Handle SEJ notifications
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blobc9d60ba3ae9453a3fc03f367228850fd5511cf69
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
15 #include "qemu-kvm.h"
16 #include <libkvm.h>
17 #include <pthread.h>
18 #include <sys/utsname.h>
19 #include <linux/kvm_para.h>
21 #define MSR_IA32_TSC 0x10
23 static struct kvm_msr_list *kvm_msr_list;
24 extern unsigned int kvm_shadow_memory;
25 extern kvm_context_t kvm_context;
26 static int kvm_has_msr_star;
28 static int lm_capable_kernel;
30 int kvm_arch_qemu_create_context(void)
32 int i;
33 struct utsname utsname;
35 uname(&utsname);
36 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
38 if (kvm_shadow_memory)
39 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
41 kvm_msr_list = kvm_get_msr_list(kvm_context);
42 if (!kvm_msr_list)
43 return -1;
44 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
45 if (kvm_msr_list->indices[i] == MSR_STAR)
46 kvm_has_msr_star = 1;
47 return 0;
50 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
51 uint64_t data)
53 entry->index = index;
54 entry->data = data;
57 /* returns 0 on success, non-0 on failure */
58 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
60 switch (entry->index) {
61 case MSR_IA32_SYSENTER_CS:
62 env->sysenter_cs = entry->data;
63 break;
64 case MSR_IA32_SYSENTER_ESP:
65 env->sysenter_esp = entry->data;
66 break;
67 case MSR_IA32_SYSENTER_EIP:
68 env->sysenter_eip = entry->data;
69 break;
70 case MSR_STAR:
71 env->star = entry->data;
72 break;
73 #ifdef TARGET_X86_64
74 case MSR_CSTAR:
75 env->cstar = entry->data;
76 break;
77 case MSR_KERNELGSBASE:
78 env->kernelgsbase = entry->data;
79 break;
80 case MSR_FMASK:
81 env->fmask = entry->data;
82 break;
83 case MSR_LSTAR:
84 env->lstar = entry->data;
85 break;
86 #endif
87 case MSR_IA32_TSC:
88 env->tsc = entry->data;
89 break;
90 default:
91 printf("Warning unknown msr index 0x%x\n", entry->index);
92 return 1;
94 return 0;
97 #ifdef TARGET_X86_64
98 #define MSR_COUNT 9
99 #else
100 #define MSR_COUNT 5
101 #endif
103 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
105 lhs->selector = rhs->selector;
106 lhs->base = rhs->base;
107 lhs->limit = rhs->limit;
108 lhs->type = 3;
109 lhs->present = 1;
110 lhs->dpl = 3;
111 lhs->db = 0;
112 lhs->s = 1;
113 lhs->l = 0;
114 lhs->g = 0;
115 lhs->avl = 0;
116 lhs->unusable = 0;
119 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
121 unsigned flags = rhs->flags;
122 lhs->selector = rhs->selector;
123 lhs->base = rhs->base;
124 lhs->limit = rhs->limit;
125 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
126 lhs->present = (flags & DESC_P_MASK) != 0;
127 lhs->dpl = rhs->selector & 3;
128 lhs->db = (flags >> DESC_B_SHIFT) & 1;
129 lhs->s = (flags & DESC_S_MASK) != 0;
130 lhs->l = (flags >> DESC_L_SHIFT) & 1;
131 lhs->g = (flags & DESC_G_MASK) != 0;
132 lhs->avl = (flags & DESC_AVL_MASK) != 0;
133 lhs->unusable = 0;
136 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
138 lhs->selector = rhs->selector;
139 lhs->base = rhs->base;
140 lhs->limit = rhs->limit;
141 lhs->flags =
142 (rhs->type << DESC_TYPE_SHIFT)
143 | (rhs->present * DESC_P_MASK)
144 | (rhs->dpl << DESC_DPL_SHIFT)
145 | (rhs->db << DESC_B_SHIFT)
146 | (rhs->s * DESC_S_MASK)
147 | (rhs->l << DESC_L_SHIFT)
