e1000: Fix RX descriptor low threshold interrupt logic (Alex Williamson)
[qemu-kvm/fedora.git] / hw / ppc.c
blobb534e395628735e84ba09722ebbb52338bd8cd64
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
31 //#define PPC_DEBUG_IRQ
32 //#define PPC_DEBUG_TB
34 #ifdef PPC_DEBUG_IRQ
35 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
36 #else
37 # define LOG_IRQ(...) do { } while (0)
38 #endif
41 #ifdef PPC_DEBUG_TB
42 # define LOG_TB(...) qemu_log(__VA_ARGS__)
43 #else
44 # define LOG_TB(...) do { } while (0)
45 #endif
47 static void cpu_ppc_tb_stop (CPUState *env);
48 static void cpu_ppc_tb_start (CPUState *env);
50 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
52 if (level) {
53 env->pending_interrupts |= 1 << n_IRQ;
54 cpu_interrupt(env, CPU_INTERRUPT_HARD);
55 } else {
56 env->pending_interrupts &= ~(1 << n_IRQ);
57 if (env->pending_interrupts == 0)
58 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
60 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
61 "req %08x\n", __func__, env, n_IRQ, level,
62 env->pending_interrupts, env->interrupt_request);
65 /* PowerPC 6xx / 7xx internal IRQ controller */
66 static void ppc6xx_set_irq (void *opaque, int pin, int level)
68 CPUState *env = opaque;
69 int cur_level;
71 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
72 env, pin, level);
73 cur_level = (env->irq_input_state >> pin) & 1;
74 /* Don't generate spurious events */
75 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
76 switch (pin) {
77 case PPC6xx_INPUT_TBEN:
78 /* Level sensitive - active high */
79 LOG_IRQ("%s: %s the time base\n",
80 __func__, level ? "start" : "stop");
81 if (level) {
82 cpu_ppc_tb_start(env);
83 } else {
84 cpu_ppc_tb_stop(env);
86 case PPC6xx_INPUT_INT:
87 /* Level sensitive - active high */
88 LOG_IRQ("%s: set the external IRQ state to %d\n",
89 __func__, level);
90 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
91 break;
92 case PPC6xx_INPUT_SMI:
93 /* Level sensitive - active high */
94 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
95 __func__, level);
96 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
97 break;
98 case PPC6xx_INPUT_MCP:
99 /* Negative edge sensitive */
100 /* XXX: TODO: actual reaction may depends on HID0 status
101 * 603/604/740/750: check HID0[EMCP]
103 if (cur_level == 1 && level == 0) {
104 LOG_IRQ("%s: raise machine check state\n",
105 __func__);
106 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
108 break;
109 case PPC6xx_INPUT_CKSTP_IN:
110 /* Level sensitive - active low */
111 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
112 /* XXX: Note that the only way to restart the CPU is to reset it */
113 if (level) {
114 LOG_IRQ("%s: stop the CPU\n", __func__);
115 env->halted = 1;
117 break;
118 case PPC6xx_INPUT_HRESET:
119 /* Level sensitive - active low */
120 if (level) {
121 LOG_IRQ("%s: reset the CPU\n", __func__);
122 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
123 /* XXX: TOFIX */
124 #if 0
125 cpu_ppc_reset(env);
126 #else
127 qemu_system_reset_request();
128 #endif
130 break;
131 case PPC6xx_INPUT_SRESET:
132 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
133 __func__, level);
134 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
135 break;
136 default:
137 /* Unknown pin - do nothing */
138 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
139 return;
141 if (level)
142 env->irq_input_state |= 1 << pin;
143 else
144 env->irq_input_state &= ~(1 << pin);
148 void ppc6xx_irq_init (CPUState *env)
150 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
151 PPC6xx_INPUT_NB);
154 #if defined(TARGET_PPC64)
155 /* PowerPC 970 internal IRQ controller */
156 static void ppc970_set_irq (void *opaque, int pin, int level)
158 CPUState *env = opaque;
159 int cur_level;
161 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
162 env, pin, level);
163 cur_level = (env->irq_input_state >> pin) & 1;
164 /* Don't generate spurious events */
165 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
166 switch (pin) {
167 case PPC970_INPUT_INT:
168 /* Level sensitive - active high */
169 LOG_IRQ("%s: set the external IRQ state to %d\n",
170 __func__, level);
171 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
172 break;
173 case PPC970_INPUT_THINT:
