0xbfc00800); /* reg_cpu_isr: */
540 stl_raw(phys_ram_base + bios_offset + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
541 stl_raw(phys_ram_base + bios_offset + 0x540, 0xbfc00800); /* reg_ic_isr: */
542 stl_raw(phys_ram_base + bios_offset + 0x544, 0xbfc00800); /* unred_ic_isr: */
543 stl_raw(phys_ram_base + bios_offset + 0x548, 0xbfc00800); /* reg_esr: */
544 stl_raw(phys_ram_base + bios_offset + 0x54c, 0xbfc00800); /* unreg_esr: */
545 stl_raw(phys_ram_base + bios_offset + 0x550, 0xbfc00800); /* getchar: */
546 stl_raw(phys_ram_base + bios_offset + 0x554, 0xbfc00800); /* syscon_read: */
549 /* Second part of the bootloader */
550 p = (uint32_t *) (phys_ram_base + bios_offset + 0x580);
551 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
552 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
553 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
554 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
555 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
556 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
557 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
558 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
559 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
561 /* Load BAR registers as done by YAMON */
562 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
564 #ifdef TARGET_WORDS_BIGENDIAN
565 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
566 #else
567 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
568 #endif
569 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
571 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
573 #ifdef TARGET_WORDS_BIGENDIAN
574 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
575 #else
576 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
577 #endif
578 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
579 #ifdef TARGET_WORDS_BIGENDIAN
580 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
581 #else
582 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
583 #endif
584 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
586 #ifdef TARGET_WORDS_BIGENDIAN
587 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
588 #else
589 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
590 #endif
591 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
592 #ifdef TARGET_WORDS_BIGENDIAN
593 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
594 #else
595 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
596 #endif
597 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
599 #ifdef TARGET_WORDS_BIGENDIAN
600 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
601 #else
602 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
603 #endif
604 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
605 #ifdef TARGET_WORDS_BIGENDIAN
606 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
607 #else
608 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
609 #endif
610 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
612 /* Jump to kernel code */
613 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
614 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
615 stl_raw(p++, 0x03e00008); /* jr ra */
616 stl_raw(p++, 0x00000000); /* nop */
618 /* YAMON subroutines */
619 p = (uint32_t *) (phys_ram_base + bios_offset + 0x800);
620 stl_raw(p++, 0x03e00008); /* jr ra */
621 stl_raw(p++, 0x24020000); /* li v0,0 */
622 /* 808 YAMON print */
623 stl_raw(p++, 0x03e06821); /* move t5,ra */
624 stl_raw(p++, 0x00805821); /* move t3,a0 */
625 stl_raw(p++, 0x00a05021); /* move t2,a1 */
626 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
627 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
628 stl_raw(p++, 0x10800005); /* beqz a0,834 */
629 stl_raw(p++, 0x00000000); /* nop */
630 stl_raw(p++, 0x0ff0021c); /* jal 870 */
631 stl_raw(p++, 0x00000000); /* nop */
632 stl_raw(p++, 0x08000205); /* j 814 */
633 stl_raw(p++, 0x00000000); /* nop */
634 stl_raw(p++, 0x01a00008); /* jr t5 */
635 stl_raw(p++, 0x01602021); /* move a0,t3 */
636 /* 0x83c YAMON print_count */
637 stl_raw(p++, 0x03e06821); /* move t5,ra */
638 stl_raw(p++, 0x00805821); /* move t3,a0 */
639 stl_raw(p++, 0x00a05021); /* move t2,a1 */
640 stl_raw(p++, 0x00c06021); /* move t4,a2 */
641 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
642 stl_raw(p++, 0x0ff0021c); /* jal 870 */
643 stl_raw(p++, 0x00000000); /* nop */
644 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
645 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
646 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
647 stl_raw(p++, 0x00000000); /* nop */
648 stl_raw(p++, 0x01a00008); /* jr t5 */
649 stl_raw(p++, 0x01602021); /* move a0,t3 */
650 /* 0x870 */
651 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
652 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
653 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
654 stl_raw(p++, 0x00000000); /* nop */
655 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
656 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
657 stl_raw(p++, 0x00000000); /* nop */
658 stl_raw(p++, 0x03e00008); /* jr ra */
659 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
663 static void prom_set(int index, const char *string, ...)