148 | (rhs->g * DESC_G_MASK)
149 | (rhs->avl * DESC_AVL_MASK);
152 /* the reset values of qemu are not compatible to SVM
153 * this function is used to fix the segment descriptor values */
154 static void fix_realmode_dataseg(struct kvm_segment *seg)
156 seg->type = 0x02;
157 seg->present = 1;
158 seg->s = 1;
161 void kvm_arch_load_regs(CPUState *env)
163 struct kvm_regs regs;
164 struct kvm_fpu fpu;
165 struct kvm_sregs sregs;
166 struct kvm_msr_entry msrs[MSR_COUNT];
167 int rc, n, i;
169 regs.rax = env->regs[R_EAX];
170 regs.rbx = env->regs[R_EBX];
171 regs.rcx = env->regs[R_ECX];
172 regs.rdx = env->regs[R_EDX];
173 regs.rsi = env->regs[R_ESI];
174 regs.rdi = env->regs[R_EDI];
175 regs.rsp = env->regs[R_ESP];
176 regs.rbp = env->regs[R_EBP];
177 #ifdef TARGET_X86_64
178 regs.r8 = env->regs[8];
179 regs.r9 = env->regs[9];
180 regs.r10 = env->regs[10];
181 regs.r11 = env->regs[11];
182 regs.r12 = env->regs[12];
183 regs.r13 = env->regs[13];
184 regs.r14 = env->regs[14];
185 regs.r15 = env->regs[15];
186 #endif
188 regs.rflags = env->eflags;
189 regs.rip = env->eip;
191 kvm_set_regs(kvm_context, env->cpu_index, &regs);
193 memset(&fpu, 0, sizeof fpu);
194 fpu.fsw = env->fpus & ~(7 << 11);
195 fpu.fsw |= (env->fpstt & 7) << 11;
196 fpu.fcw = env->fpuc;
197 for (i = 0; i < 8; ++i)
198 fpu.ftwx |= (!env->fptags[i]) << i;
199 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
200 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
201 fpu.mxcsr = env->mxcsr;
202 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
204 memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
206 if ((env->eflags & VM_MASK)) {
207 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
208 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
209 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
210 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
211 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
212 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
213 } else {
214 set_seg(&sregs.cs, &env->segs[R_CS]);
215 set_seg(&sregs.ds, &env->segs[R_DS]);
216 set_seg(&sregs.es, &env->segs[R_ES]);
217 set_seg(&sregs.fs, &env->segs[R_FS]);
218 set_seg(&sregs.gs, &env->segs[R_GS]);
219 set_seg(&sregs.ss, &env->segs[R_SS]);
221 if (env->cr[0] & CR0_PE_MASK) {
222 /* force ss cpl to cs cpl */
223 sregs.ss.selector = (sregs.ss.selector & ~3) |
224 (sregs.cs.selector & 3);
225 sregs.ss.dpl = sregs.ss.selector & 3;
228 if (!(env->cr[0] & CR0_PG_MASK)) {
229 fix_realmode_dataseg(&sregs.cs);
230 fix_realmode_dataseg(&sregs.ds);
231 fix_realmode_dataseg(&sregs.es);
232 fix_realmode_dataseg(&sregs.fs);
233 fix_realmode_dataseg(&sregs.gs);
234 fix_realmode_dataseg(&sregs.ss);
238 set_seg(&sregs.tr, &env->tr);
239 set_seg(&sregs.ldt, &env->ldt);
241 sregs.idt.limit = env->idt.limit;
242 sregs.idt.base = env->idt.base;
243 sregs.gdt.limit = env->gdt.limit;
244 sregs.gdt.base = env->gdt.base;
246 sregs.cr0 = env->cr[0];
247 sregs.cr2 = env->cr[2];
248 sregs.cr3 = env->cr[3];
249 sregs.cr4 = env->cr[4];
251 sregs.apic_base = cpu_get_apic_base(env);
252 sregs.efer = env->efer;
253 sregs.cr8 = cpu_get_apic_tpr(env);
255 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
257 /* msrs */
258 n = 0;
259 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