174 /* Level sensitive - active high */
175 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
176 level);
177 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
178 break;
179 case PPC970_INPUT_MCP:
180 /* Negative edge sensitive */
181 /* XXX: TODO: actual reaction may depends on HID0 status
182 * 603/604/740/750: check HID0[EMCP]
184 if (cur_level == 1 && level == 0) {
185 LOG_IRQ("%s: raise machine check state\n",
186 __func__);
187 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
189 break;
190 case PPC970_INPUT_CKSTP:
191 /* Level sensitive - active low */
192 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
193 if (level) {
194 LOG_IRQ("%s: stop the CPU\n", __func__);
195 env->halted = 1;
196 } else {
197 LOG_IRQ("%s: restart the CPU\n", __func__);
198 env->halted = 0;
200 break;
201 case PPC970_INPUT_HRESET:
202 /* Level sensitive - active low */
203 if (level) {
204 #if 0 // XXX: TOFIX
205 LOG_IRQ("%s: reset the CPU\n", __func__);
206 cpu_reset(env);
207 #endif
209 break;
210 case PPC970_INPUT_SRESET:
211 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
212 __func__, level);
213 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
214 break;
215 case PPC970_INPUT_TBEN:
216 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
217 level);
218 /* XXX: TODO */
219 break;
220 default:
221 /* Unknown pin - do nothing */
222 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
223 return;
225 if (level)
226 env->irq_input_state |= 1 << pin;
227 else
228 env->irq_input_state &= ~(1 << pin);
232 void ppc970_irq_init (CPUState *env)
234 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
235 PPC970_INPUT_NB);
237 #endif /* defined(TARGET_PPC64) */
239 /* PowerPC 40x internal IRQ controller */
240 static void ppc40x_set_irq (void *opaque, int pin, int level)
242 CPUState *env = opaque;
243 int cur_level;
245 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
246 env, pin, level);
247 cur_level = (env->irq_input_state >> pin) & 1;
248 /* Don't generate spurious events */
249 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
250 switch (pin) {
251 case PPC40x_INPUT_RESET_SYS:
252 if (level) {
253 LOG_IRQ("%s: reset the PowerPC system\n",
254 __func__);
255 ppc40x_system_reset(env);
257 break;
258 case PPC40x_INPUT_RESET_CHIP:
259 if (level) {
260 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
261 ppc40x_chip_reset(env);
263 break;
264 case PPC40x_INPUT_RESET_CORE:
265 /* XXX: TODO: update DBSR[MRR] */
266 if (level) {
267 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
268 ppc40x_core_reset(env);
270 break;
271 case PPC40x_INPUT_CINT:
272 /* Level sensitive - active high */
273 LOG_IRQ("%s: set the critical IRQ state to %d\n",
274 __func__, level);
275 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
276 break;
277 case PPC40x_INPUT_INT:
278 /* Level sensitive - active high */
279 LOG_IRQ("%s: set the external IRQ state to %d\n",
280 __func__, level);
281 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
282 break;
283 case PPC40x_INPUT_HALT:
284 /* Level sensitive - active low */
285 if (level) {
286 LOG_IRQ("%s: stop the CPU\n", __func__);
287 env->halted = 1;
288 } else {
289 LOG_IRQ("%s: restart the CPU\n", __func__);
290 env->halted = 0;
292 break;
293 case PPC40x_INPUT_DEBUG:
294 /* Level sensitive - active high */
295 LOG_IRQ("%s: set the debug pin state to %d\n",
296 __func__, level);
297 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
298 break;
299 default:
300 /* Unknown pin - do nothing */
301 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
302 return;
304 if (level)
305 env->irq_input_state |= 1 << pin;
306 else
307 env->irq_input_state &= ~(1 << pin);
311 void ppc40x_irq_init (CPUState *env)
313 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
314 env, PPC40x_INPUT_NB);
317 /* PowerPC E500 internal IRQ controller */
318 static void ppce500_set_irq (void *opaque, int pin, int level)
320 CPUState *env = opaque;
321 int cur_level;
323 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
324 env, pin, level);
325 cur_level = (env->irq_input_state >> pin) & 1;
326 /* Don't generate spurious events */
327 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
328 switch (pin) {
329 case PPCE500_INPUT_MCK:
330 if (level) {
331 LOG_IRQ("%s: reset the PowerPC system\n",
332 __func__);
333 qemu_system_reset_request();
335 break;
336 case PPCE500_INPUT_RESET_CORE:
337 if (level) {
338 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
339 ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
341 break;
342 case PPCE500_INPUT_CINT:
343 /* Level sensitive - active high */
344 LOG_IRQ("%s: set the critical IRQ state to %d\n",
345 __func__, level);
346 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
347 break;
348 case PPCE500_INPUT_INT:
349 /* Level sensitive - active high */
350 LOG_IRQ("%s: set the core IRQ state to %d\n",
351 __func__, level);
352 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
353 break;
354 case PPCE500_INPUT_DEBUG:
355 /* Level sensitive - active high */
356 LOG_IRQ("%s: set the debug pin state to %d\n",
357 __func__, level);
358 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
359 break;
360 default:
361 /* Unknown pin - do nothing */
362 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
363 return;
365 if (level)
366 env->irq_input_state |= 1 << pin;
367 else
368 env->irq_input_state &= ~(1 << pin);
372 void ppce500_irq_init (CPUState *env)
374 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
375 env, PPCE500_INPUT_NB);
377 /*****************************************************************************/
378 /* PowerPC time base and decrementer emulation */
379 struct ppc_tb_t {
380 /* Time base management */
381 int64_t tb_offset; /* Compensation */
382 int64_t atb_offset; /* Compensation */
383 uint32_t tb_freq; /* TB frequency */
384 /* Decrementer management */
385 uint64_t decr_next; /* Tick for next decr interrupt */
386 uint32_t decr_freq; /* decrementer frequency */
387 struct QEMUTimer *decr_timer;
388 /* Hypervisor decrementer management */
389 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
390 struct QEMUTimer *hdecr_timer;
391 uint64_t purr_load;
392 uint64_t purr_start;
393 void *opaque;
396 static always_inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env, uint64_t vmclk,
397 int64_t tb_offset)
399 /* TB time in tb periods */
400 return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset;
403 uint32_t cpu_ppc_load_tbl (CPUState *env)
405 ppc_tb_t *tb_env = env->tb_env;
406 uint64_t tb;
408 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
409 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
411 return tb & 0xFFFFFFFF;
414 static always_inline uint32_t _cpu_ppc_load_tbu (CPUState *env)
416 ppc_tb_t *tb_env = env->tb_env;
417 uint64_t tb;
419 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
420 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
422 return tb >> 32;
425 uint32_t cpu_ppc_load_tbu (CPUState *env)
427 return _cpu_ppc_load_tbu(env);
430 static always_inline void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t vmclk,
431 int64_t *tb_offsetp,
432 uint64_t value)
434 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec);
435 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
436 __func__, value, *tb_offsetp);
439 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
441 ppc_tb_t *tb_env = env->tb_env;
442 uint64_t tb;
444 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
445 tb &= 0xFFFFFFFF00000000ULL;
446 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
447 &tb_env->tb_offset, tb | (uint64_t)value);
450 static always_inline void _cpu_ppc_store_tbu (CPUState *env, uint32_t value)
452 ppc_tb_t *tb_env = env->tb_env;
453 uint64_t tb;
455 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
456 tb &= 0x00000000FFFFFFFFULL;
457 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
458 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
461 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
463 _cpu_ppc_store_tbu(env, value);
466 uint32_t cpu_ppc_load_atbl (CPUState *env)
468 ppc_tb_t *tb_env = env->tb_env;
469 uint64_t tb;
471 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
472 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
474 return tb & 0xFFFFFFFF;
477 uint32_t cpu_ppc_load_atbu (CPUState *env)
479 ppc_tb_t *tb_env = env->tb_env;
480 uint64_t tb;
482 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
483 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