665 va_list ap;
666 int32_t *p;
667 int32_t table_addr;
668 char *s;
670 if (index >= ENVP_NB_ENTRIES)
671 return;
673 p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
674 p += index;
676 if (string == NULL) {
677 stl_raw(p, 0);
678 return;
681 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
682 s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
684 stl_raw(p, table_addr);
686 va_start(ap, string);
687 vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
688 va_end(ap);
691 /* Kernel */
692 static int64_t load_kernel (CPUState *env)
694 int64_t kernel_entry, kernel_low, kernel_high;
695 int index = 0;
696 long initrd_size;
697 ram_addr_t initrd_offset;
699 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
700 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
701 (uint64_t *)&kernel_high) < 0) {
702 fprintf(stderr, "qemu: could not load kernel '%s'\n",
703 loaderparams.kernel_filename);
704 exit(1);
707 /* load initrd */
708 initrd_size = 0;
709 initrd_offset = 0;
710 if (loaderparams.initrd_filename) {
711 initrd_size = get_image_size (loaderparams.initrd_filename);
712 if (initrd_size > 0) {
713 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
714 if (initrd_offset + initrd_size > ram_size) {
715 fprintf(stderr,
716 "qemu: memory too small for initial ram disk '%s'\n",
717 loaderparams.initrd_filename);
718 exit(1);
720 initrd_size = load_image(loaderparams.initrd_filename,
721 phys_ram_base + initrd_offset);
723 if (initrd_size == (target_ulong) -1) {
724 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
725 loaderparams.initrd_filename);
726 exit(1);
730 /* Store command line. */
731 prom_set(index++, loaderparams.kernel_filename);
732 if (initrd_size > 0)
733 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
734 PHYS_TO_VIRT(initrd_offset), initrd_size,
735 loaderparams.kernel_cmdline);
736 else
737 prom_set(index++, loaderparams.kernel_cmdline);
739 /* Setup minimum environment variables */
740 prom_set(index++, "memsize");
741 prom_set(index++, "%i", loaderparams.ram_size);
742 prom_set(index++, "modetty0");
743 prom_set(index++, "38400n8r");
744 prom_set(index++, NULL);
746 return kernel_entry;
749 static void main_cpu_reset(void *opaque)
751 CPUState *env = opaque;
752 cpu_reset(env);
754 /* The bootload does not need to be rewritten as it is located in a
755 read only location. The kernel location and the arguments table
756 location does not change. */
757 if (loaderparams.kernel_filename) {
758 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
759 load_kernel (env);
763 static
764 void mips_malta_init (ram_addr_t ram_size, int vga_ram_size,
765 const char *boot_device,
766 const char *kernel_filename, const char *kernel_cmdline,
767 const char *initrd_filename, const char *cpu_model)
769 char buf[1024];
770 unsigned long bios_offset;
771 target_long bios_size;
772 int64_t kernel_entry;
773 PCIBus *pci_bus;
774 CPUState *env;
775 RTCState *rtc_state;
776 fdctrl_t *floppy_controller;
777 MaltaFPGAState *malta_fpga;
778 qemu_irq *i8259;
779 int piix4_devfn;
780 uint8_t *eeprom_buf;
781 i2c_bus *smbus;
782 int i;
783 int index;
784 BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
785 BlockDriverState *fd[MAX_FD];
786 int fl_idx = 0;
787 int fl_sectors = 0;
789 /* init CPUs */
790 if (cpu_model == NULL) {
791 #ifdef TARGET_MIPS64
792 cpu_model = "20Kc";
793 #else
794 cpu_model = "24Kf";
795 #endif
797 env = cpu_init(cpu_model);
798 if (!env) {
799 fprintf(stderr, "Unable to find CPU definition\n");
800 exit(1);
802 qemu_register_reset(main_cpu_reset, env);
804 /* allocate RAM */
805 if (ram_size > (256 << 20)) {
806 fprintf(stderr,
807 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
808 ((unsigned int)ram_size / (1 << 20)));
809 exit(1);
811 cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
813 /* Map the bios at two physical locations, as on the real board. */
814 bios_offset = ram_size + vga_ram_size;
815 cpu_register_physical_memory(0x1e000000LL,
816 BIOS_SIZE, bios_offset | IO_MEM_ROM);
817 cpu_register_physical_memory(0x1fc00000LL,
818 BIOS_SIZE, bios_offset | IO_MEM_ROM);
820 /* FPGA */
821 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
823 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