260 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
261 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
262 if (kvm_has_msr_star)
263 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
264 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
265 #ifdef TARGET_X86_64
266 if (lm_capable_kernel) {
267 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
268 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
269 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
270 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
272 #endif
274 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
275 if (rc == -1)
276 perror("kvm_set_msrs FAILED");
280 void kvm_arch_save_regs(CPUState *env)
282 struct kvm_regs regs;
283 struct kvm_fpu fpu;
284 struct kvm_sregs sregs;
285 struct kvm_msr_entry msrs[MSR_COUNT];
286 uint32_t hflags;
287 uint32_t i, n, rc;
289 kvm_get_regs(kvm_context, env->cpu_index, &regs);
291 env->regs[R_EAX] = regs.rax;
292 env->regs[R_EBX] = regs.rbx;
293 env->regs[R_ECX] = regs.rcx;
294 env->regs[R_EDX] = regs.rdx;
295 env->regs[R_ESI] = regs.rsi;
296 env->regs[R_EDI] = regs.rdi;
297 env->regs[R_ESP] = regs.rsp;
298 env->regs[R_EBP] = regs.rbp;
299 #ifdef TARGET_X86_64
300 env->regs[8] = regs.r8;
301 env->regs[9] = regs.r9;
302 env->regs[10] = regs.r10;
303 env->regs[11] = regs.r11;
304 env->regs[12] = regs.r12;
305 env->regs[13] = regs.r13;
306 env->regs[14] = regs.r14;
307 env->regs[15] = regs.r15;
308 #endif
310 env->eflags = regs.rflags;
311 env->eip = regs.rip;
313 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
314 env->fpstt = (fpu.fsw >> 11) & 7;
315 env->fpus = fpu.fsw;
316 env->fpuc = fpu.fcw;
317 for (i = 0; i < 8; ++i)
318 env->fptags[i] = !((fpu.ftwx >> i) & 1);
319 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
320 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
321 env->mxcsr = fpu.mxcsr;
323 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
325 memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));
327 get_seg(&env->segs[R_CS], &sregs.cs);
328 get_seg(&env->segs[R_DS], &sregs.ds);
329 get_seg(&env->segs[R_ES], &sregs.es);
330 get_seg(&env->segs[R_FS], &sregs.fs);
331 get_seg(&env->segs[R_GS], &sregs.gs);
332 get_seg(&env->segs[R_SS], &sregs.ss);
334 get_seg(&env->tr, &sregs.tr);
335 get_seg(&env->ldt, &sregs.ldt);
337 env->idt.limit = sregs.idt.limit;
338 env->idt.base = sregs.idt.base;
339 env->gdt.limit = sregs.gdt.limit;
340 env->gdt.base = sregs.gdt.base;
342 env->cr[0] = sregs.cr0;
343 env->cr[2] = sregs.cr2;
344 env->cr[3] = sregs.cr3;
345 env->cr[4] = sregs.cr4;
347 cpu_set_apic_base(env, sregs.apic_base);
349 env->efer = sregs.efer;
350 //cpu_set_apic_tpr(env, sregs.cr8);
352 #define HFLAG_COPY_MASK ~( \
353 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
354 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
355 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
356 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
360 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
361 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
362 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
363 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
364 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
365 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