485 return tb >> 32;
488 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
490 ppc_tb_t *tb_env = env->tb_env;
491 uint64_t tb;
493 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
494 tb &= 0xFFFFFFFF00000000ULL;
495 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
496 &tb_env->atb_offset, tb | (uint64_t)value);
499 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
501 ppc_tb_t *tb_env = env->tb_env;
502 uint64_t tb;
504 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
505 tb &= 0x00000000FFFFFFFFULL;
506 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
507 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
510 static void cpu_ppc_tb_stop (CPUState *env)
512 ppc_tb_t *tb_env = env->tb_env;
513 uint64_t tb, atb, vmclk;
515 /* If the time base is already frozen, do nothing */
516 if (tb_env->tb_freq != 0) {
517 vmclk = qemu_get_clock(vm_clock);
518 /* Get the time base */
519 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
520 /* Get the alternate time base */
521 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
522 /* Store the time base value (ie compute the current offset) */
523 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
524 /* Store the alternate time base value (compute the current offset) */
525 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
526 /* Set the time base frequency to zero */
527 tb_env->tb_freq = 0;
528 /* Now, the time bases are frozen to tb_offset / atb_offset value */
532 static void cpu_ppc_tb_start (CPUState *env)
534 ppc_tb_t *tb_env = env->tb_env;
535 uint64_t tb, atb, vmclk;
537 /* If the time base is not frozen, do nothing */
538 if (tb_env->tb_freq == 0) {
539 vmclk = qemu_get_clock(vm_clock);
540 /* Get the time base from tb_offset */
541 tb = tb_env->tb_offset;
542 /* Get the alternate time base from atb_offset */
543 atb = tb_env->atb_offset;
544 /* Restore the tb frequency from the decrementer frequency */
545 tb_env->tb_freq = tb_env->decr_freq;
546 /* Store the time base value */
547 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
548 /* Store the alternate time base value */
549 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
553 static always_inline uint32_t _cpu_ppc_load_decr (CPUState *env,
554 uint64_t *next)
556 ppc_tb_t *tb_env = env->tb_env;
557 uint32_t decr;
558 int64_t diff;
560 diff = tb_env->decr_next - qemu_get_clock(vm_clock);
561 if (diff >= 0)
562 decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec);
563 else
564 decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec);
565 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
567 return decr;
570 uint32_t cpu_ppc_load_decr (CPUState *env)
572 ppc_tb_t *tb_env = env->tb_env;
574 return _cpu_ppc_load_decr(env, &tb_env->decr_next);
577 uint32_t cpu_ppc_load_hdecr (CPUState *env)
579 ppc_tb_t *tb_env = env->tb_env;
581 return _cpu_ppc_load_decr(env, &tb_env->hdecr_next);
584 uint64_t cpu_ppc_load_purr (CPUState *env)
586 ppc_tb_t *tb_env = env->tb_env;
587 uint64_t diff;
589 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
591 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
594 /* When decrementer expires,
595 * all we need to do is generate or queue a CPU exception
597 static always_inline void cpu_ppc_decr_excp (CPUState *env)
599 /* Raise it */
600 LOG_TB("raise decrementer exception\n");
601 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
604 static always_inline void cpu_ppc_hdecr_excp (CPUState *env)
606 /* Raise it */
607 LOG_TB("raise decrementer exception\n");
608 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
611 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
612 struct QEMUTimer *timer,
613 void (*raise_excp)(CPUState *),
614 uint32_t decr, uint32_t value,
615 int is_excp)
617 ppc_tb_t *tb_env = env->tb_env;
618 uint64_t now, next;
620 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
621 decr, value);
622 now = qemu_get_clock(vm_clock);
623 next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq);
624 if (is_excp)
625 next += *nextp - now;
626 if (next == now)
627 next++;
628 *nextp = next;
629 /* Adjust timer */
630 qemu_mod_timer(timer, next);
631 /* If we set a negative value and the decrementer was positive,
632 * raise an exception.