824 if (kernel_filename) {
825 /* Write a small bootloader to the flash location. */
826 loaderparams.ram_size = ram_size;
827 loaderparams.kernel_filename = kernel_filename;
828 loaderparams.kernel_cmdline = kernel_cmdline;
829 loaderparams.initrd_filename = initrd_filename;
830 kernel_entry = load_kernel(env);
831 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
832 write_bootloader(env, bios_offset, kernel_entry);
833 } else {
834 index = drive_get_index(IF_PFLASH, 0, fl_idx);
835 if (index != -1) {
836 /* Load firmware from flash. */
837 bios_size = 0x400000;
838 fl_sectors = bios_size >> 16;
839 #ifdef DEBUG_BOARD_INIT
840 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
841 "offset %08lx addr %08llx '%s' %x\n",
842 fl_idx, bios_size, bios_offset, 0x1e000000LL,
843 bdrv_get_device_name(drives_table[index].bdrv), fl_sectors);
844 #endif
845 pflash_cfi01_register(0x1e000000LL, bios_offset,
846 drives_table[index].bdrv, 65536, fl_sectors,
847 4, 0x0000, 0x0000, 0x0000, 0x0000);
848 fl_idx++;
849 } else {
850 /* Load a BIOS image. */
851 if (bios_name == NULL)
852 bios_name = BIOS_FILENAME;
853 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
854 bios_size = load_image(buf, phys_ram_base + bios_offset);
855 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
856 fprintf(stderr,
857 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
858 buf);
859 exit(1);
862 /* In little endian mode the 32bit words in the bios are swapped,
863 a neat trick which allows bi-endian firmware. */
864 #ifndef TARGET_WORDS_BIGENDIAN
866 uint32_t *addr;
867 for (addr = (uint32_t *)(phys_ram_base + bios_offset);
868 addr < (uint32_t *)(phys_ram_base + bios_offset + bios_size);
869 addr++) {
870 *addr = bswap32(*addr);
873 #endif
876 /* Board ID = 0x420 (Malta Board with CoreLV)
877 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
878 map to the board ID. */
879 stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
881 /* Init internal devices */
882 cpu_mips_irq_init_cpu(env);
883 cpu_mips_clock_init(env);
885 /* Interrupt controller */
886 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
887 i8259 = i8259_init(env->irq[2]);
889 /* Northbridge */
890 pci_bus = pci_gt64120_init(i8259);
892 /* Southbridge */
894 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
895 fprintf(stderr, "qemu: too many IDE bus\n");
896 exit(1);
899 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
900 index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
901 if (index != -1)
902 hd[i] = drives_table[index].bdrv;
903 else
904 hd[i] = NULL;
907 piix4_devfn = piix4_init(pci_bus, 80);
908 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
909 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
910 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
911 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
912 for (i = 0; i < 8; i++) {
913 /* TODO: Populate SPD eeprom data. */
914 smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
916 pit = pit_init(0x40, i8259[0]);
917 DMA_init(0);
919 /* Super I/O */
920 i8042_init(i8259[1], i8259[12], 0x60);
921 rtc_state = rtc_init(0x70, i8259[8], 2000);
922 serial_init(0x3f8, i8259[4], 115200, serial_hds[0]);
923 serial_init(0x2f8, i8259[3], 115200, serial_hds[1]);
924 if (parallel_hds[0])
925 parallel_init(0x378, i8259[7], parallel_hds[0]);
926 for(i = 0; i < MAX_FD; i++) {
927 index = drive_get_index(IF_FLOPPY, 0, i);
928 if (index != -1)
929 fd[i] = drives_table[index].bdrv;
930 else
931 fd[i] = NULL;
933 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
935 /* Sound card */
936 #ifdef HAS_AUDIO
937 audio_init(pci_bus);
938 #endif
940 /* Network card */
941 network_init(pci_bus);
943 /* Optional PCI video card */
944 if (cirrus_vga_enabled) {
945 pci_cirrus_vga_init(pci_bus, phys_ram_base + ram_size,
946 ram_size, vga_ram_size);
947 } else if (vmsvga_enabled) {
948 pci_vmsvga_init(pci_bus, phys_ram_base + ram_size,
949 ram_size, vga_ram_size);
950 } else if (std_vga_enabled) {
951 pci_vga_init(pci_bus, phys_ram_base + ram_size,
952 ram_size, vga_ram_size, 0, 0);
956 QEMUMachine mips_malta_machine = {
957 .name = "malta",
958 .desc = "MIPS Malta Core LV",
959 .init = mips_malta_init,
960 .ram_require = VGA_RAM_SIZE + BIOS_SIZE,
961 .nodisk_ok = 1,