366 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
368 if (env->efer & MSR_EFER_LMA) {
369 hflags |= HF_LMA_MASK;
372 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
373 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
374 } else {
375 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
376 (DESC_B_SHIFT - HF_CS32_SHIFT);
377 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
378 (DESC_B_SHIFT - HF_SS32_SHIFT);
379 if (!(env->cr[0] & CR0_PE_MASK) ||
380 (env->eflags & VM_MASK) ||
381 !(hflags & HF_CS32_MASK)) {
382 hflags |= HF_ADDSEG_MASK;
383 } else {
384 hflags |= ((env->segs[R_DS].base |
385 env->segs[R_ES].base |
386 env->segs[R_SS].base) != 0) <<
387 HF_ADDSEG_SHIFT;
390 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
391 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
392 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
393 env->cc_op = CC_OP_EFLAGS;
394 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
396 /* msrs */
397 n = 0;
398 msrs[n++].index = MSR_IA32_SYSENTER_CS;
399 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
400 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
401 if (kvm_has_msr_star)
402 msrs[n++].index = MSR_STAR;
403 msrs[n++].index = MSR_IA32_TSC;
404 #ifdef TARGET_X86_64
405 if (lm_capable_kernel) {
406 msrs[n++].index = MSR_CSTAR;
407 msrs[n++].index = MSR_KERNELGSBASE;
408 msrs[n++].index = MSR_FMASK;
409 msrs[n++].index = MSR_LSTAR;
411 #endif
412 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
413 if (rc == -1) {
414 perror("kvm_get_msrs FAILED");
416 else {
417 n = rc; /* actual number of MSRs */
418 for (i=0 ; i<n; i++) {
419 if (get_msr_entry(&msrs[i], env))
420 return;
425 static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
426 uint32_t *ecx, uint32_t *edx)
428 uint32_t vec[4];
430 #ifdef __x86_64__
431 asm volatile("cpuid"
432 : "=a"(vec[0]), "=b"(vec[1]),
433 "=c"(vec[2]), "=d"(vec[3])
434 : "0"(function) : "cc");
435 #else
436 asm volatile("pusha \n\t"
437 "cpuid \n\t"
438 "mov %%eax, 0(%1) \n\t"
439 "mov %%ebx, 4(%1) \n\t"
440 "mov %%ecx, 8(%1) \n\t"
441 "mov %%edx, 12(%1) \n\t"
442 "popa"
443 : : "a"(function), "S"(vec)
444 : "memory", "cc");
445 #endif
447 if (eax)
448 *eax = vec[0];
449 if (ebx)
450 *ebx = vec[1];
451 if (ecx)
452 *ecx = vec[2];
453 if (edx)
454 *edx = vec[3];
458 static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
459 CPUState *env)
461 env->regs[R_EAX] = function;
462 qemu_kvm_cpuid_on_env(env);
463 e->function = function;
464 e->eax = env->regs[R_EAX];
465 e->ebx = env->regs[R_EBX];
466 e->ecx = env->regs[R_ECX];
467 e->edx = env->regs[R_EDX];
468 if (function == 0x80000001) {
469 uint32_t h_eax, h_edx;
471 host_cpuid(function, &h_eax, NULL, NULL, &h_edx);
473 // long mode
474 if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
475 e->edx &= ~0x20000000u;
476 // syscall
477 if ((h_edx & 0x00000800) == 0)
478 e->edx &= ~0x00000800u;
479 // nx
480 if ((h_edx & 0x00100000) == 0)
481 e->edx &= ~0x00100000u;
482 // svm
483 if (e->ecx & 4)
484 e->ecx &= ~4u;
486 // sysenter isn't supported on compatibility mode on AMD. and syscall
487 // isn't supported in compatibility mode on Intel. so advertise the
488 // actuall cpu, and say goodbye to migration between different vendors
489 // is you use compatibility mode.