634 if ((value & 0x80000000) && !(decr & 0x80000000))
635 (*raise_excp)(env);
638 static always_inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
639 uint32_t value, int is_excp)
641 ppc_tb_t *tb_env = env->tb_env;
643 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
644 &cpu_ppc_decr_excp, decr, value, is_excp);
647 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
649 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
652 static void cpu_ppc_decr_cb (void *opaque)
654 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
657 static always_inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr,
658 uint32_t value, int is_excp)
660 ppc_tb_t *tb_env = env->tb_env;
662 if (tb_env->hdecr_timer != NULL) {
663 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
664 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
668 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
670 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
673 static void cpu_ppc_hdecr_cb (void *opaque)
675 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
678 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
680 ppc_tb_t *tb_env = env->tb_env;
682 tb_env->purr_load = value;
683 tb_env->purr_start = qemu_get_clock(vm_clock);
686 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
688 CPUState *env = opaque;
689 ppc_tb_t *tb_env = env->tb_env;
691 tb_env->tb_freq = freq;
692 tb_env->decr_freq = freq;
693 /* There is a bug in Linux 2.4 kernels:
694 * if a decrementer exception is pending when it enables msr_ee at startup,
695 * it's not ready to handle it...
697 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
698 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
699 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
702 /* Set up (once) timebase frequency (in Hz) */
703 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
705 ppc_tb_t *tb_env;
707 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
708 env->tb_env = tb_env;
709 /* Create new timer */
710 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
711 if (0) {
712 /* XXX: find a suitable condition to enable the hypervisor decrementer
714 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
715 } else {
716 tb_env->hdecr_timer = NULL;
718 cpu_ppc_set_tb_clk(env, freq);
720 return &cpu_ppc_set_tb_clk;
723 /* Specific helpers for POWER & PowerPC 601 RTC */
724 #if 0
725 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
727 return cpu_ppc_tb_init(env, 7812500);
729 #endif
731 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
733 _cpu_ppc_store_tbu(env, value);
736 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
738 return _cpu_ppc_load_tbu(env);
741 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
743 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
746 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
748 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
751 /*****************************************************************************/
752 /* Embedded PowerPC timers */
754 /* PIT, FIT & WDT */
755 typedef struct ppcemb_timer_t ppcemb_timer_t;
756 struct ppcemb_timer_t {
757 uint64_t pit_reload; /* PIT auto-reload value */
758 uint64_t fit_next; /* Tick for next FIT interrupt */
759 struct QEMUTimer *fit_timer;
760 uint64_t wdt_next; /* Tick for next WDT interrupt */
761 struct QEMUTimer *wdt_timer;
764 /* Fixed interval timer */
765 static void cpu_4xx_fit_cb (void *opaque)
767 CPUState *env;
768 ppc_tb_t *tb_env;
769 ppcemb_timer_t *ppcemb_timer;
770 uint64_t now, next;
772 env = opaque;
773 tb_env = env->tb_env;
774 ppcemb_timer = tb_env->opaque;
775 now = qemu_get_clock(vm_clock);
776 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
777 case 0:
778 next = 1 << 9;
779 break;
780 case 1:
781 next = 1 << 13;
782 break;
783 case 2:
784 next = 1 << 17;
785 break;
786 case 3:
787 next = 1 << 21;
788 break;
789 default:
790 /* Cannot occur, but makes gcc happy */
791 return;
793 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
794 if (next == now)
795 next++;
796 qemu_mod_timer(ppcemb_timer->fit_timer, next);
797 env->spr[SPR_40x_TSR] |= 1 << 26;
798 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
799 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
800 LOG_TB("%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__,
801 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
802 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
805 /* Programmable interval timer */
806 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
808 ppcemb_timer_t *ppcemb_timer;
809 uint64_t now, next;
811 ppcemb_timer = tb_env->opaque;
812 if (ppcemb_timer->pit_reload <= 1 ||
813 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
814 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
815 /* Stop PIT */
816 LOG_TB("%s: stop PIT\n", __func__);
817 qemu_del_timer(tb_env->decr_timer);
818 } else {
819 LOG_TB("%s: start PIT %016" PRIx64 "\n",
820 __func__, ppcemb_timer->pit_reload);
821 now = qemu_get_clock(vm_clock);
822 next = now + muldiv64(ppcemb_timer->pit_reload,
823 ticks_per_sec, tb_env->decr_freq);
824 if (is_excp)
825 next += tb_env->decr_next - now;
826 if (next == now)
827 next++;
828 qemu_mod_timer(tb_env->decr_timer, next);
829 tb_env->decr_next = next;
833 static void cpu_4xx_pit_cb (void *opaque)
835 CPUState *env;
836 ppc_tb_t *tb_env;
837 ppcemb_timer_t *ppcemb_timer;
839 env = opaque;
840 tb_env = env->tb_env;
841 ppcemb_timer = tb_env->opaque;
842 env->spr[SPR_40x_TSR] |= 1 << 27;
843 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
844 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
845 start_stop_pit(env, tb_env, 1);
846 LOG_TB("%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " "
847 "%016" PRIx64 "\n", __func__,
848 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
849 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
850 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
851 ppcemb_timer->pit_reload);
854 /* Watchdog timer */
855 static void cpu_4xx_wdt_cb (void *opaque)
857 CPUState *env;
858 ppc_tb_t *tb_env;
859 ppcemb_timer_t *ppcemb_timer;
860 uint64_t now, next;
862 env = opaque;
863 tb_env = env->tb_env;
864 ppcemb_timer = tb_env->opaque;
865 now = qemu_get_clock(vm_clock);
866 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
867 case 0:
868 next = 1 << 17;
869 break;
870 case 1:
871 next = 1 << 21;
872 break;
873 case 2:
874 next = 1 << 25;
875 break;
876 case 3:
877 next = 1 << 29;
878 break;
879 default:
880 /* Cannot occur, but makes gcc happy */
881 return;
883 next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq);
884 if (next == now)
885 next++;
886 LOG_TB("%s: TCR " ADDRX " TSR " ADDRX "\n", __func__,
887 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
888 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
889 case 0x0:
890 case 0x1:
891 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
892 ppcemb_timer->wdt_next = next;
893 env->spr[SPR_40x_TSR] |= 1 << 31;
894 break;
895 case 0x2:
896 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
897 ppcemb_timer->wdt_next = next;
898 env->spr[SPR_40x_TSR] |= 1 << 30;
899 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
900 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
901 break;
902 case 0x3:
903 env->spr[SPR_40x_TSR] &= ~0x30000000;
904 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
905 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
906 case 0x0:
907 /* No reset */
908 break;
909 case 0x1: /* Core reset */
910 ppc40x_core_reset(env);
911 break;
912 case 0x2: /* Chip reset */
913 ppc40x_chip_reset(env);
914 break;
915 case 0x3: /* System reset */
916 ppc40x_system_reset(env);
917 break;
922 void store_40x_pit (CPUState *env, target_ulong val)
924 ppc_tb_t *tb_env;
925 ppcemb_timer_t *ppcemb_timer;
927 tb_env = env->tb_env;
928 ppcemb_timer = tb_env->opaque;
929 LOG_TB("%s val" ADDRX "\n", __func__, val);
930 ppcemb_timer->pit_reload = val;
931 start_stop_pit(env, tb_env, 0);
934 target_ulong load_40x_pit (CPUState *env)
936 return cpu_ppc_load_decr(env);
939 void store_booke_tsr (CPUState *env, target_ulong val)
941 LOG_TB("%s: val " ADDRX "\n", __func__, val);
942 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
943 if (val & 0x80000000)
944 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