490 if (function == 0) {
491 uint32_t bcd[3];
493 host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
494 e->ebx = bcd[0];
495 e->ecx = bcd[1];
496 e->edx = bcd[2];
500 int kvm_arch_qemu_init_env(CPUState *cenv)
502 struct kvm_cpuid_entry cpuid_ent[100];
503 #ifdef KVM_CPUID_SIGNATURE
504 struct kvm_cpuid_entry *pv_ent;
505 uint32_t signature[3];
506 #endif
507 int cpuid_nent = 0;
508 CPUState copy;
509 uint32_t i, limit;
510 int has_clocksource = 0;
511 #ifdef KVM_CAP_CLOCKSOURCE
512 has_clocksource = kvm_check_extension(kvm_context, KVM_CAP_CLOCKSOURCE);
513 #endif
515 copy = *cenv;
517 #ifdef KVM_CPUID_SIGNATURE
518 /* Paravirtualization CPUIDs */
519 memcpy(signature, "KVMKVMKVM", 12);
520 pv_ent = &cpuid_ent[cpuid_nent++];
521 memset(pv_ent, 0, sizeof(*pv_ent));
522 pv_ent->function = KVM_CPUID_SIGNATURE;
523 pv_ent->eax = 0;
524 pv_ent->ebx = signature[0];
525 pv_ent->ecx = signature[1];
526 pv_ent->edx = signature[2];
528 pv_ent = &cpuid_ent[cpuid_nent++];
529 memset(pv_ent, 0, sizeof(*pv_ent));
530 pv_ent->function = KVM_CPUID_FEATURES;
531 #ifdef KVM_CAP_CLOCKSOURCE
532 pv_ent->eax = (has_clocksource << KVM_FEATURE_CLOCKSOURCE);
533 #endif
534 #endif
536 copy.regs[R_EAX] = 0;
537 qemu_kvm_cpuid_on_env(&copy);
538 limit = copy.regs[R_EAX];
540 for (i = 0; i <= limit; ++i)
541 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
543 copy.regs[R_EAX] = 0x80000000;
544 qemu_kvm_cpuid_on_env(&copy);
545 limit = copy.regs[R_EAX];
547 for (i = 0x80000000; i <= limit; ++i)
548 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
550 kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
551 return 0;
554 int kvm_arch_halt(void *opaque, int vcpu)
556 CPUState *env = cpu_single_env;
558 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
559 (env->eflags & IF_MASK))) {
560 env->hflags |= HF_HALTED_MASK;
561 env->exception_index = EXCP_HLT;
563 return 1;
566 void kvm_arch_pre_kvm_run(void *opaque, int vcpu)
568 CPUState *env = cpu_single_env;
570 if (!kvm_irqchip_in_kernel(kvm_context))
571 kvm_set_cr8(kvm_context, vcpu, cpu_get_apic_tpr(env));
574 void kvm_arch_post_kvm_run(void *opaque, int vcpu)
576 CPUState *env = qemu_kvm_cpu_env(vcpu);
577 cpu_single_env = env;
579 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
580 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
581 env->ready_for_interrupt_injection
582 = kvm_is_ready_for_interrupt_injection(kvm_context, vcpu);
584 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
585 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
588 int kvm_arch_has_work(CPUState *env)
590 if ((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
591 (env->eflags & IF_MASK))
592 return 1;
593 return 0;
596 int kvm_arch_try_push_interrupts(void *opaque)
598 CPUState *env = cpu_single_env;
599 int r, irq;
601 if (env->ready_for_interrupt_injection &&
602 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
603 (env->eflags & IF_MASK)) {
604 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
605 irq = cpu_get_pic_interrupt(env);
606 if (irq >= 0) {
607 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
608 if (r < 0)
609 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
613 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
616 void kvm_arch_update_regs_for_sipi(CPUState *env)
618 SegmentCache cs = env->segs[R_CS];
620 kvm_arch_save_regs(env);
621 env->segs[R_CS] = cs;
622 env->eip = 0;
623 kvm_arch_load_regs(env);
626 int handle_tpr_access(void *opaque, int vcpu,
627 uint64_t rip, int is_write)
629 kvm_tpr_access_report(cpu_single_env, rip, is_write);
630 return 0;