947 void store_booke_tcr (CPUState *env, target_ulong val)
949 ppc_tb_t *tb_env;
951 tb_env = env->tb_env;
952 LOG_TB("%s: val " ADDRX "\n", __func__, val);
953 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
954 start_stop_pit(env, tb_env, 1);
955 cpu_4xx_wdt_cb(env);
958 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
960 CPUState *env = opaque;
961 ppc_tb_t *tb_env = env->tb_env;
963 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
964 freq);
965 tb_env->tb_freq = freq;
966 tb_env->decr_freq = freq;
967 /* XXX: we should also update all timers */
970 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
972 ppc_tb_t *tb_env;
973 ppcemb_timer_t *ppcemb_timer;
975 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
976 env->tb_env = tb_env;
977 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
978 tb_env->tb_freq = freq;
979 tb_env->decr_freq = freq;
980 tb_env->opaque = ppcemb_timer;
981 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
982 if (ppcemb_timer != NULL) {
983 /* We use decr timer for PIT */
984 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
985 ppcemb_timer->fit_timer =
986 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
987 ppcemb_timer->wdt_timer =
988 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
991 return &ppc_emb_set_tb_clk;
994 /*****************************************************************************/
995 /* Embedded PowerPC Device Control Registers */
996 typedef struct ppc_dcrn_t ppc_dcrn_t;
997 struct ppc_dcrn_t {
998 dcr_read_cb dcr_read;
999 dcr_write_cb dcr_write;
1000 void *opaque;
1003 /* XXX: on 460, DCR addresses are 32 bits wide,
1004 * using DCRIPR to get the 22 upper bits of the DCR address
1006 #define DCRN_NB 1024
1007 struct ppc_dcr_t {
1008 ppc_dcrn_t dcrn[DCRN_NB];
1009 int (*read_error)(int dcrn);
1010 int (*write_error)(int dcrn);
1013 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
1015 ppc_dcrn_t *dcr;
1017 if (dcrn < 0 || dcrn >= DCRN_NB)
1018 goto error;
1019 dcr = &dcr_env->dcrn[dcrn];
1020 if (dcr->dcr_read == NULL)
1021 goto error;
1022 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1024 return 0;
1026 error:
1027 if (dcr_env->read_error != NULL)
1028 return (*dcr_env->read_error)(dcrn);
1030 return -1;
1033 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
1035 ppc_dcrn_t *dcr;
1037 if (dcrn < 0 || dcrn >= DCRN_NB)
1038 goto error;
1039 dcr = &dcr_env->dcrn[dcrn];
1040 if (dcr->dcr_write == NULL)
1041 goto error;
1042 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1044 return 0;
1046 error:
1047 if (dcr_env->write_error != NULL)
1048 return (*dcr_env->write_error)(dcrn);
1050 return -1;
1053 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1054 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1056 ppc_dcr_t *dcr_env;
1057 ppc_dcrn_t *dcr;
1059 dcr_env = env->dcr_env;
1060 if (dcr_env == NULL)
1061 return -1;
1062 if (dcrn < 0 || dcrn >= DCRN_NB)
1063 return -1;
1064 dcr = &dcr_env->dcrn[dcrn];
1065 if (dcr->opaque != NULL ||
1066 dcr->dcr_read != NULL ||
1067 dcr->dcr_write != NULL)
1068 return -1;
1069 dcr->opaque = opaque;
1070 dcr->dcr_read = dcr_read;
1071 dcr->dcr_write = dcr_write;
1073 return 0;
1076 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1077 int (*write_error)(int dcrn))
1079 ppc_dcr_t *dcr_env;
1081 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1082 dcr_env->read_error = read_error;
1083 dcr_env->write_error = write_error;
1084 env->dcr_env = dcr_env;
1086 return 0;
1089 #if 0
1090 /*****************************************************************************/
1091 /* Handle system reset (for now, just stop emulation) */
1092 void cpu_ppc_reset (CPUState *env)
1094 printf("Reset asked... Stop emulation\n");
1095 abort();
1097 #endif
1099 /*****************************************************************************/
1100 /* Debug port */
1101 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1103 addr &= 0xF;
1104 switch (addr) {
1105 case 0:
1106 printf("%c", val);
1107 break;
1108 case 1:
1109 printf("\n");
1110 fflush(stdout);
1111 break;
1112 case 2:
1113 printf("Set loglevel to %04" PRIx32 "\n", val);
1114 cpu_set_log(val | 0x100);
1115 break;
1119 /*****************************************************************************/
1120 /* NVRAM helpers */
1121 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1123 return (*nvram->read_fn)(nvram->opaque, addr);;
1126 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1128 (*nvram->write_fn)(nvram->opaque, addr, val);
1131 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1133 nvram_write(nvram, addr, value);
1136 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1138 return nvram_read(nvram, addr);
1141 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1143 nvram_write(nvram, addr, value >> 8);
1144 nvram_write(nvram, addr + 1, value & 0xFF);
1147 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1149 uint16_t tmp;
1151 tmp = nvram_read(nvram, addr) << 8;
1152 tmp |= nvram_read(nvram, addr + 1);
1154 return tmp;
1157 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1159 nvram_write(nvram, addr, value >> 24);
1160 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1161 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1162 nvram_write(nvram, addr + 3, value & 0xFF);
1165 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1167 uint32_t tmp;
1169 tmp = nvram_read(nvram, addr) << 24;
1170 tmp |= nvram_read(nvram, addr + 1) << 16;
1171 tmp |= nvram_read(nvram, addr + 2) << 8;
1172 tmp |= nvram_read(nvram, addr + 3);
1174 return tmp;
1177 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1178 const char *str, uint32_t max)
1180 int i;
1182 for (i = 0; i < max && str[i] != '\0'; i++) {
1183 nvram_write(nvram, addr + i, str[i]);
1185 nvram_write(nvram, addr + i, str[i]);
1186 nvram_write(nvram, addr + max - 1, '\0');
1189 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1191 int i;
1193 memset(dst, 0, max);
1194 for (i = 0; i < max; i++) {
1195 dst[i] = NVRAM_get_byte(nvram, addr + i);
1196 if (dst[i] == '\0')
1197 break;
1200 return i;
1203 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1205 uint16_t tmp;
1206 uint16_t pd, pd1, pd2;
1208 tmp = prev >> 8;
1209 pd = prev ^ value;
1210 pd1 = pd & 0x000F;
1211 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1212 tmp ^= (pd1 << 3) | (pd1 << 8);
1213 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1215 return tmp;
1218 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1220 uint32_t i;
1221 uint16_t crc = 0xFFFF;
1222 int odd;
1224 odd = count & 1;
1225 count &= ~1;
1226 for (i = 0; i != count; i++) {
1227 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1229 if (odd) {
1230 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1233 return crc;
1236 #define CMDLINE_ADDR 0x017ff000
1238 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1239 const char *arch,
1240 uint32_t RAM_size, int boot_device,
1241 uint32_t kernel_image, uint32_t kernel_size,
1242 const char *cmdline,
1243 uint32_t initrd_image, uint32_t initrd_size,
1244 uint32_t NVRAM_image,
1245 int width, int height, int depth)
1247 uint16_t crc;
1249 /* Set parameters for Open Hack'Ware BIOS */
1250 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1251 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1252 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1253 NVRAM_set_string(nvram, 0x20, arch, 16);
1254 NVRAM_set_lword(nvram, 0x30, RAM_size);
1255 NVRAM_set_byte(nvram, 0x34, boot_device);
1256 NVRAM_set_lword(nvram, 0x38, kernel_image);
1257 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1258 if (cmdline) {
1259 /* XXX: put the cmdline in NVRAM too ? */
1260 strcpy((char *)(phys_ram_base + CMDLINE_ADDR), cmdline);
1261 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1262 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1263 } else {
1264 NVRAM_set_lword(nvram, 0x40, 0);
1265 NVRAM_set_lword(nvram, 0x44, 0);
1267 NVRAM_set_lword(nvram, 0x48, initrd_image);
1268 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1269 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1271 NVRAM_set_word(nvram, 0x54, width);
1272 NVRAM_set_word(nvram, 0x56, height);
1273 NVRAM_set_word(nvram, 0x58, depth);
1274 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1275 NVRAM_set_word(nvram, 0xFC, crc);
1277 return 